Equations of Motion With Different Axis

Embed Size (px)

Citation preview

  • 8/6/2019 Equations of Motion With Different Axis

    1/10

    Aircraft Equations of MotionRobert Stengel, Aircraft Flight Dynamics

    MAE 331, 2008

    Angular kinematics

    Euler angles

    Rotation matrix

    Angular momentum

    Inertia matrix

    Rotating frames of reference

    Combined equations of motion

    Copyright 2008 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    Nonlinear equations of motion

    Compute exact flight paths andmotions

    Simulate flight motions

    Optimize flight paths

    Predict performance

    Provide basis for approximatesolutions

    Linear equations of motion

    Simplify computation offlight paths and solutions

    Define modes of motion

    Provide basis for controlsystem design and flyingqualities analysis

    What Use are the Equations of Motion?

    dx(t)

    dt= f x(t),u(t),w(t),p(t),t[ ]

    dx(t)

    dt= Fx(t)+Gu(t) +Lw(t)

    Cartesian Frames

    of Reference

    Two reference frames of interest I: Inertial frame (fixed to inertial space)

    B: Body frame (fixed to body)

    Common convention (zup) Aircraft convention (zdown)

    Translation Relative linear positions of origins

    Rotation Orientation of the body frame with

    respect to the inertial frame

    Measurement of Position in

    Alternative Frames - 1

    Two reference frames of interest I: Inertial frame (fixed to inertial

    space)

    B: Body frame (fixed to body)

    However, differences in frameorientationsmust be taken intoaccount in adding vector components

    r =

    x

    y

    z

    "

    #

    $$$

    %

    &

    '''

    rparticle = rorigin +(rw.r.t. origin

    Inertial-axis view

    Body-axis view

  • 8/6/2019 Equations of Motion With Different Axis

    2/10

    Euler Angles Measure the Orientation of

    One Frame with Respect to the Other

    Conventional sequence of rotations from inertial to body frame Each rotation is about a single axis

    Right-hand rule

    Yaw, then pitch, then roll

    These are called Euler Angles

    Yaw rotation (! ) about zI Pitch rotation (") about y1 Roll rotation (#) about x2 Other sequences of 3 rotations can be chosen; however, once

    sequence is chosen, it must be retained

    Effects of Rotation on

    Vector TransformationYaw rotation (! ) about zI

    Pitch rotation (") about y1

    Roll rotation (#) about x2

    x

    y

    z

    "

    #

    $$

    $

    %

    &

    ''

    '1

    =

    cos( sin( 0

    )sin( cos( 0

    0 0 1

    "

    #

    $$

    $

    %

    &

    ''

    '

    x

    y

    z

    "

    #

    $$

    $

    %

    &

    ''

    'I

    =

    xI

    cos(+ yI

    sin(

    )xI

    sin(+ yI

    cos(

    zI

    "

    #

    $$

    $

    %

    &

    ''

    '

    ; r1=H

    I

    1rI

    x

    y

    z

    "

    #

    $$$

    %

    &

    '''

    2

    =

    cos( 0 )sin(

    0 1 0

    sin( 0 cos(

    "

    #

    $$$

    %

    &

    '''

    x

    y

    z

    "

    #

    $$$

    %

    &

    '''

    1

    ; r2=H

    1

    2r

    1=H

    1

    2H

    I

    1rI=H

    I

    2rI

    x

    y

    z

    "

    #

    $$$

    %

    &

    '''B

    =

    1 0 0

    0 cos( sin(

    0 )sin( cos(

    "

    #

    $$$

    %

    &

    '''

    x

    y

    z

    "

    #

    $$$

    %

    &

    '''

    2

    ; rB=H

    2

    Br

    2=H

    2

    BH

    I

    2rI=H

    I

    BrI

    The Rotation Matrix

    HI

    B(",#,$) =H2

    B(")H

    1

    2(#)H

    I

    1($)

    =

    1 0 0

    0 cos" sin"

    0 %sin" cos"

    &

    '

    (((

    )

    *

    +++

    cos# 0 %sin#

    0 1 0

    sin# 0 cos#

    &

    '

    (((

    )

    *

    +++

    cos$ sin$ 0

    %sin$ cos$ 0

    0 0 1

    &

    '

    (((

    )

    *

    +++

    =

    cos#cos$ cos#sin$ %sin#

    %cos"sin$+ sin"sin#cos$ cos"cos$+ sin"sin#sin$ sin"cos#

    sin"sin$+ cos"sin#cos$ %sin"cos$+ cos"sin#sin$ cos"cos#

    &

    '

