36
ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College CC1 – CC2 Buildings Energy Analysis

ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203        REX ALLEN  JUNE 10, 2009  

 

    

Cascadia Community College CC1 – CC2 Buildings Energy Analysis 

Page 2: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203        REX ALLEN  JUNE 10, 2009   INTRODUCTION An energy analysis of two conjoined buildings on the Cascadia / UW Bothell campus was performed during the weeks of May 25th through June 8th, 2009.  The CC1 and CC2 buildings were built in phases, with CC2 being an addition to CC1.  Materials and construction details for each building were identical according to construction drawings provided by the Facilities department of the college.  Excerpts from those drawings are reproduced in this report to illustrate various points of the analysis.    METHODOLOGY The analysis began with a review of the drawings to verify the construction materials and details of the buildings.  The structural bay spacing was determined to be identical in both buildings as well as the location of the thermal envelope.  For purposes of this analysis the slab on grade is assumed to have no heat loss.    A walk‐through of the buildings was conducted to verify the as‐built conditions.  Repetitive building elements were measured, such as windows and curtain wall elements, and compared to the documents.  The windows were observed to be constructed of extruded aluminum frames with a thermal break and double glazing.  The curtain wall glazing is also extruded aluminum frames with double glazing.  The manufacturer of the windows and curtain wall could not be determined so similar products as manufactured by Kawneer were selected to establish comparable R‐values for the analysis.  See the reference section for Kawneer product literature for the systems selected.  The drawings also lacked information on the insulation values used in the building.  Some references to the wall insulation were found, indicating R‐19 batt insulation, but the various roof values were not identified.  All vertical wall insulation is assumed to be R‐19 batts.  The roof insulation is assumed to be R‐30 batts or rigid insulation.  These were the prescribed values in the Washington State Energy code during the time these buildings were built.     The heat loss for the building was calculated on a room by room basis.  The area of the envelope for each room was calculated and subdivided into the areas of different wall types and window types with the particular U‐value of each assembly.  Calculation of the U‐value of each of the assemblies is detailed in the reference section and on the tab labeled R‐Values in the heat loss spreadsheet.  The temperature values for the interior and exterior can be varied by the user.  Depending on the values selected, a negative value may appear in the total heat loss column of the spreadsheet.  This indicates a heat gain instead of a heat loss and should correspond to a warmer outside temperature compared to the inside temperature.  The area of the envelope of the entire building was also discovered and the heat loss calculated based on these gross areas.  The total envelope calculation is displayed on the last page of the spreadsheet, together with two pie charts showing the Heat loss by element as a percentage of the total heat loss and the building element areas as a percentage of the total area.    

Page 3: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203        REX ALLEN  JUNE 10, 2009  DESCRIPTION OF SYSTEMS   HEATING – VENTILATION – AIR CONDITIONING  The heating – ventilation – air conditioning (HVAC) system in the buildings utilizes hot and chilled water loops from a central plant located at the south end of the campus.  Local fan coil units in each space are provided with hot and chilled water and regulate the local temperature controlled by a thermostat in the space.  Outside ventilation air is provided from a unit in the attic mechanical space that has a louvered opening to the exterior.  The intake air is tempered prior to delivery to a vertical riser and trunk line on each floor and from there is ducted to each individual fan coil unit.  Smaller duct work delivers the air to diffusers in the spaces. The return air is provided through registers from the room to a collector trunk in the central corridor ceiling.  From there it connects to a return riser back to the attic level ventilation unit.  See attached typical HVAC diagrams and sample ATU schedule for additional information.  Domestic hot water is produced by boilers in the attic mechanical space.   LIGHTING  A variety of lighting fixture types are utilized as appropriate to their function.  General illumination in classrooms is provided by up and down‐light fixtures spaced eight feet apart in each direction.  Corridors have surface mounted fixtures supported directly on a cable tray at approximately eight feet spacing.  These are the two most numerous fixtures utilized in the buildings.  All fixtures were observed to have fluorescent lamps.  A complete listing of fixtures is included in the Luminaire Schedule and locations are indicated on the attached lighting plans.   CONCLUSIONS  The CC1 and CC2 buildings are not heavily insulated.  Due to the nature of the uses within them, a good deal of the heat required to regulate the interior temperature is provided by the occupants, equipment and lighting.  A super insulated shell would contain more of this heat inside the building and contribute to a higher cooling load.  As it is, the building shell dissipates this internally generated heat to the exterior more easily; contributing to a shorter season when cooling is required.  This combined with the relatively mild climate in the Northwest where these buildings are located, creates a fairly cost effective and energy efficient structure.    The mass of the building structure also helps to moderate any exterior temperature swings.  Conventionally reinforced concrete is used for the building structure.  Large columns and beams support concrete floor slabs and thick concrete shear walls provide lateral stability.  These massive elements are completely contained within the thermal envelope and provide a large reservoir of thermal energy that radiates at a fairly constant rate helping to maintain the interior temperature independent of exterior temperature changes.  Large roof overhangs on the west side of the building shade the walls from afternoon sun in summer decreasing the cooling load.  Also, the north‐south axial orientation of the buildings minimizes the amount of southern wall exposure further reducing the cooling load.   

