62
The Outlook for Advanced The Outlook for Advanced Carbon Capture Technology Carbon Capture Technology Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania Presentation to the CAPD Energy Systems Initiative Seminar Carnegie Mellon University, Pittsburgh, PA September 10, 2010

E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Embed Size (px)

Citation preview

Page 1: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

The Outlook for Advanced The Outlook for Advanced Carbon Capture TechnologyCarbon Capture Technology

Edward S. RubinDepartment of Engineering and Public Policy

Department of Mechanical EngineeringCarnegie Mellon University

Pittsburgh, Pennsylvania

Presentation to theCAPD Energy Systems Initiative Seminar

Carnegie Mellon University, Pittsburgh, PA

September 10, 2010

Page 2: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Outline of TalkOutline of Talk

• Why the interest in carbon capture?• Status of current technology• Opportunities for advanced technology• Challenges for advanced carbon capture

Page 3: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Why the interest in Why the interest in carbon capture ?carbon capture ?

E.S. Rubin, Carnegie Mellon

Page 4: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie MellonSource: IPCC, 2001

Drivers of Global Drivers of Global Climate ChangeClimate Change

• Concentrations of greenhouse gases in the atmosphere are rising sharply due to GHG emissions from human activities

• The resulting heat- trapping effect leads to climate change on a global scale

Page 5: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

The Climate Change Policy DriverThe Climate Change Policy Driver

• 1992 U.N. Framework Convention on Climate Change called for “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system”

Page 6: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Required change in global CO2, equiv emissions from 2000 to 2050

–85% to –50%Source: IPCC, 2007

Stabilization RequiresStabilization Requires Large Emission Reductions, SoonLarge Emission Reductions, Soon

Stabilizing climate change will require urgent action

Recent assessments indicate potentially serious impacts for more that a 2ºC rise in average global temperature

Page 7: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

COCO22 from Energy Use is the from Energy Use is the Dominant Greenhouse GasDominant Greenhouse Gas

U.S. Greenhouse Gas Emissionsweighted by 100-yr Global Warming Potential (GWP)

Source: USEPA, 2007

7.4% 6.5%

83.9%

2.2%

CO2 CH4 N2O Others

Page 8: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Sources of COSources of CO22 Emissions Emissions

Electricity + Vehicles emit ≈

75% of all CO2

0

5

10

15

20

25

30

35

Residential Commercial Industrial Transportation

(a) End-Use Energy Sectors

Perc

ent o

f U.S

. CO

2 Em

issi

ons

Coal Petroleum Natural Gas Electricity

20.1%17.1%

29.8%

33.0%

Source: Based on USDOE, 2008

U.S. CO2 Emissions

05

1015202530354045

(b) Electric Power Sector

Perc

ent o

f U.S

. CO

2 Em

issi

ons 39.8%

Fossil fuels = 40% of CO2

and

70% of U.S. electricity

Page 9: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Motivation for Carbon Capture Motivation for Carbon Capture and Storage (CCS)and Storage (CCS)

• Fossil fuels will continue to be used for many decades —alternatives not able to substitute quickly

• CCS is the ONLY way to get large CO2 reductions from fossil fuel use—a potential bridging strategy

• CCS can also help decarbonize the transportation sector via low-carbon electricity and hydrogen from fossil fuels

• Energy-economic models show that without CCS, the cost of mitigating climate change will be much higher

Page 10: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Status of CCS technology Status of CCS technology

E.S. Rubin, Carnegie Mellon

Page 11: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Schematic of a CCS SystemSchematic of a CCS System

Power Plantor Industrial

Process

Air orOxygen

CarbonaceousFuels

UsefulProducts

(Electricity, Fuels,Chemicals, Hydrogen)

CO2

CO2Capture &Compress

CO2Transport

CO2 Storage (Sequestration)

- Post-combustion- Pre-combustion- Oxyfuel combustion

- Pipeline- Tanker

- Depleted oil/gas fields- Deep saline formations- Unmineable coal seams- Ocean- Mineralization- Reuse

Page 12: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Leading Candidates for CCSLeading Candidates for CCS

• Fossil fuel power plants

Pulverized coal combustion (PC)

Natural gas combined cycle (NGCC)

Integrated coal gasification combined cycle (IGCC)

• Other large industrial sources of CO2 such as:

Refineries, fuel processing, and petrochemical plants

Hydrogen and ammonia production plants

Pulp and paper plants

Cement plants

Main focus is on power plants, the dominant source of CO2 –

Page 13: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Many Ways to Capture COMany Ways to Capture CO22

MEACausticOther

Chemical

SelexolRectisolOther

Physical

Absorption

AluminaZeoliteActivated C

Adsorber Beds

Pressure SwingTemperature SwingWashing

Regeneration Method

Adsorption Cryogenics

PolyphenyleneoxidePolydimethylsiloxane

Gas Separation

Polypropelene

Gas Absorption

Ceramic BasedSystems

Membranes Microbial/AlgalSystems

CO2 Separation and Capture

Choice of technology depends strongly on application

Page 14: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

COCO22 Capture Options for Power Plants: Capture Options for Power Plants: PostPost--Combustion CaptureCombustion Capture

Coal

Air

Steam

Steam Turbine

Generator

Electricity

Air PollutionControl Systems (NOx, PM, SO2)

CO2 Capture PC Boiler MostlyN2 S

tack

Flue gasto atmosphere

Amine/CO2AmineCO2 tostorageAmine/CO2

SeparationCO2

Compression

CO2

Coal

Air

Steam

Steam Turbine

Generator

Electricity

Air PollutionControl Systems (NOx, PM, SO2)

CO2 Capture PC Boiler MostlyN2 S

tack

Flue gasto atmosphere

Amine/CO2AmineCO2 tostorageAmine/CO2

SeparationCO2

Compression

CO2

Also for NGCC plants

Page 15: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

COCO22 Capture Options for Power Plants: Capture Options for Power Plants: OxyOxy--Combustion CaptureCombustion Capture

Coal

Steam

Steam Turbine

Generator

Electricity

Air PollutionControl Systems ( NOx, PM, SO2)

Distillation System

PC Boiler

CO2 tostorageCO2

Compression

CO2

Air

O2

Air Separation

Unit

CO2 to recycle

Sta

ck

To atmosphere

H2OCO2

Water

Coal

Steam

Steam Turbine

Generator

Electricity

Air PollutionControl Systems ( NOx, PM, SO2)

Distillation System

PC Boiler

CO2 tostorageCO2

Compression

CO2CO2 tostorageCO2

Compression

CO2

AirAir

O2

Air Separation

Unit

CO2 to recycleO2

Air Separation

Unit

CO2 to recycle

Sta

ck

To atmosphere

Sta

ck

To atmosphere

H2OCO2

H2OCO2

Water

Page 16: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

COCO22 Capture Options for Power Plants: Capture Options for Power Plants: PrePre--Combustion CaptureCombustion Capture

Electricity

ShiftReactor

SulfurRemoval

CombinedCycle Power

Plant

O2

Air

CO2

H2Quench System

H2

H2O Air

SulfurRecovery

GasifierCoal

H2O

Air Separation

Unit

CO2 Capture

Selexol/CO2SelexolCO2 tostorageSelexol/CO2

SeparationCO2

CompressionCO2

Stac

k

Flue gasto atmosphereElectricityElectricity

ShiftReactor

SulfurRemoval

CombinedCycle Power

Plant

O2

Air

CO2

H2Quench System

H2

H2O Air

SulfurRecovery

GasifierCoal

H2O

Air Separation

Unit

CO2 Capture

Selexol/CO2SelexolCO2 tostorageSelexol/CO2

SeparationCO2

CompressionCO2

ShiftReactor

SulfurRemoval

CombinedCycle Power

Plant

O2

Air

CO2

H2Quench System

H2

H2O Air

SulfurRecovery

GasifierCoal

H2O

Air Separation

Unit

CO2 Capture

Selexol/CO2SelexolCO2 tostorageSelexol/CO2

SeparationCO2

CompressionCO2

Stac

k

Flue gasto atmosphere

Stac

kSt

ack

Flue gasto atmosphere

Page 17: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Status of CCS Technology Status of CCS Technology

• Pre- and post-combustion CO2 capture technologies are commercial and widely used in industrial processes; also at several gas-fired and coal-fired power plants, at small scale; CO2 capture efficiencies are typically 85-90%. Oxyfuel capture is still under development.

• CO2 transport via pipelines is a mature technology.

• Geological storage of CO2 is commercial on a limited basis, mainly for EOR; several projects in deep saline formations are operating at scales of ~1 Mt CO2 /yr.