    (((

    )

    *

    +++

    The three-angle rotation matrix is theproductof 3 single-angle rotation matrices:

    Properties of the Rotation Matrix

    HI

    B(",#,$) =H2

    B(")H1

    2(#)H

    I

    1($)

    The rotation matrix produces an orthonormal transformation Angles are preserved

    Lengths are preserved

    rI= r

    B; s

    I= s

    B

    "(rI,s

    I) ="(r

    B,s

    B) = xdeg

    Inverse relationship

    Because transformation is orthonormal, Inverse = transpose

    Rotation matrix is always non-singular

    rB=H

    I

    BrI

    ; rI= H

    I

    B( )"1

    rB=H

    B

    IrB

    HB

    I= H

    I

    B( )"1

    = HI

    B( )T

    =H1

    IH

    2

    1H

    B

    2

    HBI

    HIB

    =HI

    B

    HBI

    =I

  • 8/6/2019 Equations of Motion With Different Axis

    3/10

    Measurement of Position in

    Alternative Frames - 2

    rparticleI= rorigin"BI

    + HBI#rB

    Inertial-axis view

    Body-axis view

    rparticleB= rorigin"IB

    + HIB#rI

    Angular Momentum

    of a Particle Moment of linear momentum of differential

    particles that make up the body Differential masses times components of their

    velocity that are perpendicular to the momentarms from the center of rotation to the particles

    Cross Product

    r " v =

    i j k

    x y z

    vx vy vz

    = yvz #zvy( )i + zvx # xvz( )j+ xvy # yvx( )k

    dh = r " dmv( ) = r " vm( )dm

    = r " vo+ # " r( )( )dm

    " =

    "x

    "y

    "z

    #$%%%

    &'(((

    Angular Momentum

    of the Aircraft

    Integrate moment of linear momentum of differential particles over the body

    h = r " vo +# " r( )( )dmBody

    $ = r " v( )%(x,y,z)dx dy dzzmin

    zmax

    $ymin

    ymax

    $xmin

    xmax

    $ =hxhy

    hz

    &

    '

    (((

    )

    *

    +++

    %(x,y,z) = Density of the body

    h = r " vo( )dmBody

    # + r " $ " r( )( )dmBody

    #

    = 0% r " r "$( )( )dmBody

    # = % r " r( )dm "$Body

    #

    & % rr( )dm$Body

    #

    Choosing the center of mass as the rotational center

    Cross-Product-

    Equivalent Matrix

    r " v =

    i j k

    x y z

    vx vy vz

    = yvz # zvy( )i + zvx # xvz( )j+ xvy # yvx( )k

    =

    0 #z y

    z 0 #x

    #y x 0

    $

    %

    &&&

    '

    (

    )))

    vx

    vy

    vz

    $

    %

    &&&

    '

    (

    )))

    =

    yvz # zvy( )zvx # xvz( )xvy # yvx( )

    $

    %

    &&&

    '

    (

    )))= rv

    Cross-product-equivalent matrix

    r =

    0 "z y

    z 0 "x

    "y x 0

    #

    $

    %%

    %

    &

    '

    ((

    (

  • 8/6/2019 Equations of Motion With Different Axis

    4/10

    Location of the Center of Mass

    rcm = 1m

    rdmBody" = r#(x,y,z)dx dy dz

    zmin

    zmax

    "ymin

    ymax

    "xmin

    xmax

    " =xcm

    ycm

    zcm

    $

    %

    &&&

    '

    (

    )))

    The Inertia Matrix

    where

    h = " r r # dmBody

    $ = " r r dmBody

    $ # = I#

    Inertia matrix derives fromequal effect ofangular rateon all particles of the aircraft

    I= " r r dmBody

    # = "0 "z y

    z 0 "x

    "y x 0

    $

    %

    &&&

    '

    (

    )))

    0 "z y

    z 0 "x

    "y x 0

    $

    %

    &&&

    '

    (

    )))

    dmBody

    #

    =

    (y2 + z2) "xy "xz

    "xy (x 2 + z2) "yz

    "xz "yz (x2 + y2)

    $

    %

    &&&

    '

    (

    )))

    dmBody

    #

    " =

    "x

    "y

    "z

    #$%%%

    &'(((

    Moments and

    Products of Inertia

    Inertia matrix

    I=

    (y2

    + z2

    ) "xy "xz"xy (x2 + z2) "yz

    "xz "yz (x2 + y2)

