158
EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003

EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONSIN SOILS OF AN URBAN STORMWATER RETENTION BASIN

By

MARK S. LANDER

A THESIS PRESENTED TO THE GRADUATE SCHOOLOF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OFMASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2003

Page 2: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Copyright 2003

by

Mark S. Lander

Page 3: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

This project is dedicated to my parents Donald W. Lander, and Betty M. Lander. Yoursupport has given me the ability to finish what I have started.

Page 4: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

iv

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my wife, Delia, daughter

Caitlin, and son Kyle. This project was made possible with their love, support, and most

of all patience.

A special thank you goes to Larry “Rex” Ellis. His assistance on this project goes

beyond what any normal individual would have contributed. I thank him for being a

great friend.

I would also like to thank my graduate committee: Dr. Ann Wilke, Dr. Randy

Brown, Dr. Richard Schneider, and especially Dr. Mary Collins, committee chair. Their

patience, understanding and insight have greatly influenced the outcome of this work. As

I have now found out, it is not easy raising a family, working 40 hours a week, and

conducting research.

For technical assistance I would like to thank Larry Schwandes, and Tom Lounga,

for their help with laboratory procedures; Tom Seal, from the Department of

Environmental Protection, for valuable documents; Andy Reich and Dr. Stephen Roberts

for their time concerning toxicological interpretations; and my employer, the Alachua

County Health Department, for allowing me the time to complete this degree.

Page 5: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ................................................................................................. iv

LIST OF TABLES........................................................................................................... viii

LIST OF FIGURES ........................................................................................................... ix

INTRODUCTION ...............................................................................................................1

Urban Stormwater Runoff............................................................................................... 1Florida’s Stormwater Management Program.................................................................. 2Stormwater Management Systems.................................................................................. 4Deficiencies in Stormwater Regulation .......................................................................... 4Research Site................................................................................................................... 5Overall Research Objectives........................................................................................... 7

LITERATURE REVIEW ....................................................................................................8

Characteristics of Urban Stormwater Runoff ................................................................. 8Methods of Stormwater Management Control ............................................................... 9Evolution of the Florida Urban Non-Point Source (NPS) Management Program........ 12Regulation of Stormwater in Alachua County.............................................................. 15

Local Governmental Regulations ......................................................................... 15Water Management Districts ................................................................................ 16

Pre-Stormwater Retention Basin Soil Quality .............................................................. 20Permitting of the Retention Basin at the NATL ........................................................... 24Review of Past Stormwater Management Studies In Florida ....................................... 25Criteria Used in Metal Contamination Analysis........................................................... 27

Chapter 62.777 F.A.C. – Contaminant Cleanup Target Levels ................................ 27Soil Quality Assessment Guidelines (SQAGs)......................................................... 29Baseline Concentrations for Trace Metals in Florida Soils ...................................... 30

Metals............................................................................................................................ 31Cadmium (Cd) .......................................................................................................... 32Chromium (Cr).......................................................................................................... 33Copper (Cu) .............................................................................................................. 34Lead (Pb)................................................................................................................... 35Nickel (Ni) ................................................................................................................ 36Zinc (Zn) ................................................................................................................... 37

Page 6: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

vi

Metal Attenuation in Stormwater retention Basin Sediments....................................... 38

OBJECTIVES....................................................................................................................41

Objective 1 – Evaluation of Current Soil Conditions for Future Studies ..................... 42Objective 2 – Comparison of Current Metal Concentrations in Basin Soils to Soil Target Cleanup Levels ................................................................................................42Objective 3 – Comparison of Current Metal Concentrations in Basin Soils to SoilQuality Assessment Guidelines .................................................................................... 42

MATERIALS AND METHODS.......................................................................................44

Site Description............................................................................................................. 44Sampling Locations ...................................................................................................... 51Field Procedures ........................................................................................................... 57Laboratory Procedures .................................................................................................. 57

Metal Analysis .......................................................................................................... 58Organic Carbon Content ........................................................................................... 58Organic Matter Content ............................................................................................ 59Particle-Size Distribution.......................................................................................... 59pH Analysis............................................................................................................... 59Statistical Methods.................................................................................................... 60

Estimating Metal Loading Rates................................................................................... 60

RESULTS ..........................................................................................................................62

Organic Matter Content ................................................................................................ 63Organic Carbon Content ............................................................................................... 65Soil pH .......................................................................................................................... 65Particle-Size Distribution.............................................................................................. 68Metals: Cadmium.......................................................................................................... 69

Cd vs. Baseline Concentration Levels ...................................................................... 69Cd Concentrations Compared With Various Screening Levels................................ 69

Metals: Chromium (Cr)................................................................................................. 74Cr vs. Baseline Concentration Levels....................................................................... 74Cr Concentrations Compared With Various Screening Levels ................................ 74

Metals: Copper (Cu) ..................................................................................................... 79Cu Vs. Baseline Concentration Levels ..................................................................... 79Cu Concentrations Compared With Various Screening Levels................................ 79

Metals: Lead (Pb).......................................................................................................... 84Pb Vs. Baseline Concentration Levels...................................................................... 84Pb Concentrations Compared With Various Screening Levels ................................ 84

Metals: Nickel (Ni) ....................................................................................................... 88Ni Vs. Baseline Concentration Levels ...................................................................... 88

Page 7: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

vii

Ni Concentrations Compared With Various Screening Levels ................................ 88Metals: Zinc (Zn) .......................................................................................................... 92

Zn Vs. Baseline Concentration Levels...................................................................... 92Zn Concentrations Compared With Various Screening Levels................................ 92

Linear Regression Analysis .......................................................................................... 96

DISCUSSION....................................................................................................................97

Simple Linear Regression ........................................................................................... 104Metal Loading Rates ................................................................................................... 106

RECOMMENDATIONS.................................................................................................113

APPENDIXES

A ACRONYM LIST OF AGENCIES AND PROGRAM AREAS .............................. 116

B ADDITIONAL FIGURES..........................................................................................118

C ANALYTICAL RESULTS ........................................................................................124

D REGRESSION ANALYSIS .......................................................................................136

REFERENCES ................................................................................................................141

BIOGRAPHICAL SKETCH ...........................................................................................145

Page 8: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

viii

LIST OF TABLES

Table Page

1. Soil clean-up target levels (SCTLs) for contaminated soils .............................................28

2 Soil quality assessment guidelines for heavy metals in study. ..........................................30

3. Baseline concentration for Florida Surface Soils..............................................................31

4. Sample site status for each cell evaluated.........................................................................56

5. Sediment analysis and methods used in study ..................................................................58

6. Metal concentrations in stormwater runoff.......................................................................111

7. L-THIA generated loading rates compared to estimated total mass in SEEP. .................111

A-1. Common acronyms used in this text.............................................................................117

C-1. Particle-size analysis for cell 1 .....................................................................................125

C-2. Particle-size analysis for cell 2 .....................................................................................126

C-3. Particle-size analysis for cell 3 and control site............................................................126

C-4. Laboratory analysis for percent organic carbon (%OC), percent organic matter(%OM), and pH. ...........................................................................................................127

C-5. Metal Concentrations ....................................................................................................129

C-6. Metal concentrations compared to regulatory guidelines. ............................................130

C-7. Regression analysis on all sites, n = 38. .......................................................................132

C-8. Regression analysis on all sites 0 – 5 cm, n = 19..........................................................133

C-9. Regression analysis on all samples, 5 – 10 cm, n = 19.................................................134

C-10. Regression analysis on cell 1, 0 – 5 cm, n = 12 ..........................................................135

Page 9: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

ix

LIST OF FIGURES

Figure Page

1. Increased stormwater runoff expectations due to the loss of permeable soil surfaces .....2

2. Current agency infrastructure with respect to stormwater regulations. ............................3

3. Photograph of the stormwater management system at the Natural Area Teaching Lab...6

4. The location of the Stormwater Ecological Enhancement Project (SEEP) ......................17

5. Photograph of four-board fence bordering the eastern and northern region of thestormwater retention basin at the Natural Area Teaching Lab. .......................................20

6. Diagram of stormwater basin............................................................................................21

