42
INDICE Antropometría. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………. 3 Relaciones dimensionales del sistema P- M. . . . . . . . . . . . . . . . . . . . . . ……………….. 6 Medidas antropométricas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………… 7 Medidas básicas para el diseño de puestos de trabajo. . . . . . . . . . . . . ……… 8 Posición sentado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………….. 8 Posición de pie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………… 8 Medidas adicionales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………. 9 El diseño ergonómico y la antropometría. . . . . . . . . . . . . . . . . . . . . ………….. ............ 10 Análisis preliminar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………… 10 Diseño para una persona. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………….. ........... 11 Diseño para un grupo poco numeroso y diseño para una población numerosa. . . ….. 11 Principio del diseño para los extremos. . . . . . . . . . . . . . . . . . . . . . . . . ……………….. 11 Principio del diseño para un intervalo ajustable. . . . . . . . . . . . . . . . . . . . ……….……. 12 Principio del diseño para el promedio. . . . . . . . . . . . . . . . . . . . . . . . . …………............ 12 Antropometría y espacios de actividad. . . . . . . . . . . . . . . . . . . . . . . . …………………. 17 Selección y diseños de asientos. . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………........... 19 Distribución de presiones en el asiento. . . . . . . . . . . . . . . . . . . . . ……………. 19

ERGONOMIA - RELACIONES DIMENSIONALES

Embed Size (px)

Citation preview

Page 1: ERGONOMIA - RELACIONES DIMENSIONALES

INDICE

Antropometría. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………. 3

Relaciones dimensionales del sistema P-M. . . . . . . . . . . . . . . . . . . . . . ……………….. 6

Medidas antropométricas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………… 7

Medidas básicas para el diseño de puestos de trabajo. . . . . . . . . . . . . ……… 8

Posición sentado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………….. 8

Posición de pie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………… 8

Medidas adicionales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………. 9

El diseño ergonómico y la antropometría. . . . . . . . . . . . . . . . . . . . . ………….. ............ 10

Análisis preliminar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………… 10

Diseño para una persona. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………….. ........... 11

Diseño para un grupo poco numeroso y diseño para una población numerosa. . . ….. 11

Principio del diseño para los extremos. . . . . . . . . . . . . . . . . . . . . . . . . ……………….. 11

Principio del diseño para un intervalo ajustable. . . . . . . . . . . . . . . . . . . . ……….……. 12

Principio del diseño para el promedio. . . . . . . . . . . . . . . . . . . . . . . . . …………............ 12

Antropometría y espacios de actividad. . . . . . . . . . . . . . . . . . . . . . . . …………………. 17

Selección y diseños de asientos. . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………........... 19

Distribución de presiones en el asiento. . . . . . . . . . . . . . . . . . . . . ……………. 19

Altura del asiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………. 26

Profundidad y anchura. . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………….. 27

Respaldo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………….. 28

Apoyabrazos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………............. 28

Soporte y acolchamiento. . . . . . . . . . . . . . . . . . . . . . . . . . . ……………. . …… 28

Aplicación del diseño antropométrico a las protecciones de las máquinas. . . . . …….. 28

Amplitud de movimiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………….………… 29

Conclusiones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………….. . ……… 31

Page 2: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

RELACIONES DIMENSIONALES

ANTROPOMETRÍA

INTRODUCCIÓN.

Por Ergonomía entendemos que es la parte de estudio del trabajo que, con lautilización de

conocimientos anatómicos, antropométricos, fisiológicos,psicológicos, sociológicos y técnicos,

desarrolla métodos para la determinaciónde los límites que no deben ser superados al llevar a

cabo, el hombre, las distintasactividades laborales.

En otras palabras es la adaptación del medio al hombre, es la determinación científica de la

conformación de puestos de trabajo.

La antropometría, es uno de los elementos que entran en consideración para

eldimensionamiento de todo lo que utiliza el hombre, y se define como"antropometría" a la

"ciencia de la determinación y aplicación de las medidas delcuerpo humano"

DEFINICION DE ANTROPOMETRIA

La antropometría es la ciencia que entiende de las medidas de las dimensiones del cuerpo

humano. Los conocimientos y técnicas para llevar a cabo las mediciones, así como su

tratamiento estadístico, son el objeto de la antropometría.

La antropometría divide su competencia en dos áreas: antropométrica estática y antropometría

funcional. La primera concierne a las medidas efectuadas sobre dimensiones del cuerpo

humano en una determinada postura, mientras que la segunda describe los rangos de

movimiento de las partes del cuerpo, alcances, medidas de las trayectorias, etc.

Para el diseño de mobiliario, como objeto destinado al uso humano, resulta imprescindible

considerar las dimensiones corporales de los usuarios. Ello supone confrontar con los datos

antropométricos cada una de las dimensiones que define los distintos tipos de mobiliario.

2

Page 3: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

DIMENSIONES DEL CUERPO HUMANO

Las medidas del cuerpo humano, ya sea en reposo o en movimiento estándeterminadas por el

largo de los huesos, las capas musculares y la mecánica delas articulaciones.