    #

    $

    %%%

    &

    '

    (((

    dmBody

    ) =Ixx "Ixy "Ixz"Ixy Iyy "Iyz"Ixz "Iyz Izz

    #

    $

    %%%

    &

    '

    (((

    Moments of inertia on the diagonal

    Products of inertia off the diagonal

    If products of inertia are zero, (x, y, z) are principal axes --->

    Newton!s 2nd Law, applied to rotational motion (in inertial frame) Rate of change of angular momentum = applied moment (or torque), M

    dh

    dt=

    dI"( )dt

    =I" +I =M =

    mx

    my

    mz

    #

    $

    %%

    %

    &

    '

    ((

    (

    Ixx 0 0

    0 Iyy 0

    0 0 Izz

    "#$$$

    %&'''

    Inertia Matrix of an Aircraft

    with Mirror Symmetry

    I=

    (y2+ z

    2) 0 "xz

    0 (x2 + z2 ) 0

    "xz 0 (x 2 + y 2 )

    #

    $

    %%%

    &

    '

    (((dm

    Body)=

    Ixx 0 "Ixz

    0 Iyy 0

    "Ixz 0 Izz

    #

    $%

    %%

    &

    '(

    ((

    Nose high/low product of inertia, Ixz

  • 8/6/2019 Equations of Motion With Different Axis

    5/10

    Inertia matrix,

    with constant density, $

    Moments

    and

    Products of

    Inertia(Bedford & Fowler)

    I= "

    (y2+ z

    2) #xy #xz

    #xy (x2 + z2 ) #yz

    #xz #yz (x2 + y2)

    $

    %

    &&&

    '

    (

    )))

    dxdydzBody

    *

    Can construct aircraftmoments of inertia fromcomponents usingparallel-axis theorem

    Angular Momentum

    and Rate

    Angularmomentum andrate vectors arenot necessarilyaligned

    h = I"

    How Do We Get Rid of dI/dtin the

    Angular Momentum Equation?

    Write the dynamic equation in a body-referenced frame Inertial properties of a constant-mass, rigid body are

    unchanging in a body frame of reference

    ... but a body-referenced frame is non-Newtonian or non-inertial

    Therefore, dynamic equation must be modified to account fora rotating frame

    dI"( )dt

    =I" +I

    Chain Rule ... and in an inertial frame

    I" 0

    Angular Momentum Expressed

    in Different Frames of Reference

    Angular momentum and rate are vectors

    They can be expressed in either the inertial or body frame The 2 frames are related by the rotation matrix

    hB=H

    I

    Bh

    I; h

    I=H

    B

    Ih

    B

    "B=H

    I

    B"I

    ; "I=H

    B

    I"B

  • 8/6/2019 Equations of Motion With Different Axis

    6/10

    Vector Derivative Expressed

    in a Rotating Frame

    Chain Rule

    Consequently

    hI

    =HB

    Ih

    B

    + HB

    Ih

    B

    Effect ofbody-frame rotation

    Rate of changeexpressed in body frame

    Alternatively

    hI=H

    B

    Ih

    B+ "

    I#h

    I=H

    B

    Ih

    B+

    Ih

    I

    =

    0 #"z

    "y

    "z

    0 #"x

    #"y

    "x

    0

    $

    %

    &&&

    '

    (

    )))

    ... where the cross-product-equivalent matrix of angular rate is

    HB

    Ih

    B=

    Ih

    I=

    IH

    B

    Ih

    B

    External Moment Causes

    Change in Angular Rate

    hB=H

    I

    Bh

    I+ H

    I

    Bh

    I=H

    I

    Bh

    I"#

    B$ h

    B

    =HI

    Bh

    I"

    BhB=H

    I

    BM

    I"

    BIB#

    B

    =MB"

    BIB#

    B

    In the body frame of reference, the angular momentum change is

    Positive rotation ofFrame B w.r.t.Frame A is anegative rotation ofFrame A w.r.t.Frame B

    MI =

    mx

    my

    mz

    "

    #

    $$$

    %

    &

    '''I

    ; MB =HIBMI =

    mx

    my

    mz

    "

    #

    $$$

    %

    &

    '''B

    Moment = torque = force x moment arm

    Rate of Change of Body-Referenced

    Angular Rate due to External Moment

    For constant body-axis inertia matrix

    hB=H

    I

    Bh

    I+ H

    I

    Bh

    I=H

    I

    Bh

    I"#

    B$ h

    B

    =HI

    Bh

    I"

