24
PG 1::> ETANK FULL REPORT - 3300 ETank2000 MU 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 6 SHELL COURSE DESIGN PAGE 10 BOTTOM DESIGN PAGE 16 SEISMIC MOMENT PAGE 21 ANCHOR BOLT DESIGN PAGE 23 CAPACITIES AND WEIGHTS PAGE 29 MAWP & MAWV SUMMARY PAGE 30 PG 2::>ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False -> This Tank : False Repad 650 Design Basis -> Default for Tank Roof Nozzles = Use API Default 1/4 in. -> This Tank = Use API Default 1/4 in. Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness = 5 in. >> 127, mm Max. Tank Corr. Allowance = 5 in. >> 127, mm External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True PG 3::>SUMMARY OF DESIGN DATA and REMARKS Job : 3300 Date of Calcs. : 20/6/2011 , 01:47 Mfg. or Insp. Date : 24/11/1993 Designer : JEFFCOAT SMITT Project : 48' OD BY 32' TALL Plant Location : COLUMBIA, SC

Etank Etank2000 Report Si 3300 Tank Report

  • Upload
    -

  • View
    36

  • Download
    13

Embed Size (px)

DESCRIPTION

Full output calculations report for an API storage tank

Citation preview

Page 1: Etank Etank2000 Report Si 3300 Tank Report

PG 1::> ETANK FULL REPORT - 3300ETank2000 MU 1.9.14 (26 Oct 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 6

SHELL COURSE DESIGN PAGE 10

BOTTOM DESIGN PAGE 16

SEISMIC MOMENT PAGE 21

ANCHOR BOLT DESIGN PAGE 23

CAPACITIES AND WEIGHTS PAGE 29

MAWP & MAWV SUMMARY PAGE 30

PG 2::>ETANK SETTINGS SUMMARY

To Change These ETank Settings, Go To Tools->Options, Behavior Tab.---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False -> This Tank : False Repad 650 Design Basis -> Default for Tank Roof Nozzles = Use API Default 1/4 in. -> This Tank = Use API Default 1/4 in. Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness = 5 in. >> 127, mm Max. Tank Corr. Allowance = 5 in. >> 127, mm External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True

PG 3::>SUMMARY OF DESIGN DATA and REMARKS

Job : 3300Date of Calcs. : 20/6/2011 , 01:47Mfg. or Insp. Date : 24/11/1993Designer : JEFFCOAT SMITTProject : 48' OD BY 32' TALLPlant Location : COLUMBIA, SC

Page 2: Etank Etank2000 Report Si 3300 Tank Report

Site : COLUMBIA, SCDesign Basis : API-650 11th Edition, Addendum 2, Nov 2009

----------------------------------------------------------------------- TANK NAMEPLATE INFORMATION

----------------------------------------------------------------------- Operating Ratio: 0,4- Design Standard:- API-650 11th Edition, Addendum 2, Nov 2009 -- API-650 Appendices Used: M -- Roof = A-240 Type 304= 0,375in. -- Shell (4)= A-240 Type 304= 0,1875in. -- Shell (3)= A-240 Type 304= 0,1875in. -- Shell (2)= A-240 Type 304= 0,3125in. -- Shell (1)= A-240 Type 304= 0,336in. -- Bottom = A-240 Type 304= 0,25in. -

----------------------------------------------------------------------

Design Internal Pressure = 0 PSI or 0 IN. H2O >> 0, MPaDesign External Pressure = 0 PSI or 0 IN. H2O >> 0, MPa

MAWP = 0,0141 PSI or 0,39 IN. H2O >> 0, MPaMAWV = -0,0842 PSI or -2,33 IN. H2O >> -0,001 MPa

OD of Tank = 48 ft >> 14,63 mShell Height = 32 ft >> 9,754 mS.G. of Contents = 1,15Max. Liq. Level = 32 ft >> 9,754 m

Design Temperature = 300 °F >> 148,889 °CTank Joint Efficiency = 0,85

Ground Snow Load = 10 lbf/ft2 >> 0,479 kPaRoof Live Load = 25 lbf/ft2 >> 1,197 kPaDesign Roof Dead Load = 0 lbf/ft2 >> 0, kPa

Basic Wind Velocity = 110 mph >> 177,028 km/hrWind Importance Factor = 1Using Seismic Method: API-650 10th Ed. Seismic Zone = 2B Site Amplification Factor = 1,5 Importance Factor = 1

DESIGN NOTES

NOTE 1 : There are tank calculation warnings. Search for * * Warning * * notes. NOTE 2 : Tank is not subject to API-650 Appendix F.7

PG 4::>DESIGNER REMARKS

Page 3: Etank Etank2000 Report Si 3300 Tank Report

PG 5::>SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)------------------------------------------------------------------------Shell Width Material Sd St Weight CA# (m) (MPa) (MPa) (N)------------------------------------------------------------------------4 2,438 A-240 Type 304 140,0 186,16 43090,3 2,438 A-240 Type 304 140,0 186,16 43090,2 2,438 A-240 Type 304 140,0 186,16 71803,1 2,438 A-240 Type 304 140,0 186,16 77199,------------------------------------------------------------------------Total Weight 235.182

Shell API 650 Summary (Bottom is 1)----------------------------------------------------------------------Shell t.design t.test t.external t.seismic t.required t.actual# (mm) (mm) (mm) (mm) (mm) (mm)----------------------------------------------------------------------4 3,05 0,97 N.A. N.A. 4,75 4,753 4,75 2,06 N.A. N.A. 4,75 4,752 6,43 3,18 N.A. N.A. 6,43 7,921 8,13 4,27 N.A. N.A. 8,13 8,53----------------------------------------------------------------------

Self Supported Domed Roof; Material = A-240 Type 304

t.required = 0,3077 in. >> 7,816 mm t.actual = 0,375 in. >> 9,525 mm Roof Joint Efficiency = 0,85

Weight = 31.009 lbf >> 137934,916 N

Bottom Type: Flat Bottom: Non-Annular Bottom Floor Material = A-240 Type 304 t.required = 0,1875 in. >> 4,763 mm t.actual = 0,25 in. >> 6,35 mm Bottom Joint Efficiency = 0,85