Para una correcta conformación del puesto de trabajo es necesario elconocimiento de las

medidas más importantes del cuerpo humano y lasextensiones de los movimientos de las

manos, brazos, piernas y pies.

Las dimensiones y proporciones del cuerpo humano son muy diferentes de unapersona a otra;

distribuyéndose la población según se observa en la figura 1., unaserie de curvas que varían

de acuerdo a que población se estudia, masculina ofemenina o de ambos sexos

simultáneamente.

Sin embargo, para poder interpretar correctamente este tipo de gráfico va ahacer necesario el

conocimiento de distribución estadística por frecuencia. Paraello hacemos a continuación una

breve introducción por estadística.

Figura 1. Polígono de frecuencias acumuladas

3

Page 4: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Según P. Jenik de la Escuela Técnica Superior de Darmstadt,la estatura actúa como parámetro

antropométrico básicodel que se deducen proporcionalmente las otrasdimensiones del cuerpo

tales como el perímetro torácico,longitud de brazos, longitud de piernas, tamaño de pié, etc.

Estas dimensiones no se han considerado en función de susvalores medios sino en función de

su frecuencia. Con lasmedidas del cuerpo humano comprendida entre las tallas1630 hasta

1900 m.m., en cuyo margen están comprendidascasi el 90 % de las frecuencias

correspondientes a lapoblación masculina activa de la Europa central.

LA BIOMECANICA

La biomecánica se puede definir como un campo multidisciplinar en el cual la información

proveniente de las ciencias biológicas y de la ingeniería mecánica  es utilizada para evaluar el

funcionamiento del cuerpo. Una regla importante de la biomecánica ocupacional es que el

cuerpo se comporta de acuerdo a las leyes mecánicas de Newton.

Por definición, “la mecánica es el estudio de las fuerzas y de sus efectos en las masas”. El

objetivo de la ergonomía es muchas veces la evaluación cuantitativa de la carga mecánica a la

que es sometido el sistema musculo esquelético. El objetivo principal de la biomecánica

ocupacional es describir cuantitativamente las cargas musculo esqueléticas que se generan

durante el trabajo de modo que se pueda identificar el grado de riesgo asociado a las tareas. 

LA BIOMECÁNICA OCUPACIONAL

Se puede definir como “el estudio de la interacción física de los trabajadores con sus

herramientas, máquinas, y materiales con el fin de mejorar la realización del trabajo y minimizar

el riesgo de trastornos musculo esqueléticos”.

La carga – Tolerancia

Un concepto fundamental en la aplicación de la biomecánica ocupacional en la

ergonomía es cómo diseñar puestos de trabajo en los cuales las cargas impuestas sobre

las estructuras no exceda la tolerancia de éstas estructuras.

Si la magnitud de la carga impuesta en la estructura es mucho menor que la tolerancia

del tejido, la tarea es considerada como segura y, la magnitud de la diferencia entre la

carga y la tolerancia corresponde al margen de seguridad. El riesgo aparece cuando la

carga impuesta sobrepasa la tolerancia del tejido. 

Trauma agudo v/s trauma acumulativo

4

Page 5: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

En el ámbito ocupacional hay dos tipos de traumas que pueden afectar el cuerpo

humano y provocar trastornos musculo esqueléticos. Primero puede ocurrir un trauma

agudo, el cual se refiere a la aplicación de una fuerza que es mucho mayor y que

excede la tolerancia de la estructura corporal durante una tarea de trabajo. Por lo tanto,

el trauma agudo es comúnmente asociado a grandes esfuerzos que ocurren con poca

frecuencia. Por ejemplo, un trauma agudo puede ocurrir cuando a un trabajador se le

pide levantar un objeto extremadamente pesado como cuando se mueven partes

pesadas. 

El trauma acumulativo

Se refiere a la aplicación repetitiva de fuerza en una estructura que tiende a desgastar la

estructura, por lo tanto, reduce la tolerancia  de la estructura hasta un punto en que la

tolerancia es sobrepasada a través de una reducción del límite de tolerancia. El trauma

acumulativo representa más un “desgaste” de la estructura. Este tipo de trauma ocurre

con más frecuencia en los puestos de trabajo en la medida que existen más tareas

repetitivas en la industria.

Resulta difícil estimar las características de tolerancia exacta de los tejidos corporales

como músculos, ligamentos, tendones y huesos sometidos a varias condiciones de

trabajo. La tolerancia de las  distintas estructuras en el cuerpo varían considerablemente

bajo condiciones de carga similares. Además, la tolerancia depende de muchos otros

factores como la velocidad del esfuerzo, la edad de la estructura, la frecuencia de carga,

influencias psicológicas, condición genética, y muchos factores desconocidos

RELACIONES DIMENSIONALES DEL SISTEMA P-M

Bienestar, salud, productividad, calidad, satisfacción en el puesto de trabajo, etc., lo

proporcionan, engran medida, las relaciones dimensionales armónicas entre el hombre y su

área de actividad.

