72
ESSENTIAL CALCULUS ESSENTIAL CALCULUS CH04 Integrals CH04 Integrals

ESSENTIAL CALCULUS CH04 Integrals

Embed Size (px)

DESCRIPTION

ESSENTIAL CALCULUS CH04 Integrals. In this Chapter:. 4.1 Areas and Distances 4.2 The Definite Integral 4.3 Evaluating Definite Integrals 4.4 The Fundamental Theorem of Calculus 4.5 The Substitution Rule Review. Chapter 4, 4.1, P194. Chapter 4, 4.1, P195. Chapter 4, 4.1, P195. - PowerPoint PPT Presentation

Citation preview

Page 1: ESSENTIAL CALCULUS CH04 Integrals

ESSENTIAL CALCULUSESSENTIAL CALCULUS

CH04 IntegralsCH04 Integrals

Page 2: ESSENTIAL CALCULUS CH04 Integrals

In this Chapter:In this Chapter:

4.1 Areas and Distances

4.2 The Definite Integral

4.3 Evaluating Definite Integrals

4.4 The Fundamental Theorem of Calculus

4.5 The Substitution Rule

Review

Page 3: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P194

Page 4: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P195

Page 5: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P195

Page 6: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P195

Page 7: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P195

Page 8: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P195

Page 9: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P196

Page 10: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P197

Page 11: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P197

Page 12: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P198

Page 13: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P198

Page 14: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P199

Page 15: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P199

2. DEFINITION The area A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles:

A=lim Rn=lim[f(x1)∆x+f(x2) ∆x+‧‧‧+f(xn) ∆x] n→∞ n→∞

Page 16: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P199

Page 17: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P199

This tells us toend with i=n.

This tells usto add.

This tells us tostart with i=m.

xxf i

n

mi

)(

Page 18: ESSENTIAL CALCULUS CH04 Integrals

xxf‧‧‧xxfxxfxxf ni

n

i

)()()()( 21

1

Chapter 4, 4.1, P199

Page 19: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.1, P200

The area of A of the region S under the graphs of the continuous function f is

A=lim[f(x1)∆x+f(x2) ∆x+‧‧‧+f(xn) ∆x]

A=lim[f(x0)∆x+f(x1) ∆x+‧‧‧+f(xn-1) ∆x]

A=lim[f(x*1)∆x+f(x*2) ∆x+‧‧‧+f(x*n) ∆x]

n→∞

xxfc

n

cn

)(lim

1

xxf c

n

cn

)(lim 1

1

n→∞

n→∞

xxfc

n

cn

)*(lim

1

Page 20: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P205

FIGURE 1 A partition of [a,b] with sample points *ix

Page 21: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P205

A Riemann sum associated with a partition P and a function f is constructed by evaluating f at the sample points, multiplying by the lengths of the corresponding subintervals, and adding:

ni

n

ixxf‧‧‧xxfxxfxxf

ni

)()()()( *

2*

1*1

*

1 2

Page 22: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P206

FIGURE 2A Riemann sum is the sum of theareas of the rectangles above thex-axis and the negatives of the areasof the rectangles below the x-axis.

Page 23: ESSENTIAL CALCULUS CH04 Integrals

2. DEFINITION OF A DEFINITE INTEGRAL If f is a function defined on [a,b] ,the definite integral of f from a to b is the number

n

iii

x

ba xxfdxxf

1

*

0max)(lim)(

1

provided that this limit exists. If it does exist, we say that f is integrable on [a,b] .

Chapter 4, 4.2, P206

Page 24: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P206

NOTE 1 The symbol ∫was introduced by Leibniz and is called an integral sign. Itis an elongated S and was chosen because an integral is a limit of sums. In the notation is called the integrand and a and b are called the limits of integration;a is the lower limit and b is the upper limit. The symbol dx has no official meaning by itself; is all one symbol. The procedure of calculating an integralis called integration.

)(,)( xfdxxfba

dxxfba )(

Page 25: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P206

drrfdttfdxxfb

a

b

a

ba )()()(

Page 26: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P207

3. THEOREM If f is continuous on [a,b], or if f has only a finite number of jump discontinuities, then f is integrable on [a,b]; that is, the definite integral dx exists. )(xfba

Page 27: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P207

4. THEOREM If f is integrable on [a,b], then

where

n

ii

n

ba xxfdxxf

1

)(lim)(

xiaandn

abx xi

Page 28: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P208

Page 29: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P208

Page 30: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P208

Page 31: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P208

Page 32: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P210

Page 33: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P211

Page 34: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P211

MIDPOINT RULE

n

i

niba xf‧‧‧xfxxxfdxxf

11 )]()([)()(

where

n

abx

and

],1[int)(2

11 iiiii xxofmidpoxxx

Page 35: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P212

dxxfdxxf ba

ab )()(

Page 36: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P212

0)( dxxfaa

Page 37: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P213

Page 38: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P213

Page 39: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P213

PROPERTIES OF THE INTEGRAL Suppose all the following integrals exist.