Total Weight of Bottom = 19.583 lbf >> 87109,531 N

ANCHOR BOLTS= (24) 1,5in. UNC Bolts, A-36

TOP END STIFFENER= 3 x 3 x 1/4 , , 0 lbfQTY (1) INTERMEDIATE STIFFENER: NONE, 0 lbf, Elev. = 21,95 ft. >> 6,69 m

PG 6::><Roof Design Per API 650>

DOMED ROOF: A-240 Type 304

Page 4: Etank Etank2000 Report Si 3300 Tank Report

JEr = Roof Joint Efficiency = 0,85Lr = Entered Roof Live Load = 25 lbf/ft2 >> 1,197 kPaLr_1 = Computed Roof Live Load, including External Pressure

S = Ground Snow Load (per ASCE 7-05 Fig. 7-1) = 10 lbf/ft2 >> 0,479 kPaSb = Balanced Design Snow Load (per API-650 Sec. 5.2.1.h.1) = 0.84 * S = 8,4 lbf/ft2 >> 0,402 kPaSu = Unbalanced Design Snow Load (per API-650 Sec. 5.2.1.h.2) = 1,5*Sb = 12,6 lbf/ft2 >> 0,603 kPa

Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (8)(2/12) + 16,065 + 0 = 17,4033 lbf/ft2 >> 0,833 kPa

Roof Loads (per API-650 Appendix R)

Pe = PV*144 = 0*144 = 0 lbf/ft2 >> 0, kPa

e.1b = DL + MAX(Sb,Lr) + 0,4*Pe = 17,4033 + 25 + 0,4*0 = 42,403 lbf/ft2 >> 2,03 kPa

e.2b = DL + Pe + 0,4*MAX(Sb,Lr) = 17,4033 + 0 + 0,4*25 = 27,403 lbf/ft2 >> 1,312 kPa

T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 42,403 lbf/ft2 >> 2,03 kPa

e.1u = DL + MAX(Su,Lr) + 0,4*Pe = 17,4033 + 25 + 0,4*0 = 42,403 lbf/ft2 >> 2,03 kPa

e.2u = DL + Pe + 0,4*MAX(Su,Lr) = 17,4033 + 0 + 0,4*25 = 27,403 lbf/ft2 >> 1,312 kPa

U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 42,403 lbf/ft2 >> 2,03 kPa

Lr_1 = MAX(T,U) = 42,403 lbf/ft2 >> 2,03 kPa

Dish Radius (Rs) = 48 ft >> 14,63 m

Alpha = 60,0000 degrees (angle between the Normal to the roof and a horizontal line at the roof-to-shell juncture)Theta = 30,0000 degrees (angle between the Normal to the roof and a vertical line at the roof-to-shell juncture)

PG 7::>Rs = R1 = R2 = 576 in. >> 14630,4 mm

Rc = ID/2 = 287,8125 in. >> 7310,438 mm

<Weight, Surface Area, and Projected Areas of Roof>

Page 5: Etank Etank2000 Report Si 3300 Tank Report

hR = Height of Roof = R - SQRT[R2 - (OD/2)2] = 48 - SQRT[482 - (48/2)2] = 6,422 ft >> 1,957 m

t_ins = Thickness of Roof Insulation = 0,1667 ft >> 0,051 m Ap_Vert = Vertical Projected Area of Roof = PI*([R + t_ins]2)(Alpha/360) - OD*([R + t_ins] - hR)/2 = PI*(48,16672)(59,9895/360) - 48*(48,1667 - 6,422)/2 = 212,6796 ft2 >> 19,759 m2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*48 = 24 ft >> 7,315 m Ap = Projected Area of roof for wind moment = PI*R2 = PI*242 = 1.810 ft2 >> 168,155 m2

Roof_Area = 288*PI*R*hR = 288*PI*48*6,413 = 277.948 in2 >> 1793209,317 cm2

Weight = (Density)(t)(Roof_Area) = (0,2975)(0,375)(277.948) = 31.009 lbf (New) >> 137934,916 N = 25.840 lbf (Corroded) >> 114942,056 N

< Uplift on Tank > (per API-650 F.1.2)

NOTE: This flat bottom tank is assumed supported by the bottom plate. If tank not supported by a flat bottom, then uplift calculations will be N.A., and for reference only.

For flat bottom tank with self supported roof, Net_Uplift = Uplift due to design pressure less Corroded weight of shell and roof plates.

= P * PI / 4 * D 2 * 144 « - Corr. shell - Corr. roof weight = 0 * 3,1416 / 4 * 2.304 * 144 « - 39.961 - 25.840 = -65.801 lbf >> -292697,456 N

PG 8==>< Uplift Case per API-650 1.1.1 >

P_Uplift = 0 lbf >> 0, N W_Roof_Plates (corroded) = 25.840 lbf >> 114942,056 N W_Shell (corroded) = 39.961 lbf >> 177755,399 N Since P_Uplift <= W_Roof, Tank Roof does not need to meet App. F requirements.

Page 6: Etank Etank2000 Report Si 3300 Tank Report

<Minimum Thickness of Roof Plate> ME = 28.000.000/26.600.000 = 1,0526 (per API-650 App. S.3.6.6)

<Section 5.10.6.1> t-Calc1 = ME * SQRT[T/45]*R/200 + CA = 1,0526 * SQRT[42,403/45]*48/200 + 0,0625 = 0,3077 in. >> 7,816 mm t-Calc2 = ME * SQRT[U/45]*R/230 + CA = 1,0526 * SQRT[42,403/45]*48/230 + 0,0625 = 0,2757 in. >> 7,003 mm t-CalcExt = MAX(t-Calc1,t-Calc2) = 0,3077 in. >> 7,816 mm

t-Calc = 0,3077 in. >> 7,816 mm

Max_f (due to roof thickness) = 200(t-CA)/ME/R = 200(0,3125)/1,0526/48 = 1,237

Max_T1 (due to roof thickness) = Max_f2 * 45 = 1,2372 * 45 = 68,8576 lbf/ft2 >> 3,297 kPa

P_ext_1 (Vacuum limited by roof thickness) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[68,8576 - 17,4033 - 0,4 * Max(8,4,25)]/144 = -0,2879 PSI or -7,98 IN. H2O >> -0,002 MPa

P_max_ext = -0,2879 PSI or -7,98 IN. H2O >> -0,002 MPa

<Actual Participating Area of Roof-to-Shell Juncture>

(From API-650 Figure F-2) Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0,6 * SQRT[287,8125 * (0,1875 - 0,0625)] = 3,5988 in. >> 91,41 mm