• Large-scale integration of CO2 capture, transport and geological sequestration has been demonstrated at several industrial sites (outside the U.S.) — but not yet at an electric power plant at full-scale.

Page 18: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Coal Gasification to Produce SNG(Beulah, North Dakota, USA)

(Sou

rce:

Dak

ota

Gas

ifica

tion

Petcoke Gasification to Produce H2(Coffeyville, Kansas, USA)

(Sou

rce:

Che

vron

-Tex

aco)

Examples of Pre-Combustion CO2 Capture Systems

E.S. Rubin, Carnegie Mellon

Page 19: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Source: Elcano, 2007

Puertollano IGCC Plant (Spain)

E.S. Rubin, Carnegie Mellon Source: Nuon, 2009

Buggenhum IGCC Plant

(The Netherlands)

Pre-Combustion Capture at IGCC Plants

Pilot plants under construction at two IGCC plants (startup expected in late 2010)

Page 20: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Post-Combustion Technology for Industrial CO2 Capture

BP Natural Gas Processing Plant(In Salah, Algeria)

Source: IEA GHG, 2008

Page 21: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Examples of Post-Combustion CO2 Capture at U.S. Power Plants

E.S. Rubin, Carnegie Mellon

Warrior Run Power Plant(Cumberland, Maryland, USA)

(Sou

rce:

(IEA

GH

G)

Bellingham Cogeneration Plant(Bellingham, Massachusetts, USA)

(Sou

rce:

Flo

ur D

anie

l)

Gas-fired Coal-fired

Page 22: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Source: Vattenfall, 2008

Oxy-Combustion CO2 Capture from a Coal-Fired Boiler

E.S. Rubin, Carnegie Mellon

30 MWt Pilot Plant (~10 MWe) at Vattenfall Schwarze Pumpe Station

(Germany)

Page 23: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Source: NRDCSource: USDOE/Battelle

~ 3600 miles of pipeline~50 MtCO2 /yr transported

CO2 Pipelines in the United States

Page 24: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

LargeLarge--Scale CCS ProjectsScale CCS Projects Now OperatingNow Operating

Project Operator Geological Reservoir

Injection Start Date

Injection Rate

(MtCO2 /yr )Sleipner(Norway)

StatoilHydro SalineFormation 1996 1.0

Weyburn(Canada)

EnCana Oil Field(EOR) 2000 1.2*

In Salah(Algeria)

Sonatrach, BP, StatoilHydro

Depleted Gas Field 2004 1.2

Snohvit(Norway)

StatoilHydro SalineFormation 2008 0.7

* Average rate over 15 year contract. Recent expansion to ~3 Mt/yr for Weyburn + Midale field..

Page 25: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Sleipner Project (Norway)

Source: Statoil

Geological Storage of Captured CO2 in a Deep Saline Formation

E.S. Rubin, Carnegie Mellon

Page 26: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Snohvit LNG Project (Norway)

Geological Storage of Captured CO2 in a Deep Saline Formation

E.S. Rubin, Carnegie Mellon

Source: www.Snohvit, 2009

Page 27: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Source: BP

Geological Storage of Captured CO2 in a Depleted Gas Formation

G a s

W a t e r

4 G a s P r o d u c t i o n

W e l l s

3 C O 2I n j e c t i o n

W e l l s

P r o c e s s i n g F a c i l i t i e s

R e m o v a l

T h e C O 2 S t o r a g e S c h e m e a t K r e c h b a

G a s

W a t e r

4 G a s P r o d u c t i o n

W e l l s

3 C O 2I n j e c t i o n

W e l l s

P r o c e s s i n g F a c i l i t i e s

R e m o v a l

T h e C O 2 S t o r a g e S c h e m e a t K r e c h b a

G a s

W a t e r

4 G a s P r o d u c t i o n

W e l l s

3 C O 2I n j e c t i o n

W e l l s

P r o c e s s i n g F a c i l i t i e s

R e m o v a l

G a s

W a t e r

4 G a s P r o d u c t i o n

W e l l s

3 C O 2I n j e c t i o n

W e l l s

P r o c e s s i n g F a c i l i t i e s

R e m o v a l

G a s

W a t e r

4 G a s P r o d u c t i o n

W e l l s

3 C O 2I n j e c t i o n

W e l l s

P r o c e s s i n g F a c i l i t i e s

R e m o v a l

T h e C O 2 S t o r a g e S c h e m e a t K r e c h b a

Krechba

Teg

Reg

Garet elBefinat Hassi MoumeneIn Salah

Gour Mahmoud

Proposed ISG PipelineREB

Hassi BirRekaiz

Hassi Messaoud

Hassi R’Mel

Tiguentourine (BP)