7. Location of Retention Basin at Natural Area Teaching Lab.............................................44

8. Layout of Natural Area Teaching Lab ..............................................................................45

9. Photograph of stormwater runoff collection area covered with debris.............................46

10. Natural areas and parking surfaces draining to the retention basin.. ..............................47

11. Original design of stormwater retention basin before enhancement project began........49

12. Diagram of the retention basin post enhancement that occurred in 1998.......................50

13. Breakdown of the sample cells inside the stormwater retention basin. ..........................51

14. Location of sample sites in the stormwater retention basin............................................54

15. Sample site locations for the stormwater management system.. ....................................55

16. Percent organic matter in soils within the stormwater retention basin. ..........................64

17. Soil pH at locations within the stormwater retention basin. ...........................................67

18. Cadmium concentrations in the stormwater basin soils..................................................71

Page 10: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

x

19. Location of sites where cadmium concentrations were detected above thresholdeffects levels (TELs). .....................................................................................................72

20. Comparison of cadmium concentrations to screening criteria throughout the entirebasin................................................................................................................................73

21. Chromium concentrations in the stormwater retention basin soils. ................................76

22. Location of sites where chromium was detected above contaminant screening levels.. 77

23. Comparison of chromium concentrations to screening criteria throughout the entirebasin................................................................................................................................78

24. Copper concentrations in the stormwater retention basin soils. .....................................81

25. Location of sites where copper was detected above contaminant screening levels........82

26. Comparison of copper concentrations to screening criteria throughout the entirebasin................................................................................................................................83

27. Lead concentrations in the stormwater retention basin soils. .........................................85

28. Location of sites where lead concentrations were detected above threshold effectslevels (TEL’s).................................................................................................................86

29. Comparison of lead concentrations to screening criteria throughout the entire basin. ...87

30. Nickel concentrations in the stormwater retention basin soils........................................89

31. Location of sites where nickel concentrations were detected above threshold effectslevels (TEL’s).................................................................................................................90

32. Comparison of nickel concentrations to screening criteria throughout the entirebasin................................................................................................................................91

33. Zinc concentrations in the stormwater retention basin soil. ...........................................93

34. Location of sites where zinc was detected above contaminant screening levels. ............94

35. Comparison of zinc concentrations to screening criteria throughout the entire basin....95

36. Diagram of the SEEP with areas of concern and short-circuiting path highlighted.. .....100

37. GIS photograph of the area adjacent to the stormwater retention basin .........................107

38. GIS land use classification designations for the areas surrounding the retentionbasin................................................................................................................................108

39. GIS designated land use classes within the retention basin watershed...........................109

Page 11: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

xi

40. GIS soils layer added to land use classifications. .........................................................110

B-1. 1988 proposed retention basin with soil boring locations. ...........................................119

B-2. Soil boring locations 1 – 4. Borings conducted in 1988 by Bishop Beville for theUniversity of Florida.....................................................................................................120

B-3. Soil boring locations 5 – 8. Borings conducted in 1988 by Bishop Beville for theUniversity of Florida.....................................................................................................121

B-4. Soil boring locations 9 – 12. Borings conducted in 1988 by Bishop Beville for theUniversity of Florida.....................................................................................................122

B-5. Soil boring location 13. Borings conducted in 1988 by Bishop Beville for theUniversity of Florida.....................................................................................................123

D-1. Regression curve for Cr, Ni, Pb, and Zn; all points observed. ………………………137

D-2. Regression curve for Cr, Ni, Pb, and Zn, with outliers removed……………………. 138

D-3. Regression analysis for Pb and Ni in the top 5 cm of soil for every site throughout the entire basin.. ………………………………………………………………………139

D-4. Regression analysis for Pb and Ni in the top 5 cm of soil for sites located in cell 1…140

Page 12: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

xii

Abstract of Thesis Presented to the Graduate Schoolof the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONSIN SOILS OF AN URBAN STORMWATER RETENTION BASIN

By

Mark S. Lander

December 2003

Chairman: Mary E. CollinsMajor Department: Soil and Water Science

Treatment and disposal of urban stormwater runoff have become major concerns

when attempting to protect our surface and groundwater resources. Regulatory practices

of the past were developed as watershed management tools, placing minimal emphasis on

stormwater pollutant loads. Today, though, advanced studies in stormwater collection

have shifted focus from a water quantity control issue to that of water quality. Currently

the Florida Department of Environmental Protection, all five Water Management

Districts, and local governments are working together to develop safe stormwater

management regulations. With basin design being orchestrated for maximum water

quality treatment, the soil becomes an integral part of system construction. However, the

soils efficiency for pollutant removal from surface water may decrease overall soil

quality, in turn promoting an unsuitable environment within the basin for the existing

ecosystem. Degradation of soil quality through pollutant accumulation raises issues on

basin remediation and soils handling and disposal.

Page 13: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

xiii

This study was done to evaluate the condition of soils inside a constructed

wetland detention basin at the Natural Area Teaching Laboratory (NATL) site in

Gainesville, Florida. Sampling was conducted inside the retention basin with the soils

being analyzed for field parameters and heavy metal contaminant concentrations.

Selected contaminant concentrations for Cd, Cr, Cu, Ni, Pb,and Zn were measured and

their distribution within soils of the wetland basin studied.

The results indicated that metal concentrations in the upper 10 cm of the

stormwater basin soil varied for Cd (0.0 mg/kg – 2.5 mg/kg), Cr (12.0 mg/kg – 262

mg/kg), Cu (3.0 mg/kg – 235 mg/kg), Ni (4.0 mg/kg – 31.5 mg/kg), Pb (0.5 mg/kg – 64.5

mg/kg), and Zn (6.5 mg/kg – 720 mg/kg). Several of these sites exceeded soil quality

reference guidelines used for contamination assessments. The majority of the

contamination lay adjacent to stormwater inlet pipes in the constructed wetland. The

proximity and extent of metal concentrations did not suggest their migration outside of

the constructed wetland.

Page 14: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

1

INTRODUCTION

Urban Stormwater Runoff

Urban stormwater runoff has long been considered a major contributing factor of

non-point source pollution to both surface and groundwater resources. The loss of

permeable soil surfaces through urbanization can be expected as Florida’s population is

calculated to reach above 20,000,000 by the year 2020 (Florida Department of

Environmental Protection, 2001). As land becomes covered with impervious barriers

such as concrete and asphalt, infiltrative soil pathways become blocked, generating an

increase in stormwater runoff during rainfall events. Estimations made by the Florida

Department of Environmental Protection (FDEP), indicate that a 10% to 20% increase in

impervious surface area can double the amount of stormwater runoff generated during a

rainfall event (Livingston and McCarron, 1991). Stormwater runoff can reach as high as

55% of the total rainfall event if between 75% and 100% of land surfaces become

covered due to urbanization (Figure 1).

When exposed to impermeable surfaces, stormwater runoff collects materials

deposited between past rainfall events. Runoff from impermeable surfaces has been

shown to contain significant amounts of hazardous contaminants, such as heavy metals,

petroleum hydrocarbons, pesticides and many other types of organic chemicals (Cox et

al., 1998). Previous research has shown variability in contaminant concentrations at the

same site over time (Livingston and Cox, 1995). It is this unpredictability that makes

Page 15: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

2

urban stormwater runoff an environmental threat. Without knowing the extent or even

the kinds of contaminants in urban stormwater runoff it is difficult to assess the

environmental implications that may be occurring. It is this same variability that makes

establishing proper regulatory guidelines for the management of urban stormwater so

important.

Figure 1. Increased stormwater runoff expectations due to the loss of permeable soilsurfaces (Diagram taken from The Florida Department of Environmental Regulationreference manual, Stormwater Management, A Guide for Floridians, Livingston &McCarron, 1991.)

Florida’s Stormwater Management Program

The current state infrastructure for urban stormwater management consists of a

multi-agency coalition between the Florida Department of Environmental Protection

(FDEP), Florida’s five regional Water Management Districts (WMDs), and local

governmental agencies (Figure 2). The FDEP serves as the umbrella agency for urban

stormwater regulation by implementing the state’s Non-Point Source Management

Program (NPSMP) (Cox et al., 1998). Regional regulation of the NPSMP has been

Page 16: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

3

delegated to the WMD’s allowing for more flexibility to address centralized issues

through regional goals & policies. Local government has the responsibility for adopting

comprehensive land use plans in accordance with the state’s land planning agency, the

Florida Department of Community Affairs (DCA). By developing and implementing

stormwater master plans addressing current and future growth expectations local

governments have the ability to establish controls for monitoring the operation and

maintenance of stormwater collection systems. In addition to their regulatory capacities,

local governments have been given the authority to establish stormwater utilities fees

creating funding sources for local stormwater programs, thus making cities less

dependent upon state funding for program implementation.