(From API-650 Figure F-2) Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0,3 * SQRT[576 * (0,375 - 0,0625)] = MIN(4,0249, 12) = 4,0249 in. >> 102,232 mm

Top End Stiffener: 3 x 3 x 1/4 Aa = (Cross-sectional Area of Top End Stiffener) = 0 in2 >> 0, cm2

Using API-650 Fig. F-2, Detail d End Stiffener Detail

PG 9::> Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 3,5988 * (0,1875 - 0,0625) = 0,45 in2 >> 2,903 cm2

Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 4,0249 * (0,375 - 0,0625)

Page 7: Etank Etank2000 Report Si 3300 Tank Report

= 1,258 in2 >> 8,116 cm2

A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 0 + 1,258 + 0,45 = 1,708 in2 >> 11,019 cm2

MINIMUM PARTICIPATING AREA Dome Roof ( Per API-650 Section 5.10.6.2 ) p = MAX(U,T) Fa = Min(Fy_roof,Fy_shell) = Min(22.500,22.500) = 22.500 psi >> 155,132 MPa A_min = Minimum Participating Area = p*D2/(8*Fa*TAN(Theta)) = 42,403*482/(8*22.500*TAN(30,0000)) = 0,94 in2 >> 6,065 cm2

MaxT_A = Max Roof Load due to Participating Area ( reversing API-650 Section 5.10.6.2 ) = 1500*45*A/(D*R) = 1500*45*1,708/(48*48) = 50,039 lbf/ft2 >> 2,396 kPa

P_ext_2 (Due to MaxT_A) = -2.5 * [(Max_T1 - DL - Max(Snow_Load,Lr)] / 144 = -2.5 * [(50,039 - 17,4033 - Max(8,4,25)] / 144 = -0,1326 PSI (Due to Participating Area) >> -0,001 MPa

P_max_ext = MAX(-0,2879,-0,1326) = -0,1326 PSI or -3,67 IN. H2O >> -0,001 MPa

t.required = 0,3077 in. >> 7,816 mm

< ROOF DESIGN SUMMARY >

t.required = 0,3077 in. >> 7,816 mm t.actual = 0,375 in. >> 9,525 mm

P_max_internal = 2,5 PSI or 69,28 IN. H2O >> 0,017 MPa P_max_external = -0,1326 PSI or -3,67 IN. H2O >> -0,001 MPa

PG 10::>SHELL COURSE DESIGN (Bottom Course is #1)

VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))0,5 = (6*48*(0,336-0,0625))0,5 = 8,8751 H = Max Liquid Level =32 ft L / H <= 2

Course # 1 Material: A-240 Type 304; Width = 8 ft. >> 2,438 m Corrosion Allow. = 0,0625 in. >> 1,588 mm Joint Efficiency = 0,85

Page 8: Etank Etank2000 Report Si 3300 Tank Report

API-650 ONE FOOT METHOD

Sd = 20.300 PSI (allowable design stress per API-650 App. S Table S-2a) >> 139,964 MPa St = 27.000 PSI (allowable test stress) >> 186,158 MPa

DESIGN CONDITION G = 1,15 (per API-650)

< Design Condition G = 1,15 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 32 + 2.31*0/1,15 = 32ft >> 9,754 m

t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*48*(32 - 1)*1,15/(20.300*0,85) + 0,0625 = 0,3203 in. >> 8,136 mm

hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1 = 0,85*20.300*(0,336 - 0,0625) / (2,6 * 48 * 1,15) + 1 = 33,8821 ft. >> 10,327 m

Pmax_1 = (hMax_1 - H) * 0,433 * G = (33,8821 - 32) * 0,433 * 1,15 = 0,9372 PSI >> 0,006 MPa

Pmax_int_shell = Pmax_1

Pmax_int_shell = 0,9372 PSI >> 0,006 MPa

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 32 + 2.31*0/1 = 32ft >> 9,754 m

t.test = 2,6*48*(32 - 1)/(27.000*0,85) = 0,1686 in. >> 4,282 mm

Course # 2 Material: A-240 Type 304; Width = 8 ft. >> 2,438 m Corrosion Allow. = 0,0625 in. >> 1,588 mm Joint Efficiency = 0,85

PG 11::> API-650 ONE FOOT METHOD

Sd = 20.300 PSI (allowable design stress per API-650 App. S Table S-2a) >> 139,964 MPa St = 27.000 PSI (allowable test stress) >> 186,158 MPa

DESIGN CONDITION G = 1,15 (per API-650)

< Design Condition G = 1,15 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24 + 2.31*0/1,15 = 24ft >> 7,315 m

Page 9: Etank Etank2000 Report Si 3300 Tank Report

t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*48*(24 - 1)*1,15/(20.300*0,85) + 0,0625 = 0,2538 in. >> 6,447 mm

hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1 = 0,85*20.300*(0,3125 - 0,0625) / (2,6 * 48 * 1,15) + 1 = 31,0568 ft. >> 9,466 m

Pmax_2 = (hMax_2 - H) * 0,433 * G = (31,0568 - 24) * 0,433 * 1,15 = 3,5139 PSI >> 0,024 MPa

Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(0,9372, 3,5139)

Pmax_int_shell = 0,9372 PSI >> 0,006 MPa

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24 + 2.31*0/1 = 24ft >> 7,315 m

t.test = 2,6*48*(24 - 1)/(27.000*0,85) = 0,1251 in. >> 3,178 mm

Course # 3 Material: A-240 Type 304; Width = 8 ft. >> 2,438 m Corrosion Allow. = 0,0625 in. >> 1,588 mm Joint Efficiency = 0,85

API-650 ONE FOOT METHOD

Sd = 20.300 PSI (allowable design stress per API-650 App. S Table S-2a) >> 139,964 MPa St = 27.000 PSI (allowable test stress) >> 186,158 MPa

DESIGN CONDITION G = 1,15 (per API-650)

< Design Condition G = 1,15 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16 + 2.31*0/1,15 = 16ft >> 4,877 m

PG 12::> t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*48*(16 - 1)*1,15/(20.300*0,85) + 0,0625 = 0,1873 in. >> 4,757 mm

hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1 = 0,85*20.300*(0,1875 - 0,0625) / (2,6 * 48 * 1,15) + 1 = 16,0284 ft. >> 4,885 m