Page 4: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203        REX ALLEN  JUNE 10, 2009   The HVAC system is excellent in concept.  The production of hot and chilled water in the central plant concentrates the heat and cooling in a single location and any efficiency gains from altered operations or new equipment automatically translate to all the campus structures.  The relatively large number of ATU fan coil units in the CC1 and CC2 buildings and the added complexity of maintaining so many units is offset by the ability to effectively zone the many spaces and control them individually.  This allows for individual temperature response in different zones, for example, when the afternoon sun begins to heat the rooms on the west side of the building cooling can be delivered in those zones independent of the rooms on the east.  Efficiency gains could likely be achieved through a rigorous maintenance program.  Dust accumulation on the coils of the ATU units decreases efficient transfer of heat and regular cleaning improves energy efficiency as well as indoor air quality.  Improvements to the filtration system should be explored as well.  Lighting efficiency could likely also be improved by a maintenance program as well.  Dust accumulation on the horizontal tubes of the classroom fixtures decreases lighting efficiency.  A program to inform users and encourage turning off lights when not in use can be an effective way to reduce consumption.  A similar program has been utilized on campus to reduce water usage with great success.  Another area to investigate is the fixture lamps.  Lamp efficiency is continually improving and a comparison of the lamp types might reveal some increases in efficiency.  Rebates or incentives may be available from the local utility to help pay for new lamps.  The baseline building design seems to be fairly efficient and efficiency improvements will likely be limited to the incremental gains discussed above.                       

Page 5: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203        REX ALLEN  JUNE 10, 2009   THERMAL CONDUCTIVITIES  Glazing elements were visually inspected to determine material composition and assembly details.  No manufacturer information was available for the windows or the glass curtain wall so details and inspection data were compared to Kawneer, a major manufacturer of aluminum frame windows, storefront, and curtain wall glazing systems.  Similar systems from their product line were selected as being substantially similar to the products installed and some assumptions were made about air space width between glazing panels, the gas fill in the air space, low‐e coatings etc.  The selections are indicated on the attached Kawneer product data along with the system U‐values.  Construction assemblies were illustrated on the plans but lacked information about the R‐values of most insulating materials.  Assumptions were made for these values based on the cavity depth the insulation is placed in, code requirements in force at the time of construction, industry standards and experience.  The prescriptive energy code values in effect at the time of construction would have mandated R‐19 batts in the wall cavity and R‐30 insulation at the roof.  These values are consistent with the stud sizes depicted on the plans as well as vinyl faced exposed batt insulation in the stairwell roof and attic mechanical spaces. The west wall of the lower level is a retaining wall and is assumed to have a furred metal stud wall with R‐13 insulation.  The exterior temperature of the soil behind the retaining wall is assumed to be a constant 50 degrees Fahrenheit.  None of these items were detailed on the drawings.    These assemblies are detailed on drawings following this report and in the R‐Value tab of the spreadsheet.                        

Page 6: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203        REX ALLEN  JUNE 10, 2009    

TABLE OF CONTENTS     Energy Analysis Report  1         Introduction        Methodology        Description of Systems        HVAC        Lighting   Conclusions  2   Thermal Conductivities  3   CC1 – CC2 Conductive Heat Loss / Gain Analysis  4   Figures 

1. Assembly Thermal Conductivities   2. Window systems data 3. CC1 – CC2 Typical HVAC System 4. CC1 – CC2 Sample ATU Schedule 5. CC1 – CC2 Sample Lighting Plans 6. CC1 – CC2 Luminaire Schedule 

   Acknowledgements: Thanks to Dee Sliney and the Facilities Department at Cascadia for their support of the program and for providing the construction drawings that were vital to the analysis of these buildings.  Also thanks to Keith Cebell, Dan Malloy and Tol McAleese for their contributions of photos, observations and drawings and most of all moral support. 