Un par de zapatos incómodo irrita y daña el pie hasta que decidimos abandonarlo; un puesto

detrabajo incómodo irrita, daña y no lo podemos abandonar. Incluso, en muchas ocasiones, no

tenemosconsciencia de su mal diseño. Es algo perjudicial que, abnegadamente, se soporta día

a día, durante lajornada laboral y que acostumbra a aparecer enmascarado como absentismo,

accidente, bajaproductividad, mala calidad de los productos, o en el mejor de los casos provoca

desinterés por latarea.

Un principio ergonómico es adaptar la actividad a las capacidades y limitaciones de los

usuarios, yno a la inversa como suele ocurrir con mucha frecuencia. Al menos una tercera parte

de nuestro día lodedicamos al trabajo y el resto del tiempo a trasladarnos, a realizar actividades

en nuestro hogar, o enel teatro, etc. Estamos formando parte de sistemas P-M cuyas relaciones

dimensionales muchas vecesno son las adecuadas.

5

Page 6: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

La producción masiva ha estimulado el diseño de útiles y espacios de actividad ergonómicos en

todoslos aspectos de la vida, pero hasta el momento no ha sido suficiente, la aplicación

sistemática de laergonomía debe producir una adaptación conveniente de las máquinas a las

personas.

Figura 2. Posiciones básicas para la toma de medidas antropométricas.

MEDIDAS ANTROPOMÉTRICAS

Las medidas que debemos poseer de la población dependerán de la aplicación funcional que

lequeramos dar a las mismas; partiendo del diseño de lugares de trabajo existe un número

mínimo dedimensiones relevantes que debemos conocer (figuras 3 y 4).

Debido a las especiales características de los estudios antropométricos, se debe analizar con

muchorigor el tipo de medidas a tomar y el error admisible, ya que la precisión y el número total

de medidasguardanrelación con la posibilidad de viabilidad económica del estudio. Si dejamos

de consideraralguna medida relevante, o exigimos una precisión exagerada, la limitación

económica haráprácticamente imposible la realización o la replicación del estudio.

6

Page 7: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Una vez determinada la población y clasificándola según los objetivos, se deberán analizar

lasmedidas que se crean oportunas. Toda organización debería tener recogidas, en opinión de

losautores, al menos, las siguientes medidas:

MEDIDAS BÁSICAS PARA EL DISEÑO DE PUESTOS DE TRABAJO

Posición sentado:

(AP) Altura poplítea

(SP) Distancia sacro-poplítea

(SR) Distancia sacro-rótula

(MA) Altura de muslo desde el asiento

(MS) Altura del muslo desde el suelo

(CA) Altura del codo desde el asiento

(AmínB) Alcance mínimo del brazo

(AmáxB) Alcance máximo del brazo

(AOs) Altura de los ojos desde el suelo

(ACs) Anchura de caderas sentado

(CC) Anchura de codo a codo

(RP) Distancia respaldo-pecho

(RA) Distancia respaldo-abdomen

Posición de pie:

(E) Estatura

(CSp) Altura de codos de pie

(AOp) Altura de ojos de pie

(Anhh) Ancho de hombro a hombro

Figura 3. Dimensiones antropométricas relevantes para el diseño de puestos de trabajo. Vista

de perfil.

7

Page 8: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Figura 4. Vista frontal

8

Page 9: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

MEDIDAS ADICIONALES

Serán todas aquellas que se precisen para un objetivo concreto; aquí aparecerían

seleccionadas las más usuales: longitud del antebrazo, longitud de la mano, longitud del pie,

ancho de mano, ancho depie,perímetro máximo de bíceps, perímetro del codo, perímetro

máximo del antebrazo, espesor de lamano a nivel de la cabeza del tercer metacarpiano, ancho

de dedos, etc...

EL DISEÑO ERGONÓMICO Y LA ANTROPOMETRÍA

A la hora de diseñar antropométricamente un mueble, una máquina, una herramienta, un

puesto de trabajo con displays de variadas formas, controles, etc... Podemos encontrar uno de

estos tressupuestos.

1 Que el diseño sea para una persona específica.

2 Que sea para un grupo de personas.

3 Que sea para una población numerosa.

ANÁLISIS PRELIMINAR

Antes de acometer un estudio de las relaciones dimensionales de un sistema, es necesario

analizar losmétodos de trabajo que existen o existirán en el futuro; si los métodos no se

consideran óptimosdebemos rediseñarlos. La secuencia de actuación recomendada para el

análisis es la siguiente:

Los métodos de trabajo que existen o existirán en el puesto.

Las posturas y movimientos, y su frecuencia.

Las fuerzas que deberá desarrollar.

Importancia y frecuencia de atención y manipulación de los dispositivos

informativos y controles.

Ropas y equipos de uso personal.

Otras características específicas del puesto.

A partir de este análisis podemos conocer cuáles son las dimensiones relevantes que hay

queconsiderar, y cuáles podemos obviar de nuestro análisis.