Pmax_3 = (hMax_3 - H) * 0,433 * G = (16,0284 - 16) * 0,433 * 1,15 = 0,0141 PSI >> 0, MPa

Page 10: Etank Etank2000 Report Si 3300 Tank Report

Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(0,9372, 0,0141)

Pmax_int_shell = 0,0141 PSI >> 0, MPa

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16 + 2.31*0/1 = 16ft >> 4,877 m

t.test = 2,6*48*(16 - 1)/(27.000*0,85) = 0,0816 in. >> 2,073 mm

Course # 4 Material: A-240 Type 304; Width = 8 ft. >> 2,438 m Corrosion Allow. = 0,0625 in. >> 1,588 mm Joint Efficiency = 0,85

API-650 ONE FOOT METHOD

Sd = 20.300 PSI (allowable design stress per API-650 App. S Table S-2a) >> 139,964 MPa St = 27.000 PSI (allowable test stress) >> 186,158 MPa

DESIGN CONDITION G = 1,15 (per API-650)

< Design Condition G = 1,15 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 8 + 2.31*0/1,15 = 8ft >> 2,438 m

t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*48*(8 - 1)*1,15/(20.300*0,85) + 0,0625 = 0,1207 in. >> 3,066 mm

hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1 = 0,85*20.300*(0,1875 - 0,0625) / (2,6 * 48 * 1,15) + 1 = 16,0284 ft. >> 4,885 m

Pmax_4 = (hMax_4 - H) * 0,433 * G = (16,0284 - 8) * 0,433 * 1,15 = 3,9977 PSI >> 0,028 MPa

PG 13::> Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(0,0141, 3,9977)

Pmax_int_shell = 0,0141 PSI >> 0, MPa

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 8 + 2.31*0/1 = 8ft >> 2,438 m

Page 11: Etank Etank2000 Report Si 3300 Tank Report

t.test = 2,6*48*(8 - 1)/(27.000*0,85) = 0,0381 in. >> 0,968 mm

Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]2,5

Transforming Courses (1) to (4)

Wtr(1) = 8*[ 0,1875/0,336 ]2.5 = 1,861 ft >> 0,567 m Wtr(2) = 8*[ 0,1875/0,3125 ]2.5 = 2,2308 ft >> 0,68 m Wtr(3) = 8*[ 0,1875/0,1875 ]2.5 = 8 ft >> 2,438 m Wtr(4) = 8*[ 0,1875/0,1875 ]2.5 = 8 ft >> 2,438 m Hts (Height of the Transformed Shell) = SUM{Wtr} = 20,0918 ft >> 6,124 m

INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 110 mph >> 177,028 km/hr Ve = vf = Velocity Factor = (vs/120)2 = (110/120)2 = 0,8403 Design PV = 0 PSI, OR 0 In. H2O >> 0, MPa

<TOP END STIFFENER CALCULATIONS> Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e)

= 0 in3 >> 0, cm3 Top Comp. Ring is not required for Self-Supported Roofs if the requirements of either Section 5.10.5 or 5.10.6 are met.

Actual Z = 2,32 in3 >> 38,018 cm3 Using 3 x 3 x 1/4, Wc = 4,41

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)

* * * NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course.

* * * NOTE: Not subtracting corrosion allowance per user setting.

ME = 26.600.000/28.000.000 = 0,95

Hu = Maximum Height of Unstiffened Shell = {ME*600.000*t_thinnest*SQRT[t_thinnest/OD]3} / Ve) = {0,95*600.000*0,1875*SQRT[0,1875/48]3} / 0,8403 = 31,0523 ft >> 9,465 m

PG 14::> Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]2,5

Transforming Courses (1) to (4)

Wtr(1) = 8*[ 0,1875/0,336 ]2.5 = 1,861 ft >> 0,567 m Wtr(2) = 8*[ 0,1875/0,3125 ]2.5 = 2,2308 ft >> 0,68 m Wtr(3) = 8*[ 0,1875/0,1875 ]2.5 = 8 ft >> 2,438 m Wtr(4) = 8*[ 0,1875/0,1875 ]2.5 = 8 ft >> 2,438 m Hts (Height of the Transformed Shell) = SUM{Wtr} = 20,0918 ft >> 6,124 m

L_0 = Hts/# of Stiffeners + 1

Page 12: Etank Etank2000 Report Si 3300 Tank Report

= 20,0918/2 = 10,05 ft. >> 3,063 m

Number of Intermediate Wind Girders Sufficient Since Hu >= L_0

SHELL COURSE #1 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,3203, 0, 0) = 0,3203 in. >> 8,136 mm

t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) >> 4,763 mm

t.required = MAX(t.design, t.test, t.min650) = 0,3203 in. >> 8,136 mm t.actual = 0,336 in. >> 8,534 mm

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*48)-0,336]*12*8*0,336 = 17.355 lbf (New) >> 77198,893 N = 14.128 lbf (Corroded) >> 62844,48 N

SHELL COURSE #2 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,2538, 0, 0) = 0,2538 in. >> 6,447 mm

t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) >> 4,763 mm

t.required = MAX(t.design, t.test, t.min650) = 0,2538 in. >> 6,447 mm t.actual = 0,3125 in. >> 7,938 mm

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*48)-0,3125]*12*8*0,3125 = 16.142 lbf (New) >> 71803,2 N = 12.915 lbf (Corroded) >> 57448,787 N

SHELL COURSE #3 SUMMARY-------------------------------------------

PG 15::> t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1873, 0, 0) = 0,1873 in. >> 4,757 mm

t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) >> 4,763 mm

t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. >> 4,763 mm t.actual = 0,1875 in. >> 4,763 mm

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*48)-0,1875]*12*8*0,1875 = 9.687 lbf (New) >> 43089,927 N = 6.459 lbf (Corroded) >> 28731,066 N

Page 13: Etank Etank2000 Report Si 3300 Tank Report

SHELL COURSE #4 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1207, 0, 0) = 0,1207 in. >> 3,066 mm

t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) >> 4,763 mm

t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. >> 4,763 mm t.actual = 0,1875 in. >> 4,763 mm

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*48)-0,1875]*12*8*0,1875 = 9.687 lbf (New) >> 43089,927 N = 6.459 lbf (Corroded) >> 28731,066 N

PG 16::>FLAT BOTTOM: NON-ANNULAR PLATE DESIGN

Bottom Plate Material : A-240 Type 304 Annular Bottom Plate Material : A-240 Type 304

<Weight of Bottom Plate>

Bottom_Area = PI/4*(Bottom_OD)2 = PI/4*(579)2 = 263.298 in2 >> 1698693,377 cm2

Weight = Density * t.actual * Bottom_Area = 0,2975 * 0,25 * 263.298 = 19.583 lbf (New) >> 87109,531 N = 19.583 lbf (Corroded) >> 87109,531 N

< API-650 >

Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1)

t_1 : Bottom (1st) Shell Course thickness.