Figure 2. Current agency infrastructure with respect to stormwater regulations.

The Florida Department of Environmental Protection(Non-Point Source Management Program)

Florida’s Five Regional Water Management Districts(Regional Goals Addressed Through Watershed

Management)

Local Governmental Agencies(Regulation Through Local Comprehensive Plans)

Page 17: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

4

Stormwater Management Systems

With the regulatory controls in place, urban stormwater runoff is addressed under

the NPSMP by the use of stormwater management systems. Common types of these

include retention or detention type basins. These systems are designed to collect, hold

and treat stormwater before reaching its final destination, whether it is ground or surface

water recharge. Older stormwater basins were designed for water storage with little

attention being placed on treatment (Athayde et al., 1983). New basin construction and

some older retention basins are being redesigned using Best Management Practices

(BMPs) within the stormwater management system, such as grassed swales and

constructed wetlands to treat stormwater pollutants. Vegetation and soils in combination

with varied water retention periods may play a major role in cleansing pollutants from

stormwater entering these systems.

Deficiencies in Stormwater Regulation

Over the past 30 years the focus of stormwater management has shifted from a

water quantity based approach to that of overall water quality. Current regulations

address criteria that must be met for the storage capacity of stormwater basins and for

water quality in systems that discharge to surface waters. Pollutant toxicity build up in

stormwater basin soils is not addressed, unless the soils are being considered for land

application or landfill disposal. Even these concerns have led to only unofficial disposal

requirements.

It’s the soil’s ability to partition certain pollutants that make it both desirable and

hazardous to the ecosystem of the overall stormwater management basin. Without proper

controls, excessive pollutant loading of soils in stormwater basins may lead to elevated

Page 18: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

5

levels of contamination, that under certain environmental conditions could become

available for exposure to humans, aquatic organisms and other various wildlife species.

Livingston and Cox (1995) studied sediment toxicity buildup in stormwater basins to

establish guidelines for sediment disposal. This study was expanded upon in 1998

looking at comparisons of pollutant buildup over time in basin sediments to the specific

land use category. The recommendations for remedial action as a measure of loading

time were difficult to assess due to sampling inconsistencies between locations. It was

determined that more data would be required before sediment disposal guidelines can be

established (Cox et al., 1998).

The argument opposing soil toxicity concerns is supported by the ideology of

presumptive operation and maintenance. That is, stormwater retention basins are

designed to collect and treat runoff before it is allowed to re-enter a clean water source.

With loading of stormwater basin soils by contaminants assumed, and as long as the

basin is being maintained and operating as originally permitted, the contamination

becomes a function of the permit (Still, 2000). A second reinforcing factor to this

argument is that, in general, stormwater basins are not created for, or intended to be part

of a human/wildlife exposure scenario. As the use of integrated wetlands in stormwater

treatment basins become more prevalent, however, this interaction becomes inevitable.

Research Site

The stormwater retention basin at the Natural Area Teaching Laboratory (NATL),

located on the campus of the University of Florida, is representative of how the second

assumption in regards to stormwater contaminant issues may be flawed. The basin,

which first was designed to collect and treat stormwater for disposal through slow soil

Page 19: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

6

infiltration, initially had minimal emphasis on vegetative or ecological communities.

Through redesign, however, this basin has now become an integrated wetland, creating

an attractive environment for wildlife such as alligators, wading birds, and other avian

species (Figure 3).

In addition, the University of Florida has begun to use this facility as an

interactive research site. Previous literature suggests, that while constructed wetlands

have become effective BMPs for secondary wastewater treatment, their ability to treat

urban stormwater runoff has not been extensively studied (Carleton et al., 2000). This

site offers researchers the ability to assess basin performance and the effectiveness of

various wetland species and basin design with respect to stormwater treatment. By

making this site available for study and creating a desirable environmental habitat

through vegetative cover and water resources, exposures to possibly harmful levels of

toxic contaminants becomes an issue.

Figure 3. Photograph of the stormwater management system at the Natural AreaTeaching Lab, looking south.

Page 20: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

7

Overall Research Objectives

There are currently no regulations requiring monitoring of stormwater retention

basin soils for contaminant build-up. A practical solution, may be to increase public

awareness on stormwater constituents, and their ability to accumulate in these basins. In

addition, the owners of these systems may not realize the potential exposure hazards that

exist. The objectives of this study were developed around the lack of regulatory

requirements for stormwater basin soils, and public awareness.

First, by evaluating soils throughout the basin for metal concentrations, organic

matter content, organic carbon content, pH, and particle size, issues concerning health

implications not currently considered in basin permitting considerations could be

addressed.

A second goal of this study was to generate background data on the stormwater

retention basin for the University of Florida to use with future studies at the research site.

These data could provide valuable information for evaluating wetland efficiency in

treating stormwater, as well as in providing insight to the current condition of the basin.

Soils play an integral role in determining how various land developments may

proceed. On some occasions short-term treatment capabilities of soils are considered for

permitting possibly overlooking long-term effects. Therefore, a third outcome of this

study is to increase awareness on soil contamination in stormwater management systems.

Understanding of such systems can lead to protective measures which can create a safe

working environment for all.

Throughout this document, a number of acronyms are used for various agencies

and technical documents. A table defining all acronyms used in this thesis can be found

in Appendix A.

Page 21: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

8

LITERATURE REVIEW

Characteristics of Urban Stormwater Runoff

Improper management of stormwater runoff from urbanized areas can have a

downstream affect on both ground and surface water resources. Focus of stormwater

regulation in the past had been limited to issues of sediment control or flood relief.

Today this regulatory trend is shifting towards a water quality approach, recognizing the

many different pollutants carried within stormwater (Athayde et al., 1983).

A study released by the Nationwide Urban Runoff Program (NURP) in 1983,

detailed a variety of stormwater pollutants being identified in urban runoff. Two of the

primary contaminants detected were heavy metals and organic priority pollutants, such as

pesticides and volatile organics.

Results from the NURP study indicated that heavy metals were more frequently

detected in stormwater runoff than any other priority pollutant. While all of the 13 metals

on EPA’s priority pollutant list were detected in runoff analyzed for this study, copper,

lead and zinc had the highest detection percentage, found to be present in at least 91% of

the samples. In some instances concentrations were detected above freshwater acute

criteria and federal drinking water standards (Athayde et al. 1983).

Organic pollutants were not detected at the same frequencies as the metals.

Volatiles, pesticides, and phenols made up the majority of organic priority pollutants

detected. Detection values ranged from 22% of the samples to less than 10% for others.

Page 22: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

9

A possible limiting factor for detection may have been that the monitoring scheme used

allotted only a limited number of priority pollutant samples taken (Athayde et al., 1983).

Further contaminants noted during the study were coliform bacteria, nutrients, oxygen

demanding substances, and total suspended solids (TSS). Additional studies have

indicated that copper, zinc, cadmium, lead, and possibly nickel, are major components of

pollution from urban stormwater runoff (Mikkelsen et al., 1997).

There is difficulty in predicting pollutant loads within urban stormwater runoff.

Variability of pollutant concentrations have been seen at a particular site from one storm

event to the next (Athayde et al., 1983). Another factor determining variability may be

seasonal influences. Higher concentrations of pesticides may be detected in stormwater

runoff during warmer months, when land application increases. In contrast, volatile

components may decrease during summer as the temperature controls volatility (Fischer

et al., 2003). With stormwater runoff, the goal is to direct flows from watershed areas to

a defined boundary for isolation and treatment. Retention basins may act as a pollutant

trap for various contaminants through soil adsorption and volatilization, other more

soluble contaminants may pass through these systems to groundwater (Mikkelsen et al.,

1997).