Page 7: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

CC1 ‐ CC2 CONDUCTIVE HEAT LOSS / GAIN ANALYSIS Wall  Wall  Wall Curtain Room Exterior Delta Heat

Room Room Floor Roof U‐Value Roof 2 U‐Value Type 1 U‐Value Type 2 U‐Value Type 3 U‐Value Window U‐Value Wall U‐Value Temp Temp Temp +Loss/‐Gain

No. Name Area SF Area SF Roof Area SF Roof 2 Area SF Wall 1 Area SF Wall 2 Area SF Wall 3 Area SF Window Area SF Crtn Wall deg F deg F deg F BTUH

CC1 LOWER LEVEL 60Stair South Stair 307.99 0.0946 455 0.10081 0.09461 0.34 298.62 0.48 70 50 20 2912.62

001F Elev. Mach Rm 120 0.0946 112 0.10081 0.09461 0 0.34 70 50 20 11.29

001L Sprinkler Rm 305 196 0.0946 0.09461 0 0.34 70 60 10 18.54

002 Student Lounge 470 274.82 0.0946 0.09461 107.8 0.34 70 60 10 62.65

003 Media Storage 187.5 0.0946 175 0.10081 0.09461 0 0.34 70 50 20 17.64

004 ESL/Faculty  617 226.1 0.0946 0.09461 53.9 0.34 70 60 10 39.72

005 Master Contr. 295 0.0946 399 0.10081 0.09461 0 0.34 70 50 20 40.22

010 Classroom 1274 344.4 0.0946 0.09461 215.6 0.34 70 60 10 105.89

011 Classroom 1290 0.0946 560 0.10081 0.09461 0 0.34 70 60 10 56.45

020 Classroom 952 258.3 0.0946 0.09461 161.7 0.34 70 60 10 79.42

021 Classroom 1048 0.0946 476 0.10081 0.09461 0 0.34 70 50 20 47.98

030 Shipping 990 678.3 0.0946 0.09461 161.7 0.34 70 60 10 119.15

031 Classroom 1122 0.0946 679 0.10081 0.09461 0 0.34 70 50 20 68.45

041 Classroom 1353 0.0946 739.62 0.10081 0.09461 0 0.34 70 60 10 74.56

042 Faculty Office 160 188.72 0.0946 0.09461 53.9 0.34 70 60 10 36.18

044 Faculty Office 160 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

046 Faculty Office 160 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

048 Faculty Office 160 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

050 Faculty Office 160 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

052 Faculty Office 160 274.4 0.0946 0.09461 107.8 0.34 70 60 10 62.61

SUBTOTALS 3859.26

Page 8: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

CC1 ‐ CC2 CONDUCTIVE HEAT LOSS / GAIN ANALYSIS Wall  Wall  Wall Curtain Room Exterior Delta Heat

Room Room Floor Roof U‐Value Roof 2 U‐Value Type 1 U‐Value Type 2 U‐Value Type 3 U‐Value Window U‐Value Wall U‐Value Temp Temp Temp +Loss/‐Gain

No. Name Area SF Area SF Roof Area SF Roof 2 Area SF Wall 1 Area SF Wall 2 Area SF Wall 3 Area SF Window Area SF Crtn Wall deg F deg F deg F BTUH

CC1 FLOOR 1Stair South Stair 307.99 455 0.0946 0.09461 0.34 298.62 0.48 70 50 20 2909.80

102 Classroom 1261 447.02 0.0946 0.09461 215.6 0.34 70 60 10 115.60

103 Enrollment Srvcs 790 419.02 0.0946 0.09461 215.6 0.34 70 60 10 112.95

110 Classroom 944 258.3 0.0946 0.09461 161.7 0.34 70 60 10 79.42

111 Enrollment Srvcs 689 344.4 0.0946 0.09461 215.6 0.34 70 60 10 105.89

111A Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

111B Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

130A Assessment Cntr 230 182 0.0946 0.09461 0 0.34 70 60 10 17.22

130B Meeting Rm 380 435.54 0.0946 0.09461 161.7 0.34 70 60 10 96.18

130C Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

130D Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

130E Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

130F Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

130G Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

140 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

143 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

144 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

145 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

147 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

149 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

150 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

151 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

152 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

153 Office 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

154 Faculty Support 371 435.54 0.0946 0.09461 161.7 0.34 70 60 10 96.18

SUBTOTALS 7045 3985.52 2048.2 3983.25

Page 9: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

CC1 ‐ CC2 CONDUCTIVE HEAT LOSS / GAIN ANALYSIS Wall  Wall  Wall Curtain Room Exterior Delta Heat

Room Room Floor Roof U‐Value Roof 2 U‐Value Type 1 U‐Value Type 2 U‐Value Type 3 U‐Value Window U‐Value Wall U‐Value Temp Temp Temp +Loss/‐Gain

No. Name Area SF Area SF Roof Area SF Roof 2 Area SF Wall 1 Area SF Wall 2 Area SF Wall 3 Area SF Window Area SF Crtn Wall deg F deg F deg F BTUH

CC1 FLOOR 2Stair South Stair 307.99 455 0.0946 0.09461 0.34 298.62 0.48 70 50 20 2909.80