Existen reglas que permiten tomar decisiones sobre las relaciones de las distintas dimensiones

delcuerpo humano y los objetos, con el fin de lograr una correcta compatibilidad. Por ejemplo,

en unasilla, el asiento debe estar a una altura del suelo que posibilite apoyar los pies

cómodamente en él,dejando libre de presiones la región poplítea, situada entre la pantorrilla y

el muslo, pues lacirculación sanguínea se afecta cuando esto ocurre. Recordemos a los niños

sentados en sillas deadultos: las piernas les cuelgan. En consecuencia la altura de la silla debe

9

Page 10: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

corresponder, o incluso serligeramente menor que la altura poplítea del sujeto sentado o, de lo

contrario, se debe situar unos apoyapiés.

Lo mismo ocurre con las demás dimensiones de la silla; la altura máxima del respaldo, si es

rígido, nodebe sobrepasar la altura subescapular en posición de sentado, y el respaldo debe

permitir laacomodación del coxis sin presionarlo, por lo que resultará preferible que el respaldo

comience apartir de la cintura hacia arriba.

En general, las sillas actuales tienen muchos disidentes y se han creado una gran variedad

demodelos, algunos nada convencionales, para tratar de resolver las situación. A pesar de

todo, lagente, cuando está cansada, se sienta. Lo ideal sería que, en su puesto de trabajo, el

trabajadorpudiera optar por la posición sentado o de pie, según el tipo de tarea que tiene que

realizar y susdeseos del momento, tal como se indica en la figura 3 Para ello se puede diseñar

una altura deasiento que permita mantener una altura de los ojos desde el suelo constante,

esté de pie o sentado eloperador.

Algo similar se debe hacer con el resto de las dimensiones relevantes de cada hombre para

con supuesto de trabajo o con su área de actividad. Para las mediciones antropométricas

existenmetodologías que garantizan una homogeneidad necesaria y una precisión adecuada.

DISEÑO

Diseño para una persona

Este caso es como hacer un traje a la medida; sería lo mejor, pero también lo más caro, y sólo

estaría justificado en casos muy específicos. Aun así, cuando el diseño es individual, debemos

actuar como los sastres o las modistas: tomamos las medidas antropométricas del sujeto.

Sin embargo, si este puesto debe ser utilizado por un grupo de personas, digamos 5, habrá que

tener en cuenta a los cinco para hacer el diseño. Y si la población a ocupar el puesto es muy

numerosa, por ejemplo, una cabina telefónica, las butacas de un teatro, o muebles domésticos

que no se sabe quién los adquirirá, el asunto se complica aún más.

Diseño para un grupo poco numeroso y diseño para una población numerosa

Para abordar estos casos tenemos que hablar de los tres principios para el diseño

antropométrico:

Principio del diseño para los extremos

Si tenemos que diseñar un puesto de trabajo para 5 personas, donde el alcance del brazo

hacia delante (una panel de control) es una dimensión relevante, sin duda alguna tendremos

que decidir esa distancia por el que tendría dificultades para alcanzar ese punto, es decir, de

10

Page 11: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

los 5, el que tiene un alcance menor. Así habremos diseñado para el mínimo y, de esta forma,

los 5 alcanzarán el panel de control.

Esto se hace así, salvo cuando el mínimo ofrece un valor tan pequeño que ponga en crisis el

diseño, o provoque incomodidades en los restantes trabajadores. En esos casos, debemos

buscar soluciones ingeniosas que permitan el acceso a esa persona, y como última alternativa

excluirla de ese puesto.

Pero supongamos que necesitamos decidir la altura de las puertas de un barco o de un

submarino, sitios donde la economía de espacio es decisiva, o de una cabina telefónica. Ahora

la decisión será la opuesta, pues los más altos son los que se romperán la frente si el diseño no

los considera a ellos. En este caso es necesario diseñar para máximos.

Las preguntas que haya que hacerse para decidir entre mínimo y máximo son: ¿quiénes

tendrán dificultades para acceder a ese lugar?, o ¿para sentarse en esa silla?, o ¿para

transportar ese peso?

Principio del diseño para un intervalo ajustable

Este es el caso de las sillas de los operadores de vídeoterminales, del sillón del dentista, del

asiento del conductor, y del sillón de barbero, etc. En los casos del dentista y del barbero, el

ajuste se efectúa para comodidad de éstos, y no de los clientes, a los cuales no les hace falta

por disponer de apoyapiés.

Este diseño es el idóneo, porque el operario ajusta el objeto a su medida, a sus necesidades,

pero es el más caro, por el mecanismo de ajuste. El objetivo es, en este caso, decidir los límites

del intervalo. En la situación del ejemplo de los cinco hombres, la altura del asiento se regularía

diseñando un intervalode ajuste con un límite inferior para el de altura poplítea menor y un

límite superior para el de altura poplítea mayor. Así los 5 podrían ajustar el asiento

exactamente a sus necesidades.