H'= Max. Liq. Level + P(psi)/(0,433) = 32 + (0)/(0,433) = 32 ft >> 9,754 m

St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)/t_1 = (2,6)(48)(32 - 1)/(0,336) = 11.514 PSI. (Within 24900 PSI limit for Non-Annular Bottom)

Sd = Product Design Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2,6)(48)(32 - 1)(1,15)/(0,2735) = 16.267 PSI. (Within 23200 PSI limit for Non-Annular Bottom)

--------------------------

Page 14: Etank Etank2000 Report Si 3300 Tank Report

<Non-Annular Bottom Plates>

t_min = 0,1875 + CA = 0,1875 + 0 = 0,1875 in. (per Section 5.4.1) >> 4,763 mm

t-Calc = t_min = 0,1875 in. >> 4,763 mm

t-Actual = 0,25 in. >> 6,35 mm

< Vacuum Calculations > (per ASME Section VIII Div. 1)

Weight of Corr. Bottom Plate Resisting External Vacuum

P_btm = 0,2975 * 0,25 = 0,0744 PSI or 2,06 IN. H2O >> 0,001 MPa

P_ext = PV + P_btm = 0 + 0,0744 = 0,0744 PSI or 2,06 IN. H2O >> 0,001 MPa Since P_ext > 0, P_ext = 0

td_ext = (t-Calc - CA) (1st course) = (0,3203 - 0,0625) = 0,2578 in. >> 6,548 mm

PG 17::> ts = (t.actual - CA) (1st course) = (0,336 - 0,0625) = 0,2735 in. >> 6,947 mm

C = 0,33 * td_ext / ts = 0,33 * 0,2578 / 0,2735 = 0,3111

t-Vac = OD*SQRT(C*P_ext/SE) + CA = (576)*SQRT[(0,3111)(0)/(20.300)(0,85)] + 0 = 0 in. >> 0, mm

t-Calc = MAX(t-Calc, t-Vac) = MAX(0,1875,0) = 0,1875 in. >> 4,763 mm

P_max_external (Vacuum limited by bottom plate thickness) = -([(t - CA)/OD]2*(S*E/C) + P_btm) = -([(0,25 - 0)/576]2*(20.300*0,85/0,3111) + 0,0744) = -0,0848 PSI or -2,35 IN. H2O >> -0,001 MPa

-------------------

< FLAT BOTTOM: NON-ANNULAR SUMMARY >

Bottom Plate Material : A-240 Type 304 t.required = 0,1875 in. >> 4,763 mm t.actual = 0,25 in. >> 6,35 mm

PG 18==>NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations)

Page 15: Etank Etank2000 Report Si 3300 Tank Report

Net_Uplift = -65.801 lbf >> -292697,456 N Anchorage NOT required for internal pressure.

WIND MOMENT (Per API-650 SECTION 5.11)

vs = Wind Velocity = 110 mph >> 177,028 km/hr vf = Velocity Factor = (vs/120)2 = (110/120)2 = 0,8403

Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0,8403 = 25,2083 lbf/ft2 >> 1,207 kPa

API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D2 + 8*t_h) P_F41 = WCtoPSI(0,962*22.500*1,708*4/482 + 8*0,3125) = 2,406 PSI >> 0,017 MPa Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0,1751 PSI >> 0,001 MPa 1.6*P_F41 = 3,8496 PSI >> 0,027 MPa

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(25,2083,554,3424) = 25,2083 lbf/ft2 >> 1,207 kPa

hR = Height of Roof = R - SQRT[R2 - (OD/2)2] = 48 - SQRT[482 - (48/2)2] = 6,422 ft >> 1,957 m

t_ins = Thickness of Roof Insulation = 0,1667 ft >> 0,051 m Ap_Vert = Vertical Projected Area of Roof = PI*([R + t_ins]2)(Alpha/360) - OD*([R + t_ins] - hR)/2 = PI*(48,16672)(59,9895/360) - 48*(48,1667 - 6,422)/2 = 212,6796 ft2 >> 19,759 m2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*48 = 24 ft >> 7,315 m Ap = Projected Area of roof for wind moment = PI*R2 = PI*242 = 1.810 ft2 >> 168,155 m2

M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (25,2083)(1.810)(24) = 1.094.782 lbf-ft >> 1484325,142 N-m

Xs (Moment Arm of Wind Force on Shell) = H/2 = (32)/2 = 16 ft >> 4,877 m

PG 19::> As (Projected Area of Shell) = H*(OD + t_ins / 6) = (32)(48 + 2/6) = 1.547 ft2 >> 143,721 m2

Page 16: Etank Etank2000 Report Si 3300 Tank Report

M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0,8403)(18)(1.547)(16) = 374.293 lbf-ft >> 507473,187 N-m

Mw (Wind moment) = M_roof + M_shell = 1.094.782 + 374.293 = 1.469.075 lbf-ft >> 1991798,328 N-m

W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.)

= W_shell + W_roof - 0,4*P*(PI/4)(144)(OD2) = 39.961 + 25.840 - 0*(PI/4)(144)(482) = 65.801 lbf >> 292697,456 N

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

An unanchored Tank must meet these two criteria: 1) 0,6*Mw + MPi < MDL/1,5 2) Mw + 0,4MPi < (MDL + MF)/2

Mw = Destabilizing Wind Moment = 1.469.075 lbf-ft >> 1991798,328 N-m

MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design « Pressure. = P*(PI*OD2/4)*(144)*(OD/2) = 0*(3,1416*482/4)*(144)*(24) = 0 lbf-ft >> 0, N-m

MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and « Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (39.961 + 25.840)*24 = 1.579.224 lbf-ft >> 2141140,325 N-m

tb = Bottom Plate thickness less C.A. = 0,25 in. >> 6,35 mm

wl = Circumferential loading of contents along Shell-To-Bottom Joint. = 4,67*tb*SQRT(Sy_btm*H_liq) = 4,67*0,25*SQRT(22.500*32) = 990,66 lbf/ft >> 4406,676 N

MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (24)(990,66)(3,1416)(48) = 3.585.312 lbf-ft >> 4861030,545 N-m

Criteria 1 0,6*(1.469.075) + 0 < 1.579.224/1,5 Since 881.445 < 1.052.816, Tank is stable.