202 IT Offices 588.8 66.5 0.0946 0.09461 161.7 0.34 70 60 10 61.27

202B IT Director 200 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

203 System Admin. 790 179.34 0.0946 0.09461 53.9 0.34 70 60 10 35.29

205 Server Room 640 258.3 0.0946 0.09461 161.7 0.34 70 60 10 79.42

210 Classroom 1360 344.4 0.0946 0.09461 215.6 0.34 70 60 10 105.89

211 Classroom 1360 344.4 0.0946 0.09461 215.6 0.34 70 60 10 105.89

220 Tech Support 680 344.4 0.0946 0.09461 107.8 0.34 70 60 10 69.23

221 IT Staff 420 172.2 0.0946 0.09461 107.8 0.34 70 60 10 52.94

230 Classroom 1360 789.74 0.0946 0.09461 269.5 0.34 70 60 10 166.35

231 Classroom 1360 577.64 0.0946 0.09461 215.6 0.34 70 60 10 127.95

240 Classroom 1054 360.92 0.0946 0.09461 161.7 0.34 70 60 10 89.12

243 System Admin. 140 179.34 0.0946 0.09461 53.9 0.34 70 60 10 35.29

245 System Admin. 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

247 Finance 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

249 Finance 140 86.1 0.0946 0.09461 53.9 0.34 70 60 10 26.47

250 Classroom 1065.22 633.64 0.0946 0.09461 215.6 0.34 70 60 10 133.25

253 Finance Director 140 265.72 0.0946 0.09461 53.9 0.34 70 60 10 43.47

SUBTOTALS 11578 4860.94 2209.9 4121.05

Page 10: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

CC1 ‐ CC2 CONDUCTIVE HEAT LOSS / GAIN ANALYSIS Wall  Wall  Wall Curtain Room Exterior Delta Heat

Room Room Floor Roof U‐Value Roof 2 U‐Value Type 1 U‐Value Type 2 U‐Value Type 3 U‐Value Window U‐Value Wall U‐Value Temp Temp Temp +Loss/‐Gain

No. Name Area SF Area SF Roof Area SF Roof 2 Area SF Wall 1 Area SF Wall 2 Area SF Wall 3 Area SF Window Area SF Crtn Wall deg F deg F deg F BTUH

CC1 FLOOR 3Stair South Stair 307.99 455 0.0946 0.09461 0.34 298.62 0.48 70 50 20 2909.80

302 Life Science Lab 1360 1360 0.03241 447.02 0.0946 0.09461 215.6 0.34 70 60 10 159.68

310 Science ‐ Biology 1020 1020 0.03241 258.3 0.0946 0.09461 161.7 0.34 70 60 10 112.48

311 Office 140 0.0946 179.34 0.09461 53.9 0.34 70 60 10 35.29

313 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

315 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

317 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

319 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

320 Science ‐ Chem 1020 1020 0.03241 258.3 0.0946 0.09461 161.7 0.34 70 60 10 112.48

321 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

325 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

327 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

329 Office 140 0.0946 86.1 0.09461 53.9 0.34 70 60 10 26.47

330 Chemistry Lab 1405.22 1405.2 0.03241 743.12 0.0946 0.09461 269.5 0.34 70 60 10 207.48

331 Science Lab 1452 144.62 0.0946 577.64 0.09461 215.6 0.34 70 60 10 141.64

340 Science Lab 1405.22 447.02 0.0946 0.09461 215.6 0.34 70 60 10 115.60

341 Faculty Lounge 420 0.0946 139.02 0.09461 215.6 0.34 70 60 10 86.46

350 Human Resources 725.22 725.22 0.03241 547.54 0.0946 0.09461 161.7 0.34 70 60 10 130.29

351 Classroom 1405.22 0.0946 524.02 0.09461 215.6 0.34 70 60 10 122.88

SUBTOTALS 11472.9 2845.92 2317.7 4345.84

CC1 Attic / MechanicalStair South Stair 307.99 489.117 0.0946 298.62 0.48 70 50 20 2913.03

R1 Attic / Mechanical 9168.15 10534 0.03241 5257.47 0.09461 0 70 60 10 838.87

3751.89

CC1 Total EnvelopeE W East Wall 7708.96 0.0946 0.09461 4312 0.34 1082.48 0.48 70 60 10 7391.31S W South Wall 3070.25 0.0946 1134 82.615 0.09461 1305.92 0.48 70 60 10 6566.70W W West Wall 4040.98 0.0946 3243.2 1759.24 0.09461 3234 0.34 1082.48 0.48 70 60 10 6844.21NW North Wall 2042.87 0.0946 82.615 0.09461 70 60 10 201.09Attic Attic / Mechanical 10534 0.03241 5257.47 0.09461 70 60 10 838.87Roof Low slope roof 7342.46 0.03176 70 60 10 233.17

22075.34

Page 11: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

CC1 ‐ CC2 CONDUCTIVE HEAT LOSS / GAIN ANALYSIS Wall  Wall  Wall Curtain Room Exterior Delta Heat

Room Room Floor Roof U‐Value Roof 2 U‐Value Type 1 U‐Value Type 2 U‐Value Type 3 U‐Value Window U‐Value Wall U‐Value Temp Temp Temp +Loss/‐Gain