Principio del diseño para el promedio

El promedio, generalmente, es un engaño, y más en ergonomía. Supóngase que 5 personas

miden de estatura 195, 190, 150, 151 y 156 cm, cuyo promedio sería 168,4 cm. Si se diseña la

puerta de un camarote de un barco para el promedio, dos de los hombres (195,190 cm) tendrán

que encorvarse bastante o se golpearán la cabeza a menudo: ese diseño ha sido un fracaso.

Sólo se utiliza en contadas situaciones, cuando la precisión de la dimensión tiene poca

importancia o su frecuencia de uso es muy baja, siendo cualquier otra solución o muy costosa o

técnicamente muy compleja.

11

Page 12: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Pero ya dijimos que la situación se complica cuando la población es numerosa, pues es

imposible medirlos a todos. Para ellos se selecciona una muestra representativa de la

población, que se debe determinar mediante la siguiente expresión, para que sea confiable

estadísticamente:

Cuando se cuenta con información estadística respecto a una población, debemos considerar

que existen grandes diferencias antropométricas entre individuos por sexo, edad, etnia,

nacionalidad, etc, por lo que las tablas de información antropométricas deben ser propias.

Además, la información estadística envejece, porque la población cambia, lo cual quiere decir

que a la hora de utilizar datos antropométricos no sólo debemos considerar el país, sino

también la fecha de realización del estudio.

Figura 5. Curva de Gauss

Pero supongamos que disponemos de información actualizada de la población española y de la

zona o región donde debemos diseñar. Hay algo que debemos saber: los datos

antropométricos tienden a una distribución normal, la curva de Gauss está presente en la

antropometría. Esto facilita el trabajo. Conociendo la media y la desviación estándar de cada

dimensión de la población, podemos hacer nuestros cálculos y tomar decisiones.

12

Page 13: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Percentiles

Los datos antropométricos se expresan generalmente en percentiles Un percentil expresa el

porcentaje de individuos de una población dada con una dimensión corporal igual o menor a un

determinado valor.

El percentil es una medida de posición. Si dividimos una distribución en 100 partes iguales y se

ordenan en orden creciente de 1 a 100, cada punto indica el porcentaje de casos por debajo del

valor dado. Es decir, que son valores que comprenden a un porcentaje determinado del

conjunto de la distribución. Así, el percentil 25 (P25 ó P25) corresponde a un valor tal que

comprende al 25% del conjunto de la población cuya distribución se considera; es decir, el 25%

de los individuos de la población considerada tiene, para la variable de que se trate, un valor

inferior o igual al P25 de esa variable.

Como es de esperar, el P50 se corresponde con la mediana de la población. Si la distribución

es Normal pura, también se corresponde con la media y la moda. El concepto de percentil es

muy útil ya que nos permite simplificar cuando hablamos del porcentaje de personas que

vamos a tener en cuenta para el diseño.

Por ejemplo, cuando nos referimos a la talla y hablamos del P5, éste corresponde a un

individuo de talla pequeña y quiere decir que sólo un 5% de la población tienen esa talla o

menos. Si nos referimos al P50, lo que decimos es que por debajo de ese valor se encuentra la

mitad de la población, mientras que cuando hablamos del P95, se está diciendo que por debajo

de este punto está situado el 95% de la población, es decir, casi toda la población. Los

percentiles más empleados en diseño ergonómico son el P5 y el P95, es decir, que se proyecta

para un 90% de los usuarios. Sin embargo, cuando se trata de garantizar la seguridad del

usuario, se emplean los P1 y P99 que cubren a la mayor parte de la población (sólo deja fuera

un 2%).Normalmente se utiliza el P 5 para los alcances y dimensiones externas, mientras que

para las dimensiones internas se emplea el P 95 (con la finalidad de que quepan las personas

de mayor tamaño).

13

Page 14: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Figura 6.

Supongamos que la media de las estaturas tiene un valor de X = 170 cm y la desviación

estándar σ = 5 cm.

Determinemos qué medida tendría que tener la altura de las puertas de los camarotes de los

submarinos para que el 95% de la población no tuviese problemas de acceso. Como en este

supuesto estamos diseñando para máximos (para el percentil 95), en la tabla siguiente, donde

se muestran los percentiles más utilizados en diseño antropométrico y sus correspondientes Z,

buscamos el valor de Z para este percentil:

14

Page 15: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

La puerta deberá tener 178,2 cm para que el 95% de la población pueda utilizar el acceso sin

dificultad. Del percentil 95 en adelante tendrán problemas de acceso.

Imaginemos ahora que queremos diseñar la distancia entre el respaldo del asiento y el punto

más alejado de un panel de control. Para ello deberemos considerar a los operarios de alcance

de brazo menor, por ejemplo el percentil 10. Con una media de 70 cm y una σ de 2 cm. El

resultado será:

Los operarios con un alcance máximo del brazo de 67,4 cm o más podrán utilizar el panel, y

quedará un 10% de la población fuera del alcance, o que tendrá que realizar un sobreesfuerzo,

lo que significa que el 90% de la población accederá a ese punto con facilidad.