Methods of Stormwater Management Control

As our knowledge of identified pollutants carried within urban stormwater runoff

increases, and we determine the threats that they may pose to natural resources, questions

on how to control this problem must be addressed. The current response is to mix

methodologies of the past with the concept of best management practices (BMPs). In

Page 23: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

10

some instances there may not be one solution to a stormwater runoff problem, but instead

a variety, or train of applications may exist within a single stormwater system.

Best Management Practices can be separated into two distinct categories; non-

structural, and structural. Non-structural BMPs rely heavily upon public education and

regulatory controls for effectiveness. Making consumers aware of potential impacts from

everyday household chemical usage, may lead to less overuse or abuse. Additionally,

regulatory constraints along with proper planning can control materials and in turn

develop acceptable guidelines for application (Lawrence et al., 1996).

Structural controls are methods used in stormwater systems to reduce the impacts

of erosion, flooding, and the magnitude of pollutant loading to waters. Methods of

structural controls are developed around the collection and containment of stormwater to

allow for settling and filtration, as well as chemical and biological treatment. The

particular methods used in structural controls should be designed around site specific

characteristics.

In Florida, particularly in the southern part, high wet season water tables create a

need to protect groundwater supplies from contamination by polluted stormwater runoff.

In these areas, the most common type of stormwater management systems are retention

or detention type basins (Rushton & Dye, 1993). Retention basins are designed to collect

and retain stormwater runoff on site. The processes of treatment are infiltration through

the soil and loss through evaporation. Detention basins are similar to retention, in the

aspect of stormwater collection, but in fact, their primary objective is to act as temporary

storage of stormwater before releasing it to a downstream water body. Extended

stormwater residence times between 24 and 48 have been shown to be effective in

Page 24: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

11

allowing for sedimentation of suspended particles and microbiological treatment of

stormwater contaminants. Both retention and detention basins have been shown to

remove metals from stormwater with an efficiency between 60 and 80% (Lawrence et al.,

1996).

In some instances more than one BMP is used in a single stormwater treatment

system. Examples of other methods include percolation trenches, grassed swales,

pervious pavement, vegetative waterways, and street sweeping. Many of these methods

rely heavily upon either quick infiltration or vegetative species to reduce pollutant loads.

One emerging BMP in stormwater treatment is the usage of wetlands in combination with

retention or detention systems.

Studies have indicated the ability of wetlands to act as a filter or sink for

stormwater pollution either through sedimentation or soil adsorption, while providing

flood protection. The dominant process in pollutant removal from stormwater may be

sedimentation, however, indications are that vegetation and sediment/organic matter

relationships can be important in providing sites for metal precipitation (Walker and

Hurl, 2002). Goulet and Pick (2001), studied the effects of cattails on metal

concentrations and partitioning in surficial sediments of a wetland basin. Their study

indicated that the presence of cattails did not appear to have an affect on metal

concentration or partitioning of metals within the stormwater sediments. It did show that

areas where cattails were present tended to have higher organic content within the

sediments than zones where emergent vegetation did not exist.

Cheng et al. (2002) evaluated the metal uptake in the tropical-subtropical swamp

species C. alternifolius and V. exaltata. Contaminated stormwater passing through a

Page 25: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

12

wetland planted with the species experienced heavy metal removal rates at approximately

100% from inflow effluent metal concentration to water exiting the system. A

comparison was made between metal accumulation in the soils and plants. C. alternifolius

proved to be an efficient vegetative species for removing heavy metals. In addition to its

ability to uptake pollutants, many plants store these contaminants in underground organs,

but C. alternifolius stores them in lateral roots forming just below the soil-water interface.

This makes it necessary to remove only a few cm of contaminated soil when attempting

site remediation (Cheng et al., 2002). Further studies using both floating and emergent

vegetation have shown similar results of heavy metal removal, reducing their

concentrations to an average of 85% (Kao et al., 2001). With removal of contaminants

being a primary focus on environmental protection, we might expect to see more systems

relying on vegetative wetlands as a BMP style.

Evolution of the Florida Urban Non-Point Source (NPS) Management Program

In Florida, increasing concerns of surface and ground water degradation through

contact with contaminated urban stormwater has led to changes in the methodology for

stormwater disposal. In the past, urban stormwater runoff was addressed as a water

quantity problem, controlled by collection and storage methods. However, by the mid-

1970s evidence was present indicating that over half the pollutant load entering Florida

waters came from non-point source runoff (Rushton et al., 1993). To combat the

concerns of pollutant loading to water resources from urban stormwater runoff, Florida

developed a comprehensive watershed management program involving federal, state,

regional, and local governments.

Page 26: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

13

Regulation of urban stormwater runoff is vital in preserving Florida’s

environmental resources. Up until 1960, water quality effects from stormwater pollution

received little attention (Athayde et al., 1983). From 1960 until the early 1970s, studies

began to address pollutant identification in stormwater, but little significance was given

to developing specific discharge requirements. In 1972, the Federal Clean Water Act was

amended to prohibit the discharge of any pollutant to navigable waters unless authorized

by a National Pollutant Discharge Elimination System (NPDES) permit. Non-point

source pollution was now being recognized as a major contributing factor to water quality

problems. With the promulgation of EPA’s first stormwater regulations in 1973, urban

runoff was exempted unless coming from an industrial or commercial process containing

known contamination. In addition, regulation of the smaller urban stormwater discharges

was left up to state and local governments.

The lack of direction in stormwater management in the mid-1970s led to initiation

of the Nationwide Urban Runoff Program (NURP). The goals of the NURP were to

provide all levels of government with management options for handling polluted

stormwater discharges. It was these national investigations along with various Florida

studies, which laid the foundation for Florida’s Urban Stormwater NPS program.

In 1979, Florida’s first stormwater rule, Chapter 17-4.248, F.A.C., was

implemented by the Department of Environmental Regulation (DER). Under this

Chapter, the issuance of stormwater permits was dependent upon the “significance” of

discharge. Variability in the determination of “significant” by regulators made this an

impractical approach. The state’s Environmental Regulation Commission adopted a

revised stormwater rule, Chapter 17-25, F.A.C., in 1982. Past concerns of

Page 27: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

14

inconsistencies in permitting were addressed by requirements for permits on all new

stormwater discharges and for modifications to existing discharges where pollutant loads

increased (Florida Department of Environmental Protection, 1993). With the adoption of

the revised chapter, Florida became the first state in the country to require the use of

BMPs as a practical method of stormwater treatment. In effect, performance based

standards established in Chapter 62-40, F.A.C., were set to control quantity and quality of

stormwater discharges, with emphasis placed on water quality exiting the system.

From 1984 to 1986 the focus of regulation shifted from state to regional. The

Southwest Florida Water Management District (SWFWMD), St. Johns River Water

Management District (SJRWMD), and Suwannee River Water Management District

(SRWMD) adopted regulations in line with DER stormwater rules, allowing DER to

delegate permitting authority to each WMD. Thus, stormwater rules were put in place to

address watershed management needs on a regional basis instead of the state as a whole.

Building upon the DER – WMD stormwater permitting relationship, the Florida

Legislation modified Chapters 373 and 403, F.S. The overall effect was the combining of

the WMDs Management and Storage of Surface Waters permit with the newly formed

Department of Environmental Protection’s (DEP) Wetland Dredge and Fill permit. The

combination of these two permits created what is now known as an Environmental

Resource Permit (ERP). ERPs allow either agency to evaluate both stormwater quantity

and quality impacts, depending upon the proposed development.

State and regional regulation are not the only controls when determining

stormwater project acceptability. The DCA is the agency responsible for the

implementation of the state’s growth management program. Several statutes establish

Page 28: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

15

goals and directives for growth management throughout Florida. Specifically, Chapter

163, F.S., contains language including the Local Government Comprehensive Planning

Act and Land Development Act of 1985. Both address local government’s

responsibilities in land management, defining the requirements for the preparation of

local comprehensive plans and direction of land development. The direction of the local

government must be in conformance with the overall policies set forth by the state and

regional regulators (Florida Department of Environmental Protection, 2001).