No. Name Area SF Area SF Roof Area SF Roof 2 Area SF Wall 1 Area SF Wall 2 Area SF Wall 3 Area SF Window Area SF Crtn Wall deg F deg F deg F BTUH

CC2 LOWER LEVEL 60Stair North Stair 307.99 455 298.62 0.48 70 50 20 2866.75

Intrsect Kodiak Corner 1122.25 315 623 0.48 70 50 20 5980.80

001M Pump Room 264.9 270.62 0 70 50 20 0.00

001R Electrical 224 378 0 70 50 20 0.00

001Q Comm. Rm. 288 112 0 70 50 20 0.00

060 OLC 2380 912.66 0.0946 431.2 70 60 10 86.34

071 Storage 98 105 0 70 50 20 0.00

073 Media Storage 185 140 0 70 50 20 0.00

080 Writing Center 981.569 671.02 0.0946 215.6 70 60 10 63.48

081 Classroom 1349.84 774.48 0 70 50 20 0.00

SUBTOTALS 8997.38

CC2 FLOOR 1 60Stair North Stair 307.99 434 0.0946 0.34 319.62 0.48 70 60 10 1575.24

Intrsect Intersection ‐ CC1 1122.25 0.34 938 0.48 70 60 10 4502.40

160 Classroom 532 161.7 0.34 70 60 10 54.98

161 Seminar 264.9 247.24 0.34 70 60 10 84.06

170 Classroom 1615 395.5 0.0946 269.5 0.34 70 60 10 129.05

173 Office 140 295.96 0.0946 53.9 0.34 70 60 10 46.33

175 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

177 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

179 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

180 Classroom 991.908 666.26 0.0946 215.6 0.34 70 60 10 136.34

181 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

183 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

185 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

187 Office 140 277.34 0.0946 53.9 0.34 70 60 10 44.56

SUBTOTALS 6731.78

Page 12: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

CC1 ‐ CC2 CONDUCTIVE HEAT LOSS / GAIN ANALYSIS Wall  Wall  Wall Curtain Room Exterior Delta Heat

Room Room Floor Roof U‐Value Roof 2 U‐Value Type 1 U‐Value Type 2 U‐Value Type 3 U‐Value Window U‐Value Wall U‐Value Temp Temp Temp +Loss/‐Gain

No. Name Area SF Area SF Roof Area SF Roof 2 Area SF Wall 1 Area SF Wall 2 Area SF Wall 3 Area SF Window Area SF Crtn Wall deg F deg F deg F BTUH

CC2 FLOOR 2 60Stair North Stair 307.99 434 0.0946 0.34 319.62 0.48 70 60 10 1575.24

Intrsect Intersection ‐ CC1 1122.25 0.34 938 0.48 70 60 10 4502.40

260 Board Room 1064.2 742.2 0.0946 215.6 0.34 70 60 10 143.52

261 President Conf 264.9 0 247.24 0.34 70 60 10 84.06

280A Work Room 277.29 191.24 0.0946 0 0.34 70 60 10 18.09

280B Office 140 284.06 0.0946 107.8 0.34 70 60 10 63.53

280C Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

280D Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

280E Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

280F Office 175 86.1 0.0946 53.9 0.34 70 60 10 26.47

280G Office 175 86.1 0.0946 53.9 0.34 70 60 10 26.47

280H Office 175 86.1 0.0946 53.9 0.34 70 60 10 26.47

281B President Office 291.368 368.06 0.0946 107.8 0.34 70 60 10 71.47

281C Exec Assistant 291.368 172.2 0.0946 107.8 0.34 70 60 10 52.94

281D Exec Director 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

281E Fund Development 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

281F Director of Comm. 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

281G Graphics 140 272.72 0.0946 53.9 0.34 70 60 10 44.13

SUBTOTALS 6793.63

CC2 FLOOR 3 60Stair North Stair 307.99 434 0.094607 0.34 319.62 0.48 70 60 10 1575.24

Intrsect Intersection ‐ CC1 1122.25 0.0946 0.34 938 0.48 70 60 10 4502.40

360 Classroom 2084.2 1162.2 0.0946 377.3 0.34 70 60 10 238.23

361 Seminar 264.9 0 0.0946 247.24 0.34 70 60 10 84.06

373 Office 140 272.72 0.0946 53.9 0.34 70 60 10 44.13

375 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

377 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

379 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

380 Classroom 1405.22 743.12 0.0946 269.5 0.34 70 60 10 161.93

381 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

383 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

385 Office 140 86.1 0.0946 53.9 0.34 70 60 10 26.47

387 Office 140 281.96 0.0946 53.9 0.34 70 60 10 45.00

SUBTOTALS 6809.83

Page 13: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

CC1 ‐ CC2 CONDUCTIVE HEAT LOSS / GAIN ANALYSIS Wall  Wall  Wall Curtain Room Exterior Delta Heat