15

Page 16: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Lo ideal sería poder incluir a toda la población, pero esto no es posible cuando es muy

numerosa. Como se puede comprender la selección del percentil, generalmente, es

prioritariamente una razón económica y en segundo lugar tecnológica.

Antropometría y espacios de actividad

Una aplicación de la antropometría es determinar cuál es el espacio óptimo que un sujeto

“domina”para realizar una serie de actividades. Se acostumbra a representar mediante mapas

de las estrofosferas en planta, alzado y perfil de las máximas curvas de agarre En las figuras

adjuntas se han sombreado las zonas de agarre en todas las posiciones posibles de las manos.

La siguiente figura muestra las áreas de actividad en un plano horizontal suponiendo que el

sujeto permanece con su tronco vertical. Como podemos ver por la figura, aparece un análisis

de la superficie de trabajo que es activada con las manos.

16

Page 17: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Figura 7.

Figura 8.

Selección y diseños de asientos

17

Page 18: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Debido al elevado número de personas que permanecen sentadas al efectuar sus actividades,

es necesario remarcar la importancia de un diseño y de un empleo óptimo de los asientos para

que su uso no influya negativamente en la salud y bienestar de las personas.

Se ha comprobado que muchas afecciones de columna vertebral provienen de posturas

inadecuadas o de utilizar asientos que favorecen la aparición de malformaciones en las

personas.

A continuación se indican una serie de factores que deben tenerse en cuenta para diseñar

óptimamente un asiento.

1. Distribución de presiones en el asiento

El sentarse debe ser estudiado desde el punto de vista de la posición con que se ubica

el hombre en el puesto de trabajo en estudio, partiendo que a través de la estructura

ósea del ser humano se hace la descarga del peso del cuerpo y no por los músculos; lo

que es cierto es que los huesos descargan el peso sobre las nalgas al sentarse, o una

combinación de estas con otros músculos. En la figura 9 se ve la forma por la cual el

tronco del cuerpo humano hace la descarga del peso sobre una superficie al estar

sentado, observe que la transmisión del peso se efectúa a través de las tuberosidades

isquiales (aproximadamente el 75%).

Figura 9. Descarga del peso del tronco en posición sedante a través del conjunto óseo.

18

Page 19: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Figura 10. Líneas de igual presión ejercida por el cuerpo al estar sentado sobre una

superficie lisa

En la figura 11, nos muestra la distribución de las presiones al sentarse, sobre una

superficie plana y rígida, dichas presiones son consecuencia de la acción de las

tuberosidades isquiáticas (compare observando las figuras 10 y 11). Si la persona se

sienta en un lugar que le permite descansar los muslos, la carga variará con respecto a

la figura 11, siendo esta más alargada hacia arriba (en dirección a las rodillas).

Figura 11. Variaciones en la distribución del peso soportado por las nalgas en relación con la

altura del asiento y la postura

19

Page 20: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Figura 12.  Comparación de la forma de los asientos y su efecto sobre las nalgas.

Akerblon dice, "todos los diseñadores de sillas han supuesto que los músculos deban

descansar firmemente sobre el asiento, para repartir de la mejor manera posible el área

de soporte del peso, distribuyendo así la presión ejercida por la parte superior del

cuerpo".

"Los tejidos blandos como los músculos no pueden, evidentemente, ofrecer tal apoyo y

la única parte de los muslos que podría cumplir esa función es el hueso interior de la

pierna".

En esa posición se comprimirán los tejidos y además de algunas consecuencias

dañinas para los músculos y los nervios.

En la figura 12. Se observa el efecto producido por un apoyo recto y rígido en las

nalgas, al sentarse sobre él, comparándolo con un almohadón diseñado respetando la

antropometría y además siendo acolchado.

20

Page 21: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Algunas investigaciones efectuadas por Herber en el Wright Air Center en relación con

asientos normales y el peso de las nalgas, lo llevaron a concluir con la carga que debe

soportar un asiento cuya parte de mayor esfuerzo es la correspondiente a las

tuberosidades, pueden llegar hasta los 4,5 Kg/cm2 pudiendo llegar a ser mayor, por

otro lado en el manual de ergonomía de MAPFRE se cita "en la posición sedante el 75

% aproximadamente del peso se transmite a través de las tuberosidades isquiáticas

hasta el asiento". "Las presiones alcanzadas son de unos 6-7 kg/cm2 al nivel de esta

zona y de 2-4 Kg/cm2 en la superficie de la piel" 

De acuerdo a la altura del asiento se tendrá al sentarse diferentes posiciones,

(ver figura 11), si la altura es mayor o igual a la altura de la pantorrilla a la planta del

pie, en el asiento se apoyan las nalgas y los muslos, si esta fuera menor solo las

nalgas y si este fuera extremadamente bajo solo apoyan las tuberosidades isquiales,

protuberancia del hueso de la cadera.