PG 20::> Criteria 2 1.469.075 + 0,4 * 0 < (1.579.224 + 3.585.312)/2 Since 1.469.075 < 2.582.268, Tank is stable.

RESISTANCE TO SLIDING (per API-650 5.11.4)

Page 17: Etank Etank2000 Report Si 3300 Tank Report

F_wind = vF * 18 * As = 0,8403 * 18 * 1.547 = 23.393 lbf >> 104057,257 N

F_friction = Maximum of 40% of Weight of Tank = 0,4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + W_min_Liquid) = 0,4 * (25.840 + 39.961 + 19.583 + 0) = 34.154 lbf >> 151924,574 N

No anchorage needed to resist sliding since

F_friction > F_wind

<Anchorage Requirement>Anchorage NOT required since Criteria 1, Criteria 2, and SlidingARE acceptable.

PG 21::>SEISMIC MOMENT (API-650 APPENDIX E & API-620 APPENDIX L)

Ms (Seismic Moment) Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)

Z = 0,2 Zone coefficient for zone 2B (from Table E-2) I = 1 Importance Factor S = 1,5 Site amplification factor (from Table E-3)

C1 = 0,6 = Lateral earthquake force coefficient

k = 0,59 (factor for D/H = 1,5 from figure E-4)

T = Natural Period of First Sloshing Mode = k*SQRT(OD) = 0,59*SQRT(48) = 4,088

C2 = Lateral Earthquake Force Coefficient = 0,75(S)/T = .75(1,5)/(4,088) = 0,2752

From Figures E-2 & E-3 X1_H = X1/H chart factor X2_H = X2/H chart factor W1_Wt = W1/Wt chart factor W2_Wt = W2/Wt chart factor Wt = Weight of tank contents @ Max. Liquid Level

X1 = (X1_H)*H = (0,375)*32 = 12 X2 = (X2_H)*H = (0,6483)*32 = 20,7458 W1 = (W1_Wt)*Wt = (0,6887)*4.145.948 = 2.855.439 W2 = (W2_Wt)*Wt = (0,3428)*4.145.948 = 1.421.431 Ws = W_shell + W_Insulation (New Condition) = 52.871 + 6.434 = 59.305 Wr = W_roof + Snow Load + W_Insulation (New Condition) = 31.009 + 19.302 + 2.574 = 52.885

C1*Ws*Xs = 0,6*(59.305)(16) = 569.328 C1*Wr*Ht = 0,6*(52.885)(32) = 1.015.392 C1*W1*X1 = 0,6*(2.855.439)(12) = 20.559.163 C2*W2*X2 = (0,2752)(1.421.431)(20,7458) = 8.115.171

Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2) = (0,2)(1)(569.328 + 1.015.392 + 20.559.163 + 8.115.171)

Page 18: Etank Etank2000 Report Si 3300 Tank Report

= 6.051.811 lbf-ft >> 8205154,286 N-m

W_shell = Weight of Shell (New Condition) W_roof2 = Weight of Roof Plates Supported By Shell (New)

wt = (W_shell + W_roof2)/(PI*OD) (New Condition) = (59.305 + 31.009)/(PI*48) = 599, lbf/ft >> 2664,485 N

RESISTANCE TO OVERTURNING (per Section E.4.1, E.4.2, assuming no anchors)

wl = 7,9*(tb1)*SQRT(Sy*G*H) = 7,9*(0,25)*SQRT(27.067*1,15*32) = 1.971 lbf/ft >> 8767,446 N

where tb1 = t - CA = 0,25 in. (for Bottom Plate) >> 6,35 mm

PG 22::> 1,25*G*H*OD = 1.25(1,15)(32)(48) = 2.208 lbf/ft >> 9821,674 N

UNANCHORED TANKS (Section E.5.1)

Ms/[OD2(wt+wl)] = 6.051.811/[(482)(599, + 1.971)] = 1,0221

b = max longitudinal compressive force (b + wl)/(wt + wl) = 2,3832 (from figure E-5) b = (2,3832)(599, + 1.971) - 1.971 = 4.154 lbf/ft >> 18477,914 N

MAXIMUM ALLOWABLE SHELL COMPRESSION (Section E.5.3)

b/(12t) = Max Longitudinal Compressive Stress = 4.154/(12*(0,336 - 0,0625)) = 1.266 PSI >> 8,729 MPa

G*H*OD2/t2 = (1,15)(32)(482)/(0,336 - 0,0625)2 = 1.133.485

Fa = 106*t/OD = (106)(0,336 - 0,0625)/48 = 5.698 PSI >> 39,286 MPa

t = 0,336 - 0,0625 = 0,2735 in. (OK since b/(12t) <= Fa) >> 6,947 mm

ANCHORED TANKS (Section E.5.2)

b = wt + 1,273(Ms)/OD2 = Max Longitudinal Compressive Force = 599, + 1,273(6.051.811)/(48)2 = 3.943 lbf/ft >> 17539,339 N

MAXIMUM ALLOWABLE SHELL COMPRESSION (Section E.5.3)

b/(12t) = Max Longitudinal Compressive Stress = 3.943/(12*(0,336 - 0,0625)) = 1.201 PSI >> 8,281 MPa

G*H*OD2/t2 = (1,15)(32)(482)/(0,336 - 0,0625)2 = 1.133.485

Fa = 106*t/OD = (106)(0,336 - 0,0625)/48 = 5.698 PSI >> 39,286 MPa

t = 0,336 - 0,0625 = 0,2735 in. (OK since b/(12t) <= Fa) >> 6,947 mm

ANCHORAGE OF TANKS (Section E.6.1)