Room Room Floor Roof U‐Value Roof 2 U‐Value Type 1 U‐Value Type 2 U‐Value Type 3 U‐Value Window U‐Value Wall U‐Value Temp Temp Temp +Loss/‐Gain

No. Name Area SF Area SF Roof Area SF Roof 2 Area SF Wall 1 Area SF Wall 2 Area SF Wall 3 Area SF Window Area SF Crtn Wall deg F deg F deg F BTUH

CC2 Attic / MechanicalStair North Stair 307.99 489.117 0.0946 298.62 0.48 70 50 20 2913.03

R1 Attic / Mechanical 3148.65 3562.4 0.03241 2797.47 0.09461 0 70 60 10 380.14

3293.16

CC2 Total EnvelopeE W East Wall 3592.96 0.0946 2156 0.34 2492 0.48 70 60 10 13034.56S W South Wall 1798.79 0.0946 168 82.615 0.09461 215.6 0.34 1305.92 0.48 70 60 10 6519.71W W West Wall 1796.48 0.0946 1213.2 338.24 0.09461 1617 0.34 1082.48 0.48 70 60 10 5947.64NW North Wall 2084.87 0.0946 168 82.615 0.09461 70 60 10 205.06Attic Attic / Mechanical 3562.4 0.03241 2797.47 0.09461 70 60 10 380.14Roof Low slope roof 2392.32 0.03176 70 60 10 75.97

SUBTOTALS 3562.4 2392.32 9273.09 1549.2 3300.94 3988.6 4880.4 26163.09115.47 75.9707 877.303 156.17 312.293 1356.12 2342.59

CC1 + CC2  TOTAL BUILDING HEAT LOSS / GAIN BTUH 48238.42

HEAT LOSS BY ELEMENT AS PERCENTAGE OF TOTAL ‐ CC2 BUILDING ELEMENTS AS A PERCENTAGE OF TOTAL ‐ CC2

Roof 112.3%

Roof 28.2%

Wall 132%

Wall 25.4%

Wall 311.4%

Window13.7%

CurtainWall16.8%

1

2

3

4

5

6

7

Roof 12.2%

Roof 21.4%

Wall116.7%

Wall 22.9%

Wall 35.9%

Window25.9%

CurtainWall44.7%

1

2

3

4

5

6

7

Page 14: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

R‐VALUE R‐VALUE R‐VALUE

XXBRICK VENEER ‐ XX INTERIOR AIR FILM 0.68 CORRUGATED MTL ‐

XX SIDING

VENTED AIRSPACE XX 10" CONC WALL 0.8 VENTED AIRSPACE

EXT. AIR FILM 0.17 EXT. AIR FILM 0.17

3 1/2" METAL

5/8" EXT. GWB 0.56 STUDS @ 24" OC 5/8" EXT. GWB 0.56

SHEATHING SHEATHING

XX R‐13 BATT INSUL 7.2

R‐19 BATT INSUL. 8.6 XX R‐19 BATT INSUL. 8.6

XX 5/8" GWB 0.56

6" MTL STUDS @ 6" MTL STUDS @

24" ON CNTR INTERIOR AIR FILM 0.68 24" ON CNTR

XX

5/8" GWB 0.56 XX SOIL 5/8" GWB 0.56

XX

INTERIOR AIR FILM 0.68 XX INTERIOR AIR FILM 0.68

10.57 9.92 10.57

U‐VALUE = 1/R 0.0946 U‐VALUE = 1/R 0.1008 U‐VALUE = 1/R 0.0946

WALL TYPE 1 WALL TYPE 2 WALL TYPE 3* REFER TO NOTES SHEET FOR * REFER TO NOTES SHEET FOR * REFER TO NOTES SHEET FOR

  MTL STUD R‐VALUE REDUCTION   MTL STUD R‐VALUE REDUCTION   MTL STUD R‐VALUE REDUCTION

R‐VALUE

R‐VALUE

EXT. AIR FILM 0.17

METAL ROOFING

EPDM ROOFING

METAL DECKING

RIGID INSULATION 30

EXT. AIR FILM 0.17

8" CONCRETE SLAB 0.64

BATT INSULATION 30

INT. AIR FILM 0.68

INTERIOR AIR FILM 0.68

31.49

30.85

ROOF TYPE 1 ROOF TYPE 2 U‐VALUE = 1/R 0.03175611

U‐VALUE = 1/R 0.032415

Page 15: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

14.5'

112.375 SF

7'‐9" 53.9  SF 93"

83 1/2"

6' ‐ 11 1/2"

WINDOW ELEVATION

ASHRAE Correction Factor for Metal Stud Framing

To use the correction factors from the table, simply multiply them byTo use the correction factors from the table, simply multiply them by 

the insulation value in the cavity. 

That number is then added to the insulating values of the other wall components.