    BhB=H

    I

    BM

    I"

    BIB#

    B

    =MB"

    BIB#

    B

    In the body frame of reference, the angular momentum change is

    B= I

    B

    #1M

    B#

    BI

    B"

    B( )

    Consequently, the differential equation for angular rate of change is

    hB= I

    B

    B=M

    B#

    BI

    B"

    B

    Euler-Angle Rates and

    Body-Axis Rates

    Body-axis angular ratevector (orthogonal)

    " B ="x

    "y

    "z

    #

    $

    %%%

    &

    '

    (((B

    =

    p

    q

    r

    #

    $

    %%%

    &

    '

    (((

    Euler-angle rate vector

    Form a non-orthogonal vectorof Euler angles

    " =#

    $

    %

    &

    '

    (((

    )

    *

    +++

    " =#$%

    &

    '

    (((

    )

    *

    +++

    ,

    -x

    -y

    -z

    &

    '

    (((

    )

    *

    +++I

  • 8/6/2019 Equations of Motion With Different Axis

    7/10

    Relationship Between Euler-

    Angle Rates and Body-Axis Rates

    is measured in the Inertial Frame

    is measured in Intermediate Frame #1

    is measured in Intermediate Frame #2

    ... which is

    Inverse transformation [(.)-1" (.)T]

    """ pq

    r

    "

    #

    $$$

    %

    &

    '''

    =

    (0

    0

    "

    #

    $$$

    %

    &

    '''

    +H2

    B

    0

    )0

    "

    #

    $$$

    %

    &

    '''

    +H2

    BH

    1

    2

    0

    0

    *"

    #

    $$$

    %

    &

    '''

    p

    q

    r

    "

    #

    $$$

    %

    &

    '''

    =

    1 0 (sin)

    0 cos* sin*cos)

    0 (sin* cos*cos)

    "

    #

    $$$

    %

    &

    '''

    *)+"

    #

    $$$

    %

    &

    '''

    =LIB, "#$%

    &

    '''

    (

    )

    ***

    =

    1 sin"tan# cos"tan#

    0 cos" +sin"

    0 sin"sec# cos"sec#

    %

    &

    '''

    (

    )

    ***

    p

    q

    r

    %

    &

    '''

    (

    )

    ***

    =LBI , B

    Can the inversionbecome singular?

    What does this mean?

    Point-Mass

    Equations of Motion

    Rate of change of the center of mass!s translational position

    Express translational dynamics of the centerof mass in the body frame of reference

    rI= v

    I=H

    B

    Iv

    B

    vI=

    1

    mFI

    vB=H

    I

    BvI"

    BvB=

    1

    mH

    I

    BFI"

    BvB

    =

    1

    mFB"

    BvB

    FB =

    fx

    fy

    fz

    "

    #

    $$$

    %

    &

    '''B

    ; vB =

    u

    v

    w

    "

    #

    $$$

    %

    &

    '''

    rI =HBI

    vB

    vB=

    1

    mFB+H

    I

    BgI"

    BvB

    " =LB

    I #B

    B= I

    B

    #1

    MB#

    BIB"

    B( )

    Rate of change of

    Translational Position

    Rate of change ofAngular Position

    Rate of change ofTranslational Velocity

    Rate of change ofAngular Velocity

    rI=

    x

    y

    z

    "

    #

    $$

    $

    %

    &

    ''

    'I

    " =#

    $

    %

    &

    '

    (((

    )

    *

    +++

    vB=

    u

    v

    w

    "

    #

    $$$

    %

    &

    '''

    " B =p

    q

    r

    #

    $

    %%%

    &

    '

    (((

    TranslationalPosition

    AngularPosition

    TranslationalVelocity

    AngularVelocity

    Rigid-Body Equations of Motion Aircraft Characteristics Expressedin Body Frame of Reference

    MB =

    L

    M

    N

    "

    #

    $$$

    %

    &

    '''B

    =

    Clb

    Cmc

    Cnb

    "

    #

    $$$

    %

    &

    '''B

    1

    2(V2S=

    Clb

    Cmc

    Cnb

    "

    #

    $$$

    %

    &

    '''B

    q S

    IB=

    Ixx

    "Ixy

    "Ixz

    "Ixy

    Iyy

    "Iyz

    "Ixz

    "Iyz

    Izz

    #

    $

    %%%

    &

    '

    (((B

    FB =

    X

    Y

    Z

    "

    #

    $$$

    %

    &

    '''B

    =

    CX

    CY

    CZ

    "