N = 24 Number of Anchors D = 48,25 ft Diameter of Anchor Circle >> 14,707 m

Page 19: Etank Etank2000 Report Si 3300 Tank Report

Net_Uplift = Net uplift due to internal pressure

MAR = minimum anchorage resistance due to seismic moment = 1,273(Ms)/OD2 + Net_Uplift/Circumference = 1,273(6.051.811)/482 + -65.801/(PI*48) = 2.907 lbf/ft circumference >> 12930,981 N

btseis = anchor tension req'd to resist seismic moment = MAR*D*PI/(N) = (2.907)(48,25)(PI)/(24) = 18.360 lbf >> 81669,356 N

PG 23::>ANCHOR BOLT DESIGN

Bolt Material : A-36 Sy = 36.000 PSI >> 248,211 MPa

< Uplift Load Cases, per API-650 Table 5-21b >

D (tank OD) = 48 ft >> 14,63 m P (design pressure) = 0 INCHES H2O Pt (test pressure per F.4.4) = P = 0 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0,375 in. >> 9,525 mm Mw (Wind Moment) = 1.469.075 lbf-ft >> 1991798,328 N-m Mrw (Seismic Ringwall Moment) = 6.051.811 lbf-ft >> 8205154,286 N-m W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell)

W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell)

W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell)

For Tank with Self Supported Roof, W1 = Corroded Shell + Shell Insulation = 39.961 + 6.434 = 46.395 lbf >> 206375,26 N W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates + Roof Dead Load = 39.961 + 6.434 + 25.840 + 277.948 * 1,3383/144 = 74.818 lbf >> 332807,074 N W3 = New Shell + Shell Insulation = 52.871 + 6.434 = 59.305 lbf >> 263801,806 N

Uplift Case 1= Design Pressure Only U = [(P - 8*t_h) * D2 * 4,08] - W1 U = [(0 - 8*0,375) * 482 * 4,08] - 46.395 = -74.596 lbf >> -331819,568 N bt = U / N = -3.108 lbf >> -13825,074 N

Sd = 15.000 PSI >> 103,421 MPa A_s_r = Bolt Root Area Req'd

Page 20: Etank Etank2000 Report Si 3300 Tank Report

A_s_r = N.A., since Load per Bolt is zero.

Uplift Case 2= Test Pressure Only U = [(Pt - 8*t_h) * D2 * 4,08] - W1 U = [(0 - 8*0,375) * 482 * 4,08] - 46.395 = -74.596 lbf >> -331819,568 N bt = U / N = -3.108 lbf >> -13825,074 N

Sd = 20.000 PSI >> 137,895 MPa A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

PG 24==> Uplift Case 3= Failure Pressure Only Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

Uplift Case 4= Wind Load Only PWR = Wind_Uplift/5,208 = 25,2083/5,208 = 4,8403 IN. H2O >> 122,944 mm PWS = vF * 18 = 0,8403 * 18 = 15,125 lbf/ft2 >> 0,724 kPa MWH = PWS*(D+t_ins/6)*H2/2 = 15,125*(48+2/6)*322/2 = 374.293 lbf-ft >> 507473,187 N-m U = PWR * D2 * 4,08 + [4 * MWH/D] - W2 = 4,8403*482*4,08+[4*374.293/48]-74.818 = 1.873 lbf >> 8331,52 N bt = U / N = 78 lbf >> 346,961 N

Sd = 0,8 * 36.000 = 28.800 PSI >> 198,569 MPa A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 78/28.800 = 0,003 in2 >> 0,019 cm2

Uplift Case 5= Seismic Load Only U = [4 * Mrw / D] - W2*(1-0,4*Av) U = [4 * 6.051.811 / 48] - 74.818*(1-0,4*0) = 429.499 lbf >> 1910506,901 N bt = U / N = 17.896 lbf >> 79605,381 N

Sd = 0,8 * 36.000 = 28.800 PSI >> 198,569 MPa A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 17.896/28.800 = 0,621 in2 >> 4,006 cm2

Uplift Case 6= Design Pressure + Wind Load U = [(0,4*P + PWR - 8*t_h) * D2 * 4,08] + [4 * MWH / D] - W1 = [(0,4*0+4,8403-8*0,375)*482 * 4,08]+[4*374.293 / 48] - 46.395 = 2.096 lbf >> 9323,473 N bt = U / N = 87 lbf >> 386,995 N

Sd = 20.000 = 20.000 PSI >> 137,895 MPa A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 87/20.000 = 0,004 in2 >> 0,026 cm2

Uplift Case 7= Design Pressure + Seismic Load

Page 21: Etank Etank2000 Report Si 3300 Tank Report

U = [(0,4*P - 8*t_h)*D2 * 4,08] + [4*Mrw/D] - W1*(1-0,4*Av) U = [(0,4*0-8*0,375)*482*4,08]+[4*6.051.811/48]-46.395*(1-0,4*0) = 429.722 lbf >> 1911498,854 N bt = U / N = 17.905 lbf >> 79645,415 N

Sd = 0,8 * 36.000 = 28.800 PSI >> 198,569 MPa A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 17.905/28.800 = 0,622 in2 >> 4,013 cm2

PG 25==> Uplift Case 8= Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

< ANCHOR BOLT SUMMARY >

Bolt Root Area Req'd = 0,622 in2 >> 4,013 cm2

Exclusive of Corrosion, Bolt Diameter Req'd = 1,076 in. (per ANSI B1.1) >> 27,33 mm

Actual Bolt Diameter = 1,500 in. >> 38,1 mm

Bolt Diameter Meets Requirements.

<ANCHORAGE REQUIREMENTS>No Anchorage Required.Anchorage Meets Spacing Requirements.

ANCHOR BOLT CHAIRS NOT SPECIFIED.