02151093

Algiers

Tangiers

Lisbon

Cordoba

Cartagena

M O R O C C O

A L G E R I A

S P A I N

L I B Y A

MAURITANIA M A L I

SkikdaTunis

N I G E R

In Salah Project

Krechba

Teg

Reg

Garet elBefinat Hassi MoumeneIn Salah

Gour Mahmoud

Proposed ISG PipelineREB

Hassi BirRekaiz

Hassi Messaoud

Hassi R’Mel

Tiguentourine (BP)

02151093

Algiers

Tangiers

Lisbon

Cordoba

Cartagena

M O R O C C O

A L G E R I A

S P A I N

L I B Y A

MAURITANIA M A L I

SkikdaTunis

N I G E R

In Salah Project

In Salah /Krechba (Algeria)

Page 28: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Geological Formations in North America

E.S. Rubin, Carnegie Mellon

Deep Saline FormationsOil & Gas Fields

Source: NETL, 2009

Page 29: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

Dakota Coal Gasification Plant, NDRegina

Bismarck

North Dakota

Saskatchewan CanadaUSA

WeyburnWeyburn

COCO22

Regina

Bismarck

North Dakota

Saskatchewan CanadaUSA

WeyburnWeyburn

COCO22Sources: IEAGHG; NRDC; USDOE

Weyburn Field, Canada

E.S. Rubin, Carnegie Mellon

Geological Storage of Captured CO2 with Enhanced Oil Recovery (EOR)

Page 30: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

CCS at a Coal-Fired Power Plant with Storage in a Deep Saline Formation

(Pilot plant scale)

Source: AEP, 2009

20 MW capture unit at AEP’s Mountaineer

Power Plant (West Virginia)

E.S. Rubin, Carnegie Mellon

Page 31: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Still MissingStill Missing• Full-scale power plant demo #1• Full-scale power plant demo #2• Full-scale power plant demo #3• Full-scale power plant demo #4• Full-scale power plant demo #5• Full-scale power plant demo #6• Full-scale power plant demo #7• Full-scale power plant demo #8• Full-scale power plant demo #9• Full-scale power plant demo #10

Page 32: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon32

FullFull--Scale Demonstration Projects Scale Demonstration Projects Are Urgently Needed to . . . Are Urgently Needed to . . .

• Establish the reliability, safety and true cost of CCS in full-scale power plant applications

• Help resolve legal and regulatory issues regarding geological sequestration

• Help address issues of public acceptance• Begin reducing future costs via learning-by-doing

Financing large-scale projects has been a major hurdle

-

Cost per project ≈

$1 billion

(install/operate CCS, 400 MW, 5 yrs)

Page 33: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon33

Many projects are planned or underway at various scales

Map shows operating

plus proposed or planned

projects in the U.S. and Canada. They encompass power plants, industrial sources and research projects spanning a large range of scale.

Source: DOE, 2009

Page 34: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon34

Substantial CCS Activity Globally

Source: DOE, 2009

Page 35: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Roadmaps for CCS DeploymentRoadmaps for CCS Deployment

Commercialization expected by 2020

EPRI Roadmap

DOE Roadmap

20102008 20162012 2020 2024

Capture Technology Laboratory-Bench-Pilot Scale R&D

Capture Technology Full-Scale Demos

CCS Commercialization

Capture Technology Large-Scale Field Testing

Carbon Sequestration Phase II -- Validation

Carbon Sequestration Phase III -- Deployment

20102008 20162012 2020 2024

Capture Technology Laboratory-Bench-Pilot Scale R&D

Capture Technology Full-Scale Demos

CCS Commercialization

Capture Technology Large-Scale Field Testing

Carbon Sequestration Phase II -- Validation

Carbon Sequestration Phase III -- Deployment

Capture Technology Laboratory-Bench-Pilot Scale R&D

Capture Technology Full-Scale Demos

CCS Commercialization

Capture Technology Large-Scale Field Testing

Carbon Sequestration Phase II -- Validation

Carbon Sequestration Phase III -- Deployment

Page 36: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

The cost of CCSThe cost of CCS

E.S. Rubin, Carnegie Mellon

Page 37: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Many Factors Affect CCS CostsMany Factors Affect CCS Costs• Choice of Power Plant and CCS Technology• Process Design and Operating Variables• Economic and Financial Parameters• Choice of System Boundaries; e.g.,