Regulation of Stormwater in Alachua County

Local Governmental Regulations

Stormwater management systems in Alachua County are subject to review at the

local, regional, and state levels. The City of Gainesville and Alachua County each has its

own ordinance regulating stormwater management systems. City Ordinance, Chapter 27,

Article V, Section 27-238 (1998), established the formation of a water management

committee. The responsibility of the committee is to assess water quantity and quality

issues, and to assist in the development and implementation of sound water management

practices. Included issues are stormwater discharge and erosion and sediment controls in

stormwater management systems. Jurisdiction of the committee extends within the City

boundaries as well as adjacent lands, which may affect the City watershed areas. In

addition, Chapter 30, Section 30-270 (1992), addresses applicable standards for erosion

and sedimentation control, design, and maintenance of stormwater management systems.

However, the design phase defaults to existing state and WMD codes, with emphasis

based on storage capacity and discharge quality of stormwater.

Page 29: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

16

Alachua County has taken a similar approach to addressing stormwater issues in

its unincorporated areas. Title 4, Chapter 44 (1996), established a stormwater

management utility (SMU) to oversee permitting outside all unincorporated boundaries.

The SMU, made up of the board of County Commissioners, is responsible for regulating

all stormwater discharges through a review of conceptual plans, proposed system usage,

required maintenance, and continued operation of stormwater management facilities. As

part of the Local Government Comprehensive Planning and Land Development

Regulation Act established under Chapter 163, F.S., Alachua County adopted Title 34,

Chapter 343 in 1992. Under 343, design, construction and operation components of

stormwater management systems are defined. As with the city ordinances, basic

regulation is adopted from state and WMD regulations. Emphasis on flood control and

storage capabilities, along with ground and surface water protection is in large the driving

force behind county regulations.

Additional local governmental regulations regarding stormwater discharges and

water quality have recently been implemented. The Alachua County Environmental

Protection Department (ACEPD) drafted a 2002 ordinance pertaining to water quality

standards and management practices for both the incorporated and unincorporated areas

of Alachua County. The ordinance, which became effective January 1, 2003, establishes

new standards defining allowable discharges to stormwater systems. Erosion and

sediment controls will be increased throughout the county, and powers of enforcement on

non-compliance or illicit activities will be given to the ACEPD.

Water Management Districts

Regional permitting for Alachua County is handled through delegation from the

FDEP to the WMDs. The majority of watershed issues in Alachua County are directed

Page 30: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

17

either through the Suwannee River Water Management District (SRWMD) or the St.

John River Water Management District (SJRWMD). The stormwater basin for this

research is located near the center of Alachua County in the northwestern portion of the

SJRWMD (Figure 4).

Figure 4. The location of the Stormwater Ecological Enhancement Project (SEEP) at theNatural Area Teaching Lab (NATL) in Alachua County.

Permitting requirements for stormwater runoff in the SJRWMD are established in

several regional codes, using ERPs as the mechanisms for regulation. Chapter 40C-4,

Page 31: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

18

Surface Water Management Systems, establishes guidelines for the management and

storage of surface waters located within the District. The structure of these guidelines is

in accordance with FDEP standards set forth in Chapter 62-40, F.A.C., and Chapter 373,

F.S. Under Chapter 40C-4, the SJRWMD has established conditions for stormwater

permitting in addition to defining a management structure for regulatory purposes.

Taking stormwater management a step further, in Chapter 40C-42, Regulation of

Stormwater Management Systems, the District established standards to control discharges

initiated from stormwater runoff. Included within the chapter are requirements for

system design and construction, performance criteria, special exemptions, operation,

monitoring, and maintenance.

As with the local ordinances established for stormwater runoff, WMD and FDEP

regulations address mainly water storage and quality of discharge issues. Requirements

for monitoring pollutant build-up in stormwater sediments are not addressed to any

extent. To better understand the regulatory absence on soil contaminant build-up, phone

interviews were conducted with both SJRWMD & SWRMD staff. Information from the

interviews indicated that permitted stormwater management systems are inspected on a

routine basis. The emphasis of the inspections is on sediment and debris accumulations,

and structural integrity of the basin. Soil contaminant concentrations are not evaluated

unless the permitting agency has reason to suspect the basin is not functioning as it was

originally permitted. The neglect of contaminant evaluation requirements is justified by

the term “presumptive operation and maintenance.” In simple terms, stormwater

retention basins are designed and constructed to collect and treat runoff for pollutant

removal before allowing infiltration to ground and surface water resources. A major

Page 32: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

19

component of the treatment process is the soil’s ability to filter out contaminants at its

infiltrative surface. If a stormwater system is functioning properly, then the removal of

pollutants from the water column and subsequent build-up of contaminants in the soil is

merely a function of the system. A second part of the equation of pollutant soil build-up

in stormwater management systems is the fact that these basins are not designed with the

intent of frequent human and wildlife interactions. The intent of stormwater management

is to localize contaminants by directing stormwater to a centralized location. Access to

these areas is then commonly limited or discouraged through the use of fencing or other

restrictive measures.

This last thought process is not the case with the NATL stormwater retention

system. There are no restricted barriers to limit public access, such as chain link or

stockade fences. The only defining border around the basin is a 4-board fence to the east

and north with several access points (Figure 5). In addition to not limiting access, a

boardwalk has been installed inside the stormwater basin, which allows entry to almost

the entire area (Figure 6). Additionally, basin landscaping has created an environment

that attracts and sustains a variety of wildlife. The research opportunities created by the

stormwater basin make this area a valuable site for the University. A lack of current

stormwater soils data at this location creates a great opportunity of study. It is should be

recognized though, that the absence of requirements for contaminant regulation in

stormwater basins may create a potentially hazardous working environment.

Page 33: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

20

Figure 5. Photograph of four-board fence bordering the eastern and northern region ofthe stormwater retention basin at the Natural Area Teaching Lab.

Pre-Stormwater Retention Basin Soil Quality

Lacking actual laboratory data on the soils in the vicinity of the stormwater

retention basin, soil quality before the construction of the retention basin could only be

estimated. The control samples located outside the retention basin gave insight to surface

horizon conditions. Additionally, logs of soil borings completed during the initial

construction phase on the stormwater basin were located and compared to existing soil

maps of the area, giving a broader view of the subsurface horizons that existed pre-basin

construction (Beville, 1988).

Page 34: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 6. Diagram of stormwater retention basin. A) Boardwalk location in the retention basin as noted by red line. B) Photographof students using the boardwalk to enter the retention basin.

A)

Boardwalk

B)

21

Page 35: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

22

Soil maps in the Soil Survey of Alachua County Florida (Thomas et al., 1985),

indicate that before this area was dedicated entirely to stormwater management the

dominant soil series in the area were Arredondo, and Kendrick. The classifications of

these soils are similar as are their parent materials. Both series are in the Ultisol order,

but the Kendrick series is classified as a loamy, siliceous, semiactive, hyperthermic,

Arenic Paleudult, indicating a shallower argillic horizon present than in the Arredondo,

which is classified as a loamy, siliceous, semiactive, hyperthermic, Grossarenic

Paleudult.

Soil borings, conducted by Dr. Bishop Beville in 1988, indicated the major soil

materials to be fine sands overlying fine sandy loam and sandy clay loam horizons.

These borings were taken at selected areas within the then proposed retention basin being

constructed around an existing natural depression. Additionally, it was noted in several

areas that the “clayey materials” were close to the surface, indicating possible removal of

the topsoil. The sandier soils were determined to be located in the northern end of the

site, in what is now the forebay. Fine-sand textured soil material was measured to depths

of between 76.2cm to as deep as 167.6cm, with the exception of one site at the

northernmost point of the basin (Beville, 1988). The remaining fine sand horizons

became thinner as the existing pond was encroached upon. The presence of water tables

at several borings was probably due to the perching ability of the clay in the subsurface

horizons and the fact that this area, the existing pond, was the natural watershed for the

surrounding lands. These documented water tables are not typically observed in the

Kendrick or Arredondo soils. However, water tables can be present in the Millhopper

soils, which is geographically associated and classified the same as Arredondo. Another

Page 36: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

23

indicator hinting to the clays ability to hold or retain water, was the identification of

redoximorphic features within and above the argillic horizons. Data from the soil boring

logs, matrix color or indicated “mottles, suggested the presence of either a current or wet

season water table within 2 m at every location (Beville, 1988). A complete list of the

soil borings and a map detailing their locations within the proposed basin are in Appendix

B, Figures B-1 through B-5.