This article appeared in Energy Source Builder #36 December 1994

©Copyright 1994 Iris Communications, Inc.

Page 16: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 17: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 18: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

516 ISOPORT WINDOWTHERMAL TRANSMITTANCE

®

Law

s an

d bu

ildin

g an

d sa

fety

cod

es g

over

ning

the

desi

gn a

nd u

se o

f gla

zed

entra

nce,

win

dow

, and

cur

tain

wal

l pro

duct

s va

ry w

idel

y. K

awne

er d

oes

not c

ontro

lth

e se

lect

ion

of p

rodu

ct c

onfig

urat

ions

, ope

ratin

g ha

rdw

are,

or g

lazi

ng m

ater

ials

,an

d as

sum

es n

o re

spon

sibi

lity

ther

efor

.

Kaw

neer

rese

rves

the

right

to c

hang

e co

nfig

urat

ion

with

out p

rior n

otic

e w

hen

deem

edne

cess

ary

for p

rodu

ct im

prov

emen

t.

© K

awne

er C

ompa

ny, I

nc.,

2007

E.C. 97902-06

JULY, 20076

kawneer.com

/1 2"

/1 2"/1 2"

/1 2"

/1 2"

/1 2"

3CB

4

w

2

1

60

2W

IND

OW

U

IN

W /

m

°C

42

4020

0.80

A

0.602

ED

F

0.20

0

wW

IND

OW

U

IN

BTU

/ hr

ft

°

F

0.40

AREA IN SQUARE FEET

AREA IN SQUARE METRES

®

1

2

2

1

1=

=A

=

=

C

D

B

SEALED UNIT GLAZING TYPE

6mm clear / argon / 6mm low-e / Helima thermally broken spacer

6mm clear / argon / 6mm low-e / metal spacer

6mm clear / air / 6mm low-e / metal spacer

6mm clear / air / 6mm clear / metal spacer

F = 6mm clear / argon / 6mm low-e / Edgetech Super Spacer

E = 6mm clear / argon / 6mm low-e / Helima thermally broken spacer

wAfAeAcAfUeUcUwU

wffeeccU = (U A + U A + U A )/Aw

For fixed window configurations as shown with height (h) equal to width (w).

PERFORMANCE CAPABILITIES.

The window thermal transmittance values (U - values) shown in the chart below are based on CSA - A440.2 "Energy PerformanceEvaluation of Windows and Sliding Glass Doors". U - values of the centre of glass, edge of glass and frame areas were computed usingthe VISION and FRAME thermal simulation programs. Overall window U - values were calculated using the following relationship:

where

= U-value of complete window product

= calculated centre of glass U-value

= calculated edge of glass U-value

= calculated frame U-value

= centre of glass area

= edge of glass area

= frame area

= total window area

OVERALL WINDOW U-VALUE (U )w

h

For some regions and projects there may be minimum energy efficiency requirements for the building envelope, and its components,including windows. The shading coefficient (SC) and the thermal transmittance (U - value) of the window is then required to determinewhether the building design complies with the specified energy requirements. Shading coefficient depends on the glass selected andshould be obtained from the glass supplier. The U - value of the window varies with the type of glass and sealed unit edge construction,the window frame, and the relative areas of these components.

1 - low-e coating emittance = 0.102 - low-e coating emittance = 0.03

NOTES: THE ABOVE SEALED UNIT GLAZING OPTIONS ARE PRESENTED FOR THE PURPOSES OF ILLUSTRATING THERMAL

FOR WINDOWS WITH HEIGHT NOT EQUAL TO WIDTH, WHEN ADDING INTERMEDIATE VERTICALS OR HORIZONTALS,OR DIFFERENT GLASS INFILL, THE OVERALL WINDOW U - VALUE MAY VARY.

THE SPECIFIER SHOULD SELECT GLASS TO MEET THE PERFORMANCE REQUIREMENTS OF THE PROJECT.

w

Shearwater
Line
Shearwater
Text Box
53.9 SF
Shearwater
Rectangle
Shearwater
Text Box
.34
Page 19: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

AA®900 ISOWEB® Window

Contemporary StylingDesigned for TopThermal Performance

Peninsula Medical School, Plymouth, United KingdomArchitect: Nightingale Associates, Oxford, United KingdomGlazing Contractor: Dudley's Architectural Aluminum, Cardiff, United Kingdom

Kawneer’s AA®900 ISOWEB® Window is styling redesigned andcomfort redefined. With the AA®900, you no longer have to choosebetween style and performance. Now there is a product that offersimproved thermal performance, advanced hardware, cleansightlines, plus a variety of design options. Staying comfortable hasnever had more appeal.

PerformanceAs energy prices rise, building owners and architects continue to ask

for increased energy efficiency in buildings, especially in climates

subject to temperature extremes. AA®900 Window features the

ISOWEB® polyamide thermal break that allows increased thermal

separation, a detail that assures this window meets all applicable

North American standards for thermal performance.