One facility vs. multi-plant system (regional, national, global)

GHG gases considered (CO2 only vs. all GHGs)

Power plant only vs. partial or complete life cycle• Time Frame of Interest

First-of-a-kind plant vs. nth

plant

Current technology vs. future systems

Consideration of technological “learning”

Page 38: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon38

Common Measures of CostCommon Measures of Cost

($/MWh)ccs – ($/MWh)reference

(CO2 /MWh)ref – (CO2 /MWh)ccs

• Cost of CO2 Avoided ($/ton CO2 avoided)

=

• Cost of Electricity (COE) ($/MWh)(TCC)(FCF) + FOM

(CF)(8760)(MW) + VOM + (HR)(FC)=

Also: -

Cost of CO2 Captured ($/ton CO2 captured)-

Cost of CO2 Reduced/Abated ($/ton CO2 abated)

Page 39: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon39

Ten Ways to Reduce Estimated Cost Ten Ways to Reduce Estimated Cost (inspired by D. Letterman)(inspired by D. Letterman)

10. Assume high power plant efficiency 9. Assume high-quality fuel properties8. Assume low fuel cost7. Assume EOR credits for CO2 storage6. Omit certain capital costs5. Report $/ton CO2 based on short tons4. Assume long plant lifetime3. Assume low interest rate (discount rate)2. Assume high plant utilization (capacity factor)1. Assume all of the above !

. . . and we have not yet considered the CCS technology!

Page 40: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon40

Estimated Cost of New Power Plants Estimated Cost of New Power Plants with and without CCSwith and without CCS

SCPC

IGCC

New Coal

Plants

20

40

60

80

100

120

Cos

t of E

lect

ricity

($ /

MW

h)

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CO2 Emission Rate (tonnes / MWh)

* 2007 costs for bituminous coals; gas price ≈

$4–7/GJ; 90% capture; aquifer storage

Current Coal

Plants

PCNGCC

Natural Gas

Plants PlantswithCCS

SCPC

IGCC

NG

CC

Page 41: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon41

Incremental Cost of CCS for New Incremental Cost of CCS for New Power Plants Using Current TechnologyPower Plants Using Current Technology

Incremental Cost of CCS relative relative to same plant typeto same plant type without CCS

based on bituminous coals

Supercritical Pulverized Coal Plant

Integrated Gasification Combined Cycle Plant

Increases in capital cost ($/kW) and generation cost ($/kWh) ~ 60–80% ~ 30–50%

The added cost to consumers due to CCS will be much smaller, reflecting the number and type of CCS plants in the generation mix at any given time.

Increase in levelized cost for 90% capture

Page 42: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon42

Typical Cost of COTypical Cost of CO22 AvoidedAvoided (Relative to a new (Relative to a new SCPC reference plantSCPC reference plant; bituminous coals); bituminous coals)

Power Plant System (relative to a SCPC relative to a SCPC plant without CCS)plant without CCS)

New Supercritical Pulverized Coal

Plant

New Integrated Gasification

Combined Cycle Plant

Deep aquifer storage ~ $70 /tCO2±$15/t

~ $50 /tCO2±$10/t

Enhanced oil recovery (EOR) storage Cost reduced by ~ $20–30 /tCO2

• Costs to retrofit existing plants could be much higher • Capture accounts for most (~80%) of the total cost

Levelized cost in US$ per tonne COLevelized cost in US$ per tonne CO22 avoidedavoided

Source: Based on IPCC, 2005; Rubin et al, 2007; DOE, 2007

Page 43: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon43

High capture energy requirements High capture energy requirements is a major factor in high CCS costs is a major factor in high CCS costs

Power Plant Type Added fuel input (%) per net kWh output

Existing subcritical PC ~40%

New supercritical PC 25-30%

New coal gasification (IGCC) 15-20%

New natural gas (NGCC) ~15%

Changes in plant efficiency due to CCS energy requirements also affect plant-level pollutant emission rates (per MWh). A site-specific context is needed to evaluate the net impacts.