Working on the assumption that the soil series at the location of the stormwater

basin were either Kendrick, Arredondo, or Millhopper, estimates on soil quality

parameters can be obtained from Tables 15 and 18 in the Soil Survey of Alachua County,

Florida (Thomas et al.., 1985).

The soil survey gives estimates in the ranges in organic matter content for the

surface horizons of the three soil series in question. Both the Kendrick and Arredondo

soils have an estimated organic matter content of less than 2% in their surface horizons.

The Millhopper soil has a range of 0.5-2% organic matter content in its surface horizon.

The soil survey additionally lists laboratory data from the Environmental

Pedology Lab in the Soil & Water Science Department at the University of Florida. pH

and organic carbon content are shown for different soil series. The pH for surface

horizons in these three soil series ranges from 5.6 in the Kendrick series to 6.0 in the

Arredondo soil. The Millhopper soil has a pH in the surface horizon listed at 5.9. The

subsurface argillic horizons, which are now exposed due to the creation of the stormwater

basin, would have a pH range of 5.2–6.0 in their original pedogenic stages. Organic

carbon content in the surface horizons of these soils ranges from 0.15% in the Arredondo

soil to 0.57% in both the Kendrick and Millhopper soils. With increasing soil depth,

Page 37: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

24

organic carbon content decreases. In the Millhopper soil, the organic carbon content

decreases to approximately 0.03% in the Btg horizon, while the organic matter content of

the Bt horizon in the Kendrick soil is between 0.13–0.15%. The Arredondo soil shows a

range of 0.06–0.09% organic carbon content in the Bt horizons.

It should be noted that these numbers are not absolute for the soils that were

present in the area of the stormwater basin before its construction. However, by using

these as a reference point and comparing them to current conditions, insight on

anthropogenic influence from urbanization can be observed.

Permitting of the Retention Basin at the NATL

The retention basin serving the NATL was first permitted by the SJRWMD in

1988 under the University of Florida Master Drainage Plan as Basin #8. The original

design criterion was based on stormwater collection from a 14.45 ha watershed.

Stormwater runoff from a 100-year storm event based on a 24-hour period was calculated

to be 18,855 m3 for this watershed. Additional runoff from the Entomology/Nematology

Building and from the Florida Department of Transportation (FDOT) Park ‘N’ Ride lot,

serving the University of Florida, was directed to the basin in 1990, bringing the entire

watershed area to approximately 16.19 ha, increasing the total runoff flows to31,075 m3.

A note to the master plan indicated the proposed maintenance of the system to include

monthly inspections, and inspections after each major storm event for debris and erosion.

Additionally, silt removal from the basin bottom in the areas of the outfall locations was

to be completed twice a year. There was, however, no reference to the evaluation of soil

sediments for contaminant build-up. In 1996, SJRWMD permit #40-001-0029AG, was

issued for the re-contouring of the SEEP due to the system being redesigned with the

Page 38: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

25

constructed wetland. Under this permit, conditions of the original application were

maintained with no requirements for sediment analysis. Basin function evaluation on

storage capabilities and structure continued to drive the permitting side of UF Basin #8.

Review of Past Stormwater Management Studies In Florida

Over the past 10 years there have been a number of stormwater studies in Florida

that have led to either direct or indirect regulations being applied to permitting practices.

These studies have included evaluations on BMP styles, treatment capabilities of

differing basin classifications, and land use impacts on stormwater quality. With

emphasis in these studies being placed on water quantity and quality, soil evaluation for

contaminants many times is looked at as a side note. In 1995, however, DEP completed

an intensive literature review and monitoring project of stormwater systems across

Florida. When DEP completed its literature review, it was noted that existing data on

stormwater sediment characterization was sparse and not easily correlated due to

variation in sampling methodologies (Livingston et al., 1995). From the data obtained in

previous studies, and those collected during the course of the 1995 investigation, DEP

evaluated stormwater sediments from over 87 sites, from differing land use

classifications, within Florida. Sediment screening took place for a total of 168 different

pollutants, including pesticides, organic contaminants and trace metals (Cox and

Livingston., 1995).

Metals in the DEP study were evaluated for their concentrations and ability to

leach from soil to solution. Pollutant comparisons were made to several different state

regulations regarding soil contamination and cleanup. The six most common metals

found during this study were chromium (Cr), lead (Pb), zinc (Zn), copper (Cu), cadmium

Page 39: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

26

(Cd), and nickel (Ni). Concentrations of Cr, Pb, and Zn were detected at 100% of the

sites. Cu was next with a 94% detection level, then Cd, followed by Ni, with 72% and

67% concentrations, respectively. It was noted that as a group metals were the most

frequently detected runoff related pollutant identified during this study (Cox et al..,

1998). When compared to Soil Cleanup Target Levels (SCTLs), of the six most

commonly identified metals, only Pb exceeded these parameters at a frequency of 3.5%.

For leachability, Pb exceeded criteria at 80% of the sites, followed by Cr in 9%, and Cd

in 6% of the samples. In terms of the Sediment Quality Assessment Guidelines

(SQAGs), Pb was the most problematic metal, exceeding standards at 39% of the sites.

Pb, Cu, Zn, and Cd were also identified in 22% to 11% of all samples screened. The

majority of contaminants detected above cleanup criteria during this study were

distributed within the first 2.54 cm of soil, except for Pb, which was identified exceeding

cleanup criteria at a depth of 20.32 cm.

Information obtained from the 1995 study and 1998 final report indicated the need

for future studies in soil contamination to develop adequate disposal guidelines.

Environmental protection values, such as those established in the SCTLs, and the

SQAGs, are currently applied indirectly when considering stormwater soil disposal. It

was also noted that past recommendations for soil removal based on accumulation rates

did not address variable loading rates due to land use category. It suggested more data be

accumulated to develop guidelines for proper soil removal periods. While the main intent

of this past research was to evaluate soil contamination for disposal purposes, the

concentrations and frequencies of several contaminants warrant further investigation into

the potential of acute and chronic effects on organisms from stormwater soils.

Page 40: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

27

Criteria Used in Metal Contamination Analysis

Due to the absence of direct regulatory requirements for metal concentration

build-up in stormwater basin soils, evaluation of contaminant levels was accomplished

through applying several state regulations and guidelines that indirectly impact

stormwater maintenance facilities. To evaluate sediment contamination in relation to

human and wildlife concerns, SCTLs referenced in Chapter 62-777, F.A.C. were

observed. In addition, SQAGs developed for Florida’s coastal waters were used to

evaluate metal concentrations in relation to the aquatic environment. Both sets of these

comparative values have been used in other studies similar in nature to the NATL

stormwater basin evaluation. In addition to regulatory standards, baseline concentrations

for trace elements in Florida surface soils established by Chen et al..(1999) were

reviewed.

Chapter 62.777 F.A.C. – Contaminant Cleanup Target Levels

Values obtained in this chapter apply directly to sites governed by the terms of a

brownfield site rehabilitation agreement, pursuant to Chapter 62-785, F.A.C., and to

contaminants of concern defined under Chapter 62-770, F.A.C., Petroleum

Contamination Site Cleanup Criteria, Chapter 62-782, F.A.C., Dry-cleaning Solvent

Cleanup Criteria, in addition to the treatment of soils permitted under Chapter 62-713,

F.A.C., Soil Treatment Facilities (Florida Department of Environmental Protection,

1999). It should be noted that these values are intended for application only to sites

governed under the above referenced chapters. While they do not reference stormwater

soils, they are sometimes applied, however, when stormwater basin soil disposal options

are being considered (Livingston and Cox, 1995).

Page 41: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

28

SCTLs for metals established in Chapter 62.777, F.A.C., have been separated into

two categories (Table 1). Each category defines differing levels of health protection

based on exposure criteria, such as dermal contact, ingestion, and inhalation. In addition,

variables such as body weight, exposure frequency, and exposure duration were all used

when developing the model for acceptable risk-based concentrations of contaminants in

soils.

The first, and more stringent of the two categories are the residential-based

exposure values. The greater level of protection for these comes from their availability of

access to the general public, such as children. The increased protection factor is based on

the fact that these sites are open to the public, and can be frequented by individuals with

no limited access. For this study, these values were applied when considering exposure

of contaminants to both human and wildlife communities in the area.