Page 20: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College

The unique corner joinery on the AA®900 has distinctive corner keys

that deliver both a stronger corner joint and improved seals that

better resist air and water infiltration. Locking points on the AA®900

are adjustable to improve the window weather seal and concealed to

eliminate the unsightly need for multiple exposed cam handles to

lock larger windows. Single handle multi-point locking hardware

provides adjustability unavailable with standard cam handles.

AA®900 ISOWEB® Window accommodates typical 1 inch (25.4)

insulating glass, up to 1-5/16 inch (33.3) hurricane impact resistant

glass and up to 2 inch (50.8) triple glazing for increased thermal

performance. The 2-5/8 inch (66.7) system depth means increased

structural performance and AA®900 ISOWEB® Window has been

tested to meet or exceed performance standards AAMA/WMDA/CSA

101/I.S.2/A440-00 as well as hurricane impact and cycle testing.

Class & Grades

U.S. Standards Canadian Standards

Fixed FW-HC90 / FW-AW90 A3, B7, C5

Project-In AP-HC90 / AP-AW90 A3, B7, C5

Project-Out AP-C90 / AP-AW90 A3, B7, C5

Inswing Casement C-HC90 / C-AW90 A3, B7, C5

AestheticsIn developing the AA®900

ISOWEB® Window, Kawneer

reached beyond traditional

boundaries and joined forces with

engineers and designers in

Europe. The result is proven high

performance in a thermal window

system that accommodates both

aesthetics and versatility. Multiple

window configuration options are

possible in addition to the typical

fixed, projected and casement

configurations. This provides the

designer with virtually limitless

ventilation solutions on a wide

range of building types, making

the product ideal for health care

and educational facilities, office

buildings, and condominiums –

anywhere comfort is paramount.

The thermal break allows a two-

color finish option not possible

with traditional thermal barriers. The 45° mitered corners on frames

and vents, and extruded accent features give a pleasing “picture

frame” appearance with consistent sightlines. Other options include

insect screens and single handle adjustable multi-point locking

hardware in multiple finishes.

Kawneer’s AA®900 ISOWEB® Window delivers the styling and thermal

efficiency today’s buildings demand, especially in a time of ever-rising

energy prices and increased environmental awareness.

For the Finishing TouchPermanodic® Anodized finishes are available in Class I and Class II in

seven different color choices.

Painted finishes, including fluoropolymer, that meet AAMA 2605 are

offered in many standard choices and an unlimited number of specially-

designed colors.

Solvent-free powder coatings add the green element with high

performance, durability and scratch resistance that meet the

standards of AAMA 2604.

Peninsula Medical School,Plymouth, United KingdomArchitect: Nightingale Associates,Oxford, United KingdomGlazing Contractor: Dudley'sArchitectural Aluminum,Cardiff, United Kingdom

Note: Numbers in parentheses ( ) are millimeters unless otherwise noted.

© Kawneer Company, Inc. 2009 LITHO IN U.S.A. Form No. 07-2044.12.08

Printed using soy based inks.

Kawneer Company, Inc.Technology Park / Atlanta555 Guthridge CourtNorcross, GA 30092

kawneer.comkawneergreen.com770 . 449 . 5555

Page 21: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 22: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 23: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Callout
SUPPLY RISER FOR VENTILATION AIR (TO ATTIC MECH)
Shearwater
Rectangle
Shearwater
Callout
RETURN AIR RISER
Shearwater
Callout
RETURN AIR RISER
Shearwater
Callout
SUPPLY RISER FOR VENTILATION AIR (TO ATTIC MECH)
Shearwater
Callout
AIR HANDLERS SHOWN OUTLINED IN RED
Shearwater
Text Box
TYPICAL HVAC SYSTEM - CC1
Page 24: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Callout
AIR HANDLERS SHOWN OUTLINED IN RED
Shearwater
Callout
SUPPLY RISER FOR VENTILATION AIR (TO ATTIC MECH)
Shearwater
Callout
RETURN AIR RISER (TO ATTIC MECH)
Shearwater
Rectangle
Shearwater
Rectangle
Shearwater
Text Box
TYPICAL HVAC SYSTEM - CC2
Page 25: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 26: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 27: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 28: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Page 29: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Page 30: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Shearwater
Rectangle
Page 31: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Shearwater
Rectangle
Page 32: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Page 33: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Page 34: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Shearwater
Rectangle
Page 35: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Shearwater
Rectangle
Page 36: ETSP 203 FINAL PROJ - shearwaterserv.com · ENERGY ANALYSIS CASCADIA COMMUNITY COLLEGE BUILDINGS CC1 – CC2 ETSP 203 REX ALLEN JUNE 10, 2009 Cascadia Community College
Shearwater
Rectangle
Shearwater
Rectangle