Page 44: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon44

Breakdown of Breakdown of ““Energy PenaltyEnergy Penalty”” for COfor CO22 Capture (SCPC and IGCC)Capture (SCPC and IGCC)

Component Approx. % of Total Reqm’t

Thermal Energy ~60%

CO2 Compression ~30%

Pumps, Fans, etc. ~10%

Page 45: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

What is the potential for lowerWhat is the potential for lower-- cost capture technology? cost capture technology?

E.S. Rubin, Carnegie Mellon

Page 46: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

46 OFFICE OF FOSSIL ENERGY

Better Capture Technologies Are Emerging

Time to Commercialization

Advanced physical solventsAdvanced chemical solventsAmmoniaCO2 com- pression

Amine solventsPhysical solventsCryogenic oxygen

Chemical loopingOTM boilerBiological processesCAR process

Ionic liquidsMetal organic frameworksEnzymatic membranes

Present

Cos

t Red

uctio

n B

enef

it

5+ years 10+ years 15+ years 20+ years

PBI membranes Solid sorbentsMembrane systemsITMsBiomass co- firing

Post-combustion (existing, new PC)

Pre-combustion (IGCC)

Oxycombustion (new PC)

CO2 compression (all)

Page 47: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon Source: DOE/ NETL, 2009

Technical Challenges and

Research Pathways for Advanced

Capture Concepts

Page 48: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon48

Two Approaches to Estimating Two Approaches to Estimating Potential Cost SavingsPotential Cost Savings

• Method 1: Engineering-Economic Analysis

A “bottom up” approach based on engineering process models (informed by judgments regarding potential improvement in key parameters)

Page 49: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon49

Potential Cost Reductions Based on Potential Cost Reductions Based on EngineeringEngineering--Economic AnalysisEconomic Analysis

Source: DOE/NETL, 2006

19% -28% reductions in COE w/ CCS

3128

19

12 10

5 5

0

5

10

15

20

25

30

35

40

A B C D E F G

7.13(c/kWh)

7.01(c/kWh)

6.14(c/kWh) 6.03

(c/kWh)

5.75(c/kWh)

5.75(c/kWh)

6.52(c/kWh)

SelexolSelexolAdvanced

SelexolAdvanced

Selexol

AdvancedSelexol w/co-Sequestration

AdvancedSelexol w/co-Sequestration

AdvancedSelexol w/ITM

& co-Sequestration

AdvancedSelexol w/ITM

& co-Sequestration

WGS Membrane& Co-Sequestration

WGS Membrane& Co-Sequestration

WGS Membrane w/ITM & Co-

Sequestration

WGS Membrane w/ITM & Co-

Sequestration

Chemical Looping& Co-

Sequestration

Chemical Looping& Co-

Sequestration

Perc

ent I

ncre

ase

in C

OE

IGCCIGCC70 69

5550 52

45

22

01020304050607080

A B C D E F G

`

8.77(c/kWh)

8.72(c/kWh)

8.00(c/kWh)

7.74(c/kWh)

7.48(c/kWh)

7.84(c/kWh)

y

Perc

ent I

ncre

ase

in C

OE

SC w/AmineScrubbingSC w/AmineScrubbing

SC w/EconamineScrubbingSC w/EconamineScrubbing

SC w/AmmoniaCO2 ScrubbingSC w/AmmoniaCO2 Scrubbing

SC w/MultipollutantAmmonia Scrubbing(Byproduct Credit)

SC w/MultipollutantAmmonia Scrubbing(Byproduct Credit)

USC w/AmineScrubbingUSC w/AmineScrubbing USC w/Advanced

Amine ScrubbingUSC w/AdvancedAmine Scrubbing

6.30 (c/kWh)

RTI RegenerableSorbentRTI RegenerableSorbent

PCPC

50

3326

21

0

10

20

30

40

50

60

A B C D

`

6.97(c/kWh)

6.62(c/kWh)

6.35(c/kWh)

y y

Perc

ent I

ncre

ase

in C

OE Advanced

Subcritical Oxyfuel(Cryogenic ASU)

AdvancedSubcritical Oxyfuel(Cryogenic ASU)

AdvancedSupercritical Oxyfuel

(Cryogenic ASU)