where c is any constant

where c is any constant

),(.1 abccdxba

dxxgdxxfdxxgxf ba

ba

ba )()()]()([.2

,)()(.3 dxxfcdxxcf ba

ba

dxxgdxxfdxxgxf ba

ba

ba )()()]()([.4

Page 40: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P214

Page 41: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P214

dxxfdxxfdxxf ba

bc

ca )()()([.5

Page 42: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P214

COMPARISON PROPERTIES OF THE INTEGRAL

6. If f(x)≥0 fpr a≤x≤b. then

7.If f(x) ≥g(x) for a≤x≤b, then

8.If m ≤f(x) ≤M for a≤x≤b, then

.0)( dxxfba

.)()( dxxgdxxf ba

ba

)()()( abMdxxfabm ba

Page 43: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.2, P215

Page 44: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P217

29.The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

(a) (b)

(c) (d)

dxxf )(20 dxxf )(5

0

dxxf )(75 dxxf )(9

0

Page 45: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P217

30. The graph of g consists of two straight lines and a semicircle. Use it to evaluate each integral.(a) (b) (c)dxxg )(2

0 dxxg )(62 dxxg )(7

0

Page 46: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P218

EVALUATION THEOREM If f is continuous on the interval [a,b] , then

)()()( aFbFdxxfba

Where F is any antiderivative of f, that is, F’=f.

Page 47: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P220

the notation ∫f(x)dx is traditionally used for an antiderivative of f and is called an indefinite integral. Thus

The connection between them is given by the Evaluation Theorem: If f is continuous on [a,b], then

baba dxxfdxxf )()(

Page 48: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P220

▓You should distinguish carefully between definite and indefinite integrals. A definiteintegral is a number, whereas an indefinite integral is a function(or family of functions).

dxxfba )(dxxf )(

Page 49: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P220

1. TABLE OF INDEFINITE INTEGRALS

dxxfcdxxcf )()( dxxgdxxfdxxgxf )()()]()([

Ckxkdx )1(1

1

ncn

xdxfx

nn

Cxxdx cossin Cxxdx sincos

Cxxdx tansec2

Cxxdxx sectansec

Cxxdx cotcsc2

Cxdxx csccotcsc

Page 50: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P221

■ Figure 3 shows the graph of the integrandin Example 5. We know from Section 4.2 that the value of the integral can be interpreted as the sum of the areas labeled with a plus sign minus the area labeled with a minus sign.

Page 51: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.3, P222

NET CHANGE THEOREM The integral of a rate of change is the net change:

)()()(' aFbFdxxFba

Page 52: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P227

The Fundamental Theorem deals with functions defined by an equation of the from

dttfxg xa )()(

Page 53: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P227

Page 54: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P227

Page 55: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P227

Page 56: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P227

Page 57: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P229

Page 58: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P229

THE FUNDAMENTAL THEOREM OF CALCULUS, PART 1 If f is continuous on [a,b] , then the function defined by

dttfxg xa )()( a≤x≤b

is an antiderivative of f, that is, g’(x)=f(x) for a<x<b.

Page 59: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P231

THE FUNDAMENTAL THEOREM OF CALCULUS Suppose f is continuous on [a,b].

1. If g(x)= f(t)dt, then g’(x)=f(x).2. f(x)dx=F(b)-F(a), where F is any antiderivative of f,

that is, F’=f.

xa

ba

Page 60: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P231

We noted that Part 1 can be rewritten as

which says that if f is integrated and the result is then differentiated, we arrive backat the original function f.

)()( xfdttfdx

d xa

Page 61: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P232

we define the average value of f on the interval [a,b] as

dxxfab

f baave )(

1

Page 62: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P233

THE MEAN VALUE THEOREM FOR INTEGRALS If f is continuous on [a,b], then there exists a number c in [a,b] such that

dxxfab

fcf baave )(

1)(

that is,

))(()( abcfdxxfba

Page 63: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P234

1.Let g(x)= , where f is the function whose graph is shown.(a) Evaluate g(0),g(1), g(2) ,g(3) , and g(6).(b) On what interval is g increasing?(c) Where does g have a maximum value?(d) Sketch a rough graph of g.

dttfx )(0

Page 64: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P234

2.Let g(x)= , where f is the function whose graph is shown.(a) Evaluate g(x) for x=0,1,2,3,4,5, and 6.(b) Estimate g(7).(c) Where does g have a maximum value? Where does it have a minimum value?(d) Sketch a rough graph of g.

dttfx )(0

Page 65: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P235

Page 66: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.4, P235

Page 67: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.5, P237

4. THE SUBSTITUTION RULE If u=g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

duufdxxgxgf )()('))((

Page 68: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.5, P239

5.THE SUBSTITUTION RULE FOR DEFINITE INTEGRALS If g’ is continuous on [a,b] and f is continuous on the range of u=g(x), then

duufdxxgxgf bgag

ba )()('))(( )(

)(

Page 69: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.5, P240

6. INTEGRALS OF SYMMETRIC FUNCTIONS Suppose f is continuous on [-a,a].

(a)If f is even [f(-x)=f(x)], then

(b)If f is odd [f(-x)=-f(x)], then

.)(2)( 0 dxxfdxxf aaa

.0)( dxxfaa

Page 70: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.5, P240

Page 71: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.5, P240

Page 72: ESSENTIAL CALCULUS CH04 Integrals

Chapter 4, 4.5, P245

5. The following figure shows the graphs of f, f’, and . Identify each graph, and explain your choices.

dttfx )(0