PG 26::>NORMAL & EMERGENCY VENTING (API-2000)

Contents : (unknown) Tank OD = 48 ft >> 14,63 m Tank Shell Height = 32 ft >> 9,754 m Tank Design Temp. = 300 °F >> 148,889 °C

<INBREATHING - VACUUM RELIEF>

Q1 (Maximum Movement Out of Tank) (per Section 4.3.2.1.1)

= 5,6 CFH Air per 42 GPH outflow = (5,6/42)*50*60 = 400 CFH, or 7 CFM free air

Q2 (Thermal Inbreathing) (per Section 4.3.2.1.2)

= 11.375 CFH, or 190, CFM free air (Table 2A Column 2)

Total Vacuum Relief Required = Q1 + Q2 = 11.775 CFH, or 196, CFM

<OUTBREATHING - PRESSURE RELIEF>

Page 22: Etank Etank2000 Report Si 3300 Tank Report

Q1 (Maximum Movement Into Tank) (per Section 4.3.2.2.1)

= 6 CFH Air per 42 GPH inflow = (6/42)*50*60 = 429 CFH, or 7, CFM free air

Q2 (Thermal Outbreathing) (per Section 4.3.2.2.2)

= 6.825 CFH, or 114 CFM free air (Table 2A Column 3)

Total Pressure Relief Required = Q1 + Q2 = 7.254 CFH, or 121, CFM

<EMERGENCY VENTING>

Max W = 30 ft. >> 9,144 m For flat bottom tanks, only shell is considered for Wetted Area. Wetted Area = 4.524 ft2 >> 420,293 m2

(Section 4.3.3.2.2, Design Pressure <= 1 PSI)

Qe = 742.000 CFH, or 12367, CFM free air (Table 3A Column 2)

x1 = 0,5 (Environment Factor for Drainage) x2 = 0,1 (Environment Factor for Insulation)

Qe = x1*x2*Qe = (0,5)(0,1)(742.000) = 37.100 CFH

PG 27::>TABLE 1: NOZZLES & MANWAYS

----------------------------------------------------------------------NAME TYPE SIZE FLANGE SCH. ELEV. WEIGH REPAD REPAD REPAD REPAD FACING ON t Do W CA SHELL or L (in) (ft) lbf (in) (in) (in) (in)----------------------------------------------------------------------A SHNZ 24 RFSO 80 10 3 0,187 49,5 60 0----------------------------------------------------------------------

PG 28::>< Nozzle A Reinforcement Requirements > (Per API-650 Section 3.7.2 and other references below)

NOZZLE Description = 24in. 80 RFSO >> 609,6 mm

MOUNTED ON SHELL COURSE 2 ; Elevation = 10 ft. >> 3,048 m COURSE PARAMETERS: t_cr = 0,2538 in. (Course t-Calc) >> 6,447 mm t_c = 0,25 in. (Course t less C.A.) >> 6,35 mm t_Basis = 0,2538 in. >> 6,447 mm

(SHELL NOZZLE REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7)

t_rpr (Repad Required Thickness) t_rpr = NOMINAL(A_rpr / D)

A_rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)

Page 23: Etank Etank2000 Report Si 3300 Tank Report

Required Area = t_Basis * D = 0,2538 * 24,25 = 6,155 in2 >> 39,71 cm2

Available Shell Area = (t_c - t_Basis) * D = (0,25 - 0,2538) * 24,25 = -0,092 in2 >> -0,594 cm2

Available Nozzle Neck Area = [4 * (t_n-ca) + t_c] * (t_n-ca) * « MIN(Sd_n/Sd_s, 1) = [4 * (0) + 0,25] * (0) * 17.600/20.300 = 0 in2 >> 0, cm2

A_rpr = 6,155 - -0,092 - 0 = 6,247 in2 >> 40,303 cm2 t_rpr = NOMINAL(6,247/24,25) = 0,3125 in. >> 7,938 mm

Based on Shell Nozzle Size of 24 in.,Repad Size (L X W) Must be 49,5 X 60 in.

PG 29::>CAPACITIES and WEIGHTS

Maximum Capacity (to upper TL) = 432.396 gal >> 1636,797 m3 Design Capacity (to Max Liquid Level) = 432.156 gal >> 1635,889 m3 Minimum Capacity (to Min Liquid Level) = 0 gal >> 0, m3 NetWorking Capacity (Design - Min.) = 432.156 gal >> 1635,889 m3

New Condition Corroded ----------------------------------------------------------- Shell 52.871 lbf 39.961 lbf Roof Plates 31.009 lbf 25.840 lbf Bottom 19.583 lbf 19.583 lbf Stiffeners 0 lbf 0 lbf Nozzle Wgt 3 lbf 3 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 9.008 lbf 9.008 lbf ----------------------------------------------------------- Total 112.474 lbf 94.395 lbf

Weight of Tank, Empty = 112.474 lbf >> 500309,321 NWeight of Tank, Full of Product (SG=1,15)= 4.262.269 lbfWeight of Tank, Full of Water = 3.720.992 lbf >> 16551798,476 NNet Working Weight, Full of Product = 4.259.966 lbf >> 18949274,48 NNet Working Weight, Full of Water = 3.718.989 lbf >> 16542888,688 N

Foundation Area Req'd = 1.810 ft2 >> 168,155 m2

Foundation Loading, Empty = 62,14 lbf/ft2 >> 2,975 kPaFoundation Loading, Full of Product (SG=1,15) = 2.355 lbf/ft2 >> 112,758 kPaFoundation Loading, Full of Water = 2.056 lbf/ft2 >> 98,442 kPa

SURFACE AREASRoof 1.930 ft2Shell 4.825 ft2

Page 24: Etank Etank2000 Report Si 3300 Tank Report

Bottom 1.810 ft2

Wind Moment 1.469.075 lbf-ftSeismic Moment 6.051.811 lbf-ft

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

PG 30::>MAWP & MAWV SUMMARY FOR 3300

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 2,5 PSI or 69,28 IN. H2O (per API-650 App. F.1.3 & F.7) >> 0,017 MPa

MAWP = Maximum Calculated Internal Pressure (due to shell) = 0,0141 PSI or 0,39 IN. H2O >> 0, MPa

MAWP = Maximum Calculated Internal Pressure (due to roof) = 2,5 PSI or 69,28 IN. H2O >> 0,017 MPa

TANK MAWP = 0,0141 PSI or 0,39 IN. H2O >> 0, MPa

MAXIMUM CALCULATED EXTERNAL PRESSURE

MAWV = -1 PSI or -27,71 IN. H2O (per API-650 V.1) >> -0,007 MPa

MAWV = Maximum Calculated External Pressure (due to shell) = -0,0842 PSI or -2,33 IN. H2O >> -0,001 MPa

MAWV = Maximum Calculated External Pressure (due to roof) = -0,1326 PSI or -3,67 IN. H2O >> -0,001 MPa

MAWV = Maximum Calculated External Pressure (due to bottom plate) = -0,0848 PSI or -2,35 IN. H2O >> -0,001 MPa

TANK MAWV = -0,0842 PSI or -2,33 IN. H2O >> -0,001 MPa