Otro elemento importante en la magnitud de la presión a la que están sometidas las

nalgas es la forma de la superficie de apoyo, que como se ve en la figura 12 una

superficie plana brinda menos contacto muscular para el intercambio de carga mientras

que una superficie curva (anatómica) permite una mayor superficie de contacto y al

contener la masa muscular impide la deformación haciendo que exista mayor espesor

(más fibras), traumatizando menos al músculo, lo que hace que el cuerpo descanse

más. 

También se puede analizar como se observa en la figura 13 que el ángulo que guarda

la espalda con respecto a los muslos modifica el esfuerzo que hacen los discos

intrervertebrales, en nuestro caso mediante el estudio de la electroactividad (EMG) de

los músculos de la columna vertebral a la altura de la vértebra torácica 8. Se toma

como referencia "0" a la posición de la columna vertebral a 90° con respecto a las

piernas, el valor 0,5 Mpa es cerca de 5 Kp/cm2.

Figura 13. Carga sobre la espalda en función al ángulo que esta tome al estar la persona

sentada (según Nachemson y Andersson).

21

Page 22: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

En la figura 14 su muestra un estudio realizado por Nemecek y Grandjean, el cual

consistió en una encuesta realizada a controladores que trabajan sentados sobre la

disconformidad corporal, la opinión de trabajadoras textiles y personas sentadas sobre

bancos de madera, en este estudio se señalan los descontentos relativos de la opinión

dada por los encuestados, en distintas partes del cuerpo, manos, brazos, cuello,

espalda piernas y pies.

Figura 14. Disconformidad del asiento en distintas partes del cuerpo según Nemecek y

Grandjean (70 m.m. indica máxima disconformidad).

En la cabeza 14 %

En el cuello y hombros 24%

En la espalda 57 %

En las nalgas 16 %

En los muslos 19 %

En las piernas y pies 29 %

22

Page 23: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

En la figura 15 se muestran las curvas de distribución de presiones en un asiento de

una persona de 70 kilos según análisis de los autores. Otros estudios recomiendan la

utilización de asientos neumáticos o semejantes que distribuyan uniformemente el

peso.

Figura 15. Distribución de presiones en un asiento de una persona de 70 kg, sin apoyo lumbar.

23

Page 24: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Las presiones de contacto son uno de los factores clave que afectan al confort de los

asientos. Por eso, la unidad de I+D de Umana, ha desarrollado una tecnología de

simulación que permite predecir la distribución de presiones sobre un asiento, con tan

sólo disponer de un modelo digital del mismo. Esta tecnología está siendo empleada

por grandes fabricantes del sector, que de este modo pueden mejorar la ergonomía de

sus diseños sin necesidad de fabricar prototipos, lo que siempre supone un proceso

costoso y lento.

La tecnología desarrollada por Umana

es capaz de predecir la distribución de

presiones sobre un asiento a partir de un modelo digital

2. Altura del asiento

24

Page 25: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

A ser posible deben ser regulables en alturas comprendidas, para población española,

entre los 32 y 50 cm. La altura dependerá de las medidas de los sujetos pero se

recomienda, para actividades prolongadas, que el pie apoye totalmente en el suelo, y

que la rodilla forme un ángulo de 90° es decir, que se adopte como referencia la altura

poplítea (distancia tomada verticalmente desde el suelo hasta la cara inferior de la

porción del muslo que está justo tras la rodilla) de cada sujeto.

La altura que guarda la parte superior del asiento con respecto al suelo, es uno de los

puntos básicos en el diseño. Si es excesiva se produce una compresión en la cara

inferior de los muslos, lo cual puede originar sensación de incomodidad y perturbación

en la circulación sanguínea, igualmente, un contacto insuficiente entre la planta del pie

25

Page 26: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

y el suelo merma la estabilidad del cuerpo. Si el asiento es muy bajo, las piernas

pueden extenderse y echarse hacia adelante y los pies quedan privados de toda

estabilidad, como dato adicional es importante destacar que una persona alta se

encuentra más cómoda sentada en una silla baja que otra de poca estatura sentada en

una silla alta.

3. Profundidad y anchura

La profundidad viene determinada por los mínimos de la longitud sacro-poplítea entre

40 y 45 cm, y la anchura por los máximos de la anchura de cadera, entre 40 y 50 cm;

estas medidas corresponden a valores hallados por los autores en estudios realizados

en una muestra de la población de Barcelona.

La profundidad del asiento es otro factor importante a considerar, pues, si la

profundidad del asiento es excesiva, la arista frontal del asiento comprimirá la zona

posterior de las rodillas y entorpecerá el riego sanguíneo, de igual forma la opresión del

tejido de la vestimenta originará irritación cutánea y molestia.

Otro gran peligro es la formación de coágulos de sangre cuando el usuario no cambia

de postura. Para evitar el malestar en las piernas, el usuario desplazará las nalgas

hacia delante, con lo que la espalda quedará con falta de apoyo, se aminora la

26

Page 27: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

estabilidad corporal y en compensación se intensifica el esfuerzo muscular, arrojando

una vez más una situación que expone al usuario a la fatiga y a la incomodidad. Por el

contrario una profundidad de asiento demasiado pequeña provoca una desagradable

sensación al usuario, similar a “caerse de bruces” y además para personas de muslos

bajos, no presta suficiente apoyo.