The second category, defined as commercial/industrial-based exposure values,

offers a lesser degree of protection. However, this is based on the assumption that access

to commercial sites is limited to the public, and exposure times could be regulated for

individuals working in these areas.

Table 1. Soil clean-up target levels (SCTLs) for contaminated soils

ContaminantCadmium 75 1300Chromium 210 420Copper 110 76,000Lead 400 920Nickel 110 28,000Zinc 23,000 560,000

Residential Exposure (mg/kg) Commercial Exposure (mg/kg)

Page 42: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

29

Soil Quality Assessment Guidelines (SQAGs)

SQAGs are biological-effects based guidelines developed for FDEP to be used as

a tool when studying soil–associated contaminants in coastal environments. Data have

been collected by FDEP for over a decade and analyzed to establish these guidelines,

which identify ranges in concentrations of contaminants that have low to high

probabilities of causing adverse biological effects to aquatic organisms (Florida

Department of Environmental Protection, 2000).

An absolute determination of detrimental biological effects cannot be based solely

on the evaluation of SQAGs. These guidelines should be used in conjunction with other

available data, due to several limitations. Specifically, these guidelines represent

pollution potential only. Cause and effect relationships are not inferred when comparing

these guidelines to other chemical data. Another limitation is the issue of bioavailability.

Factors that can control metal sorption such as total organic carbon (TOC) are not

equated when deriving SQAG ranges. A third limitation is that the data used to develop

the guidelines were collected from across the country. How well these guidelines

represent all Florida soils is uncertain. In addition, these values were derived for coastal

water soils, not freshwater. However, with guidelines for freshwater systems currently

under development, the SQAGs for coastal environments have been indirectly applied in

past studies. While the use of SQAGs in contamination studies may have limitations,

their value as contaminant indicators is the first step in determining possible areas of

concern relating to soil quality.

To determine pollution potential from the SQAGs, ranges have been established

which divide each contaminant of interest in to three different categories (Table 2). The

first, and lowest pollution potential range is considered the no effects level. At these

Page 43: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

30

concentrations the contaminants rarely or never are associated with adverse biological

effects to aquatic organisms. The second range is classified as the threshold effects level

(TEL). It is at this minimal concentration that contaminants frequently cause adverse

biological effects. Last of all, we have the range of highest pollution potential, classified

as the probable effects level (PEL). When concentrations of pollutants exceed the

minimum value of this range there are usually or always adverse biological effects on the

aquatic community exposed.

Table 2 Soil quality assessment guidelines for heavy metals in study. Values establishedin the Florida Department of Environmental Protection Soil Quality AssessmentGuidelines for Coastal Sediments

Contaminant No Effects Level Threshole Effect Level Probable Effect Level(mg/kg) (mg/kg) (mg/kg)

Cadmium 0 - 0.675 0.676 - 4.20 > 4.20Chromium 0 - 52.2 52.3 - 159.9 > 159.9Copper 0 - 18.6 18.7 - 107.9 > 107.9Lead 0 - 30.1 30.2 - 111.9 > 111.9Nickel 0 - 15.8 15.9 - 42.7 > 42.7Zinc 0 - 123.9 124 - 270.9 > 270.9

Baseline Concentrations for Trace Metals in Florida Soils

When comparing contaminant levels of trace metals to actual field values, it is

important to distinguish between natural-occurring metal concentrations and those that

may be attributed to anthropogenic sources. Years of contaminant inputs to soil makes

establishing true background concentrations difficult (Chen et al., 1999). Work

conducted by Chen et al. (1999) evaluated the use of baseline concentrations to estimate

natural levels of trace metals in Florida surface soils.

Page 44: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

31

It was determined that the use of baseline concentrations better represented the

variation in trace metal concentrations, than did using the observed ranges. Log

transformations of the values minimized the few high concentrations, which could distort

the overall range (Chen et al., 1999). These baseline concentrations were used for

comparison in this study (Table 3).

Table 3. Baseline concentration for Florida Surface Soils (Chen et al., 1999)Metal Calculated Baseline Concentration (mg/kg)Cd 0 - 0.33 Cr 0.89 - 80.7Cu 0.22 21.0Ni 1.70 - 48.5Pb 0.69 - 42.0Zn 0.89 - 29.6

Metals

Stormwater has been shown to contain a number of different contaminants,

dependent upon the watershed collection area, that may pose health and environmental

threats to exposed communities. Metal concentrations in stormwater have been identified

through studies to be the most commonly detected contaminants at many locations.

Metal concentrations at sites may be a mix of natural occurrence and anthropogenic

inputs. The process of mass loading metals on soils already containing natural trace

metal concentrations could lead to the accumulation of potentially toxic levels of

contamination. In addition, the potential for human, animal, and aquatic organism uptake

and storage of metals internally could create long-term health concerns. To assess

concerns relating to heavy metal exposure, each contaminant should be evaluated on its

potential to affect human and environmental health. The following information on metal

Page 45: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

32

toxicity was obtained through the Agency for Toxic Substances and Disease Registry

(ATSDR) website, located at www.atsdr.cdc.gov (ATSDR, 2001).

Cadmium (Cd)

Cd is an element that can be found naturally in the earth’s crust or used in a

variety of applications, including manufacturing of batteries, paint pigments, metal

coatings, and plastics. Additionally, the burning of fossil fuels can contribute to the

presence of Cd in the environment.

Cd can enter natural systems through deposition from air emissions, as well as

through leaching or washing of contaminated sites. Sediment contamination from Cd

occurs through sorption to organic matter, and through co-precipitation with iron, Al, and

Mn-oxides. It binds strongly to soil particles, not breaking down in the environment, but

rather changing forms.

Exposure to Cd occurs mainly through inhalation of contaminated air, ingestion of

contaminated food sources or through contaminated water supplies. The bio-availability

of Cd in sediments is dependent upon pH, redox potential, water hardness, and the

presence of other complexing agents. Studies have shown that animals exposed to high

doses of Cd experienced lung disease and stomach disorders. Cd ability to remain in the

body for a very long time allows for levels to build up, even if exposure concentrations

are low. Aquatic organisms exposed to Cd have shown various effects, including acute

mortality, reduced growth, and inhibited reproduction. It is unclear whether human

exposure to Cd will result in similar diseases when exposed to equal levels as in animal

studies. Exposure to Cd through dermal contact has no known effect in either humans or

animals.

Page 46: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

33

Recommendations to protect public health have been made by several

governmental agencies. The United States Environmental Protection Agency (USEPA)

has established limits for Cd in drinking water set at 0.005 parts per million (mg/L). The

United States Food and Drug Administration (USFDA) allows up to 15 parts per million

(ppm) in food colorings, while the Occupational Safety and Health Administration limits

workplace air to 100 ug/m3 as Cd fumes, and 200 ug/L as dust particulate (ATSDR,

2001). Additional guidance concentrations have been derived for use with the SQAGs,

and SCTLs. SQAGs have established a TEL of 0.68 mg/kg, and a PEL of 4.2 mg/kg.

The SCTLs for exposure limits are set at 75 mg/kg for residential exposures, and 1300

mg/kg for commercial exposures.

Chromium (Cr)

Similar to Cd, Cr is an element that can be found occurring naturally in the

environment, as Cr(III), or as a byproduct from various industrial processes as Cr(0), or

Cr(VI). Processes involving the use of Cr include steel production, paint and dye

production, leather tanning and wood preservation.

Cr enters the environment through deposition from air emissions and leaching at

contaminated sites, mainly in the Cr(III) and Cr(VI) forms. Once introduced to a natural

system its fate depends upon the form at which it enters. In aquatic systems Cr(VI) tends

to be very soluble, not readily sorbed to particulate matter. However, as anaerobic

conditions prevail, Cr(VI) reduces to Cr(III), a state which can strongly sorb onto organic

particulates.