AdvancedSupercritical Oxyfuel

(Cryogenic ASU)Advanced

Supercritical Oxyfuel(ITM O2)

Advanced Supercritical

Oxyfuel(ITM O2)

7.86(c/kWh)

Current StateSupercritical Oxyfuel

(Cryogenic ASU)

Current StateSupercritical Oxyfuel

(Cryogenic ASU) OxyfuelOxyfuel

Page 50: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon50

Source: DOE/ NETL, 2010

Potential Cost Reductions Based on Potential Cost Reductions Based on EngineeringEngineering--Economic AnalysisEconomic Analysis

-5

15

35

55

75

95

115

135

155

175

IGCC Today

IGCC w/ CCS Today

IGCC w/ CCS with R&D

Supercritical PC Today

Supercritical PC w/ CCS …

Adv Combustion w/ CCS …

$/M

Wh

($20

09)

CCSwith

NoR&D

NoCCS

CCSwith R&D

CCSwith

NoR&D

NoCCS

CCSwith R&D

Pulverized Coal TechnologiesIGCC Technologies

27% COE reduction31% COE reduction

7% below no CCS

29% above no CCS

Source: DOE/NETL, 2008

Page 51: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon51

Analyzing Options for Power PlantsAnalyzing Options for Power Plants (IECM: The (IECM: The IIntegrated ntegrated EEnvironmental nvironmental CControl ontrol MModel)odel)

• A desktop/laptop computer model developed for DOE/NETL; free and publicly available at: www.iecm-online.com

• Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of:

PC, IGCC and NGCC plants

All flue/fuel gas treatment systems

CO2 capture and storage options (pre- and post-combustion, oxy- combustion; transport, storage)

Major updates in late 2009 & 2010

Page 52: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon52

Current IECM DevelopmentsCurrent IECM Developments

• Performance and Cost Models of Advanced CO2Capture Systems:

Advanced liquid solvents (Peter Versteeg)

Solid sorbent systems (Justin Glier)

Membrane capture systems (Haibo Zhai)

Advanced oxy-combustion (Kyle Borgert)

Chemical looping combustion (Hari Mantripragada)

• International cost adjustment module (Hana Gerbelova)

• Other model enhancements (Karen Kietzke)

Page 53: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon53

Two Approaches to Estimating Two Approaches to Estimating Future Technology CostsFuture Technology Costs

• Method 2: Use of Historical Experience Curves

A “top down” approach based on applications of mathematical “learning curves” or “experience curves” that reflect historical trends for analogous technologies or systems

20000

10000

5000

1000

10010 100 1000 10000 100000

1982

1987

1963

1980

Windmills (USA)

RD&D Commercialization

USAJapan

Cumulative MW installed

19811983

500

Photovoltaics

Gas turbines (USA)

US(

1990

)$/k

W 19951992

200

2000

Source: IIASA, 1996

20000

10000

5000

1000

10010 100 1000 10000 100000

1982

1987

1963

1980

Windmills (USA)

RD&D Commercialization

USAJapan

Cumulative MW installed

19811983

500

Photovoltaics

Gas turbines (USA)

US(

1990

)$/k

W 19951992

200

2000

20000

10000

5000

1000

10010 100 1000 10000 100000

1982

1987

1963

1980

Windmills (USA)

RD&D Commercialization

USAJapan

Cumulative MW installed

19811983

500

Photovoltaics

Gas turbines (USA)

US(

1990

)$/k

W 19951992

200

2000

Source: IIASA, 1996

Page 54: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon54

Empirical Empirical ““Learning CurvesLearning Curves””

• Cost trends modeled as a log-linear relationship between unit cost and cumulative production or capacity: y = ax –b

• Case studies used to estimate learning rates for power plant components:

Flue gas desulfurization systems (FGD)

Selective catalytic reduction systems (SCR)

Gas turbine combined cycle system (GTCC)

Pulverized coal-fired boilers (PC)

Liquefied natural gas plants (LNG)

Oxygen production plants (ASU)

Page 55: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon55

Potential Cost Reductions Based on Potential Cost Reductions Based on Learning Curve AnalysisLearning Curve Analysis**

(after 100 GW of cumulative CCS capacity worldwide)(after 100 GW of cumulative CCS capacity worldwide)

0

5

10

15

20

25

30

Perc

ent R

educ

tion

in C

OE

NGCC PC IGCC Oxyfuel

% REDUCTION•

Upper bound of projected cost reduction are similar to estimates from DOE’s “bottom-up” analyses