4. Respaldo

El respaldo debe suministrar soporte a la región lumbar; para sillas de oficina el plano

medio del asiento no debe exceder un ángulo de tres grados (3°-5°) respecto de la

horizontal, y el respaldo los cien grados (100°) respecto del asiento.

Ha de evitarse que el acoplamiento sea tan ajustado como para limitar al usuario en el

cambio de posición. En el diseño del respaldo también se considera que debe

ajustarse al espaldar para recibir la prominencia de las nalgas, holgura que puede ser

conformada por un espacio libre o por un retroceso en la superficie de asiento y

espaldar con respecto al soporte lumbar.

5. Apoyabrazos

Los apoyabrazos proporcionan diferentes funciones: por un lado ayudan a sentarse y

levantarse, por otro ayudan a desplazar el asiento con comodidad, y permiten adoptar

diferentes posturas en función de la tarea que se esté realizando.

La altura de los mismos está supeditada por la distancia del codo al asiento en posición

de reposo.

6. Soporte y acolchamiento

La función principal es la distribución equilibrada de la presión que ejerce el cuerpo en

una superficie (Fig. 15).

El soporte del asiento deberá ser estable y absorber la energía de impacto al sentarse.

La silla se dotará de cinco apoyos para mejorar la estabilidad, y sus ruedas deberán

tener cierta resistencia a marcharse rodando o, aún mejor, ser autobloqueables.

APLICACIÓN DEL DISEÑO ANTROPOMÉTRICO A LAS PROTECCIONES DE LAS

MÁQUINAS

27

Page 28: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

Otro aspecto útil de la antropometría se centra en la protección de riesgos ante máquinas a las

que los operarios deben acceder, manipular, o que están situadas en su entorno (Fig. 16).

La OIT, en su Reglamento tipo de seguridad para establecimientos industriales, ha fijado en

2,60 m la línea de demarcación por encima de la cual la seguridad de posición está asegurada.

Existen cuadros específicos que determinan la distancia del protector al elemento peligroso, en

función de la distancia a este elemento, de la altura del protector, y de las medidas

antropométricas.

El modo de medir la distancia del protector es importante. Esta distancia es la distancia

horizontal entre el plano del protector y el elemento peligroso. La medida debe hacerse en el

punto de contacto de la pieza peligrosa y de la curva de amplitud del gesto, que no tiene

forzosamente que ser el punto de la pieza más próxima al plano del protector.

Figura 16. Protectores para aplicar a máquinas

RIESGOS DE ORIGEN MECÁNICO. PROTECCIÓN POR ALEJAMIENTO

1. Para un movimiento a través de la abertura de un obstáculo

AMPLITUD DE MOVIMIENTO

Para alcanzar un objeto, una persona puede hacer un movimiento, lo que permite acceder a

lugares que un análisis de antropometría estática situaría como “fuera de alcance”. Esta

consideración es importante tanto para la aplicación de medidas de seguridad, como para

28

Page 29: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

situar herramientas y órganos de control en las áreas de actuación. Algunos movimientos a

considerar, según AFNOR, son (Fig. 17):

1 Hacia arriba

2 Por encima de un obstáculo

3 Hacia el interior de un recipiente

4 Alrededor o a lo largo de un obstáculo

5 A través de un obstáculo

Figura 17. Protecciones para colocar elementos peligrosos fuera de alcance. AFNOR

RIESGOS DE ORIGEN MECÁNICO

2. Para un movimiento alrededor o a lo largo de un obstáculo

La amplitud de movimiento está limitada por la longitud del brazo y, en el caso de los orificios,

por las dimensiones de los dedos y de la mano. Esta amplitud determina la altura mínima de

ciertos tipos de protectores y la distancia mínima entre una pantalla y la máquina que protege.

29

Page 30: ERGONOMIA - RELACIONES DIMENSIONALES

ERGONOMÍA RELACIONES DIMENSIONALES

CONCLUSIONES

Para el correcto dimensionamiento de cualquier entorno se necesita un análisis exhaustivo de

las medidas antropométricas, pertinentes al caso, de la población que va a establecer contacto

con él.

El hombre posee unas medidas antropométricas que podemos situar entre determinados

extremos, pero la amplitud de movimiento, los movimientos no previsibles (caídas, resbalones,

actos reflejos, etc) pueden poner en crisis las relaciones dimensionales, y si estos movimientos

espúreos no se han considerado en la fase de ergonomía de concepción pueden llegar a

invalidar el sistema.

Las relaciones dimensionales no se deben concretar solamente en medidas preventivas de

seguridad, sino que son parte crítica en el resultado de los procesos, tanto en la calidad como

en la eficacia de los mismos. Es por todo esto que el correcto dimensionamiento de las áreas

de actividad es una de las tareas básicas que debe acometer todo equipo de ergonomía para

optimizar la producción.

30