    #

    $$$

    %

    &

    '''B

    12

    (V2S=

    CX

    CY

    CZ

    "

    #

    $$$

    %

    &

    '''B

    q S

    Aerodynamic andthrust force

    Aerodynamic andthrust moment

    Inertia matrix

    b = wing span

    c = mean aerodynamic chord

  • 8/6/2019 Equations of Motion With Different Axis

    8/10

    Rigid-Body Equations of

    Motion (Scalar Notation)

    u =X/m " gsin#+ rv "qw

    v =Y/m + gsin$cos#" ru+pw

    w =Z/m + gcos$cos#+ qu"pv

    p = IzzL + I

    xzN" I

    xzIyy"I

    xx"I

    zz( )p+ Ixz2+ I

    zzIzz"I

    yy( )[ ]r{ }q( ) IxxIzz "Ixz2( )q = M" I

    xx"I

    zz( )pr "Ixz p2" r

    2( )[ ]Iyyr = I

    xzL + I

    xxN" I

    xzIyy"I

    xx"I

    zz( )r + Ixz2 + Ixx Ixx "Iyy( )[ ]p{ }q( )

    IxxIzz"I

    xz

    2( )

    xI = cos"cos#( )u+ $cos%sin#+ sin%sin"cos#( )v + sin%sin#+ cos%sin"cos#( )w

    yI = cos"sin#( )u+ cos%cos#+ sin%sin"sin#( )v + $sin%cos#+ cos%sin"sin#( )w

    zI = $sin"( )u+ sin%cos"( )v + cos%cos"( )w

    "= p+ qsin"+ rcos"( )tan##= qcos"$ rsin"%= qsin"+ rcos"( )sec#

    Rate of change of Translational Position

    Rate of change of Angular Position ( Ixyand Iyz= 0)

    Rate of change of Translational Velocity

    Rate of change of Angular Velocity

    Aircraft with

    mirror symmetry,Ixz! 0

    Longitudinal Transient

    Response to Initial Pitch Rate

    Bizjet, M = 0.3, Altitude = 3,052 m

    Transient Response to

    Initial Roll Rate

    Lateral-Directional Response Longitudinal Response

    Bizjet, M = 0.3, Altitude = 3,052 m

    Transient Response to

    Initial Yaw Rate

    Lateral-Directional Response Longitudinal Response

    Bizjet, M = 0.3, Altitude = 3,052 m

  • 8/6/2019 Equations of Motion With Different Axis

    9/10

    Crossplot of Transient

    Response to Initial Yaw Rate

    Bizjet, M = 0.3, Altitude = 3,052 m

    Relationship of Inertial

    Axes to Body Axes

    Independent ofvelocity vector

    Represented by

    Euler angles

    Rotation matrix

    u

    v

    w

    "

    #

    $$$

    %

    &

    '''

    =HIB

    vx

    vy

    vz

    "

    #

    $$$

    %

    &

    '''

    vx

    vy

    vz

    "

    #

    $$$

    %

    &

    '''

    =HBI

    u

    v

    w

    "

    #

    $$$

    %

    &

    '''

    Relationship of Body

    Axes to Wind Axes

    No reference to theinertial frame

    u

    v

    w

    "

    #

    $$$

    %

    &

    '''

    =

    Vcos(cos)

    Vsin)

    Vsin(cos)

    "

    #

    $$$

    %

    &

    '''

    V

    "

    #

    $

    %

    &&&

    '

    (

    )))

    =

    u2+ v

    2+ w

    2

    sin*1

    v /V( )tan

    *1w /u( )

    $

    %

    &&&

    '

    (

    )))

    Relationship of Inertial

    Axes to Velocity Axes

    No reference to the

    body frame Bank angle is roll

    angle about thevelocity vector

    vx

    vy

    vz

    "

    #

    $$$

    %

    &

    '''I

    =

    Vcos(cos)

    Vcos(sin)

    *Vsin(

    "

    #

    $$$

    %

    &

    '''

    V

    "

    #

    $

    %

    &&&

    '

    (

    )))

    =

    vx2

    + vy2

    + vz2

    sin*1

    vy/ v

    x

    2

    + vy2( )

    1/ 2$%&

    '()

    sin*1 *vz /V( )

    $

    %

    &&&&

    '

    (

    ))))

  • 8/6/2019 Equations of Motion With Different Axis

    10/10

    Alternative Frames of Reference

    Orthonormaltransformationsconnect allreference

    frames

    Next Time:Effects of Stability, Control,and Power on Design