* Plant-level learning curves developed from component- level analyses for each system

Page 56: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon56

Results for two policy scenarios, 2001Results for two policy scenarios, 2001––20502050

Power Plant System

Reduction in Cost of Electricity

($/MWh)

Reduction in Mitigation Cost ($/tCO2 avoided)

NGCC –

CC 12% –

40% 13% –

60%

IGCC –

CC 22% –

52% 19% –

58%

PC –

CC 14% –

44% 19% –

62%Source: van den Broek,et

al., 2009

Projected Cost Reductions, 2001Projected Cost Reductions, 2001––20502050(Based on Learning Curves + Global Energy Model)(Based on Learning Curves + Global Energy Model)

Page 57: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon57

Most New Capture Concepts Are Most New Capture Concepts Are Far from Commercial Availability Far from Commercial Availability

Source: NASA, 2009

Technology Readiness Levels

Source: EPRI, 2009

Post-Combustion Capture

Page 58: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon58

Most new concepts take decades to Most new concepts take decades to commercializecommercialize……many never make itmany never make it

1965 1970 19801975 19901985 1995 20052000

1999: 10 MW pilot planned by DOE

1975: DOE conducts test of fluidized bed system

1961:Process described by Bureau of Mines

1973: Used in commercial refinery in Japan

1970: Results of testing published.

1971: Test conducted in Netherlands

1967: Pilot-Scale Testing begins.

1979: Pilot-scale testing conducted in Florida

1984: Continued pilot testing with 500 lb/hr feed

1992: DOE contracts design and modeling for 500MW plant

1996: DOE continues lifecycle testing

2002: Paper published at NETL symposium

2006: Most recent paper published

1983: Rockwell contracted to improve system

Copper Oxide Process

1965 1970 19801975 19901985 1995 20052000

1999: Process used at plant in Poland

1985: Pilots initiated in U.S. and Germany

1977: Ebara begins pilot-scale testing

1998: Process used in plant in Chengdu, China

1970: Ebara Corporation begins lab scale testing.

2005: Process used in plant in Hangzhou, China

2008: Paper on process presented at WEC forum in Romania

2002: Process used in plant in Beijing, China

Electron Beam Process

1965 1970 19801975 19901985 1995 20052000

1991: NoxsoCorporation receives DOE contract

1982: Pilot-scale tests carried out in Kentucky

1985: DOE conducts lifecycle testing.

1979: Development of process begins

1998: NoxsoCorporation liquidated. Project terminated.

1996: Construction of full scale test begins

2000: Noxsoprocess cited in ACS paper, Last NOXSO patent awarded

1997: NoxsoCorporation declares bankruptcy

1993: Pilot-scale testing complete

NOXSO Process

Development timelines for three novel processes for

combined SO2 –NOx

capture

Page 59: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon59

The Process of Technological ChangeThe Process of Technological Change

InventionAdoption

(limited use ofearly designs)

Diffusion(improvement & widespread use)

Innovation (new or better

product)

LearningBy Doing

LearningBy Using

R&D

Challenge:Challenge: Accelerate the Pace of InnovationAccelerate the Pace of Innovation

Page 60: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon60

Accelerating Innovation RequiresAccelerating Innovation Requires

• Closer coupling and interaction between R&D performers and technology developers /users

• Better methods to identify promising options, evaluate new processes /concepts, and reduce number and size of pilot and demonstration projects (e.g., via improved simulation methods)

• New models for organizing the research enterprise

• Substantial and sustained support for R&D

• Government policies that create and foster markets for CCS technologies

Page 61: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon61

ConclusionsConclusions

• While the challenges are significant, so too are the opportunities to reduce the cost of carbon capture via:

New or improved CO2 capture technologies

Improved plant efficiency and utilization

• In turn, this can greatly reduce the costs (and thus increase the likelihood) of avoiding the most serious impacts of climate change

• So— an exciting time to be working on this problem!

Page 62: E.S. Rubin, Carnegie Mellonegon.cheme.cmu.edu/esi/docs/pdf/E.Rubin_CAPD-ESI... · Sulfur Recovery Gasifier: Coal H: 2: O: Air Separation Unit CO: 2 : ... E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Thank YouThank You

[email protected]@cmu.edu