Exposure to Cr contamination occurs through inhalation, ingestion, or dermal

contact. Inhalation of high levels of Cr(VI) has been shown to cause nasal irritations

such as nosebleeds or ulcers. Ingestion of similar levels can cause stomach, liver or

Page 47: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

34

kidney damage, which may result in death. Unlike Cd, dermal exposure to high levels of

Cr(VI) may result into skin ulcers. Individuals with severe allergies may experience

swelling and redness to exposed areas. Studies have shown Cr(VI) compounds can

increase the risk of lung cancer, and the several health organizations have labeled Cr(VI)

in various forms as a human carcinogen. Additional adverse effects to biological

communities include death and decreased growth, particular by vegetative species. Fish

do not tend to be as sensitive as humans to Cr contamination (ATSDR, 2001),

Federal regulations have been established by the EPA and OSHA to protect public

health from exposure to high levels of Cr. EPA recommends Cr concentrations in water

not to exceed 0.1 mg/L. In addition to drinking water standards, SQAGs and SCTLs

have been derived for contamination and remediation assessments. Under the SQAGs, a

TEL of 52.3 mg/kg and a PEL of 160 mg/kg have been established for aquatic biota

protection. The SCTLs for residential and commercial exposures are 210 mg/kg, and 420

mg/kg, respectively.

Copper (Cu)

Cu is a natural occurring metallic element in crustal rocks and minerals, released

during weathering processes. Anthropogenic sources of Cu include agricultural

fungicides, pesticides, sewage treatment effluent, wood preserving, and fallout from

industrial sources and coal burning.

Cu can enter natural systems through weathering of minerals, release in air

emissions, and through direct exposure as in soil or water treatment devices. Inhalation,

ingestion and dermal contact are the main pathways for Cu exposures to many organisms.

While Cu is considered an essential micronutrient, exposure to elevated levels in the air

can cause irritations to the nose and mouth. Ingestion of high levels of Cu can lead to

Page 48: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

35

kidney and liver damage as well as stomach disorders. Dermal exposure to elevated Cu

levels can result in an allergic reaction or rash in sensitive individuals. There is no

indication that Cu exposures can lead to cancer in either humans or animals. However,

Cu contamination of aquatic systems may be associated with acute and chronic toxicity in

biotic organisms (ASTDR, 2001).

Human health concerns from Cu contamination have led to the establishment of

federal guidelines regulating consumption and workplace exposures. Drinking water

standards have been set at 1.3 mg/L. In addition to EPA and OSHA regulations,

protective levels have been derived under the SQAGs and the SCTLs. The SQAGs have

established a TEL of 18.7 mg/kg, and a PEL of 108 mg/kg. Residential exposure

guidelines established for SCTLs has been set at 110 mg/kg, while commercial exposure

limits are 76,000 mg/kg.

Lead (Pb)

Pb is a metallic element that is found in virtually all parts of our environment.

While it can be naturally occurring, anthropogenic sources contribute heavily to its

presence. These sources include the burning of fossil fuels, mining, and the

manufacturing of batteries, metal products, and ammunition. The use of Pb in many

items such as paints and gasoline has been greatly reduced due to health concerns.

Pb can enter natural systems through deposition with air particulates or by

leaching or washing of contaminated surfaces. Once Pb comes into contact with

sediments, its movement is dependent upon the type of Pb compound and soil

characteristics. Pb(II) tends to be the most stable ionic species, and can be found bound to

Fe and Mn-hydroxides in addition to clay and organic matter. Oxidized sediments tend

Page 49: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

36

to bind closely with Pb, with its release and mobility increasing under reducing

conditions. The majority of exposures to Pb occur through ingestion or inhalation.

In humans, Pb exposures to high levels have been shown to affect the organs of

the body and the central nervous system. Blood disorders and male reproductive

problems may also occur. Aquatic organisms also exhibit toxic affects from Pb. Plants

tend to be less sensitive to exposures than fish or invertebrates. While studies involving

animals indicate the possibility of Pb to be a carcinogen, there is no evidence to suggest

carcinogenic effects in humans.

Federal agencies have set regulations to control Pb exposures through ingestion

and workplace incidences. Drinking water standards for Pb are set at 0.015 mg/L.

Additional recommendations have been made regarding Pb screening programs for

children who live in areas determined to be high risk zones (ATSDR, 2001). The SQAGs

have derived a TEL of 30.2 mg/kg, and a PEL of 112 mg/kg. SCTLs set exposure limits

at 400 mg/kg for residential classifications, and 920 mg/kg for commercial sites.

Nickel (Ni)

Ni is an element found abundantly in the earth’s crust, primarily combined with

oxygen and sulfur. Ore deposits often contain Ni with Fe or Cu. While Ni is used in a

variety of manufacturing and industrial industries, the major anthropogenic sources

include, fossil fuel combustion, batteries, Ni ore mining, smelting and refining activities,

and electroplating (FDEP, 2000).

Anthropogenic sources of Ni may enter environmental systems as small deposits

in air particles, or through the washing and leaching of surfaces containing Ni. As

anthropogenic sources are introduced to sediments they become bound as Fe or Mn-

oxides or they sorb with organic matter. Release of Ni from sediments may decrease

Page 50: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

37

under anaerobic conditions as they form insoluble complexes with sulfides. Human and

animal exposures to Ni can be through inhalation, ingestion or dermal contact.

Ni is considered a required element for maintaining good health, but, exposures to

high levels can cause adverse health effects. The most severe exposures for humans and

animals in terms of health related concerns appear to be through dermal contact and

inhalation. Allergic reactions from contact with Ni, in the form of skin rashes, are the

most common types of health effect seen. Workplace exposure to air particles containing

Ni compounds have been linked to lung as nasal cancers. In terms of adverse effects on

aquatic organisms, increased mortality rates, decreased growth and avoidance reactions

have been observed.

With certain Ni compounds determined to be carcinogenic, federal agencies have

established recommendations regarding ingestion on water containing these compounds

(ATSDR, 2001). In addition to drinking water standards of 0.04 mg/L, occupational

exposure levels have also been established to reduce concerns from inhalation. For the

protection of aquatic organisms the SQAGs have derived a TEL of 15.9 g/L, and a PEL

of 42.8 g/L. SCTLs have been determined to be 110 ug/L for residential considerations,

and 28,000 ug/L at commercial sites.

Zinc (Zn)

Zn is an abundant element, found in air, soil, and water. As a crustal element it is

present commonly as a sulfide, carbonate, or silicate ore. Zn has a number of different

production uses, including dry cell batteries, rust preventatives, and as a mixture with

other metals to form alloys.

Release of Zn into the environment can occur through natural processes.

Anthropogenic inputs from air deposition and leaching also contribute to its presence.

Page 51: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

38

Much of the Zn entering the environment stays bound to soil with Fe and Mn-oxides, clay

minerals and organic matter. Adsorption rates of Zn have been determined to be pH

dependent, showing a decrease in aquatic systems with pHs below 6. Sorption to organic

matter in fine grained sediments is controlled by reducing conditions, which form

insoluble sulfides (FDEP, 2000).

Health concerns over exposure to Zn arise from ingesting contaminated food or

water supplies, or from breathing aerosolized Zn particles near manufacturing plants. Zn

is an essential element to the diet of humans, requiring an appropriate balance to be

effective. Since our bodies require Zn, low inputs to our systems can be just as harmful

as exposures to high levels. Ingestion of high levels of Zn may lead to short-term

stomach and blood disorders and possibly pancreas damage. Inhalation of Zn at high

concentrations may cause lung irritations and body temperature fluctuations on a short-

term basis. Long-term effects for Zn inhalation have not been determined. Affects on

aquatic organisms appear to be minor as they can experience a wide range of sensitivity

to Zn exposure. Zn is currently not listed as a possible carcinogen (ATSDR, 2001).

Federal agencies have established recommendations for human exposures to Zn

contamination through drinking water of 0.005 mg/L, and workplace exposure

guidelines. To protect aquatic organisms, the SQAGs have recommended a TEL of 124

mg/kg, and a PEL of 271 mg/kg. SCTLs have been established at 23,000 mg/kg for

residential sites, and at 560,000mg/kg for commercial cleanup designations.

Metal Attenuation in Stormwater retention Basin Sediments

Stormwater runoff has been shown to contain various contaminants dependent

upon the input source. Metals, being one variety of stormwater contaminant, can

Page 52: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

39

accumulate in stormwater soils depending upon soils characteristics, such as pH,

percentage of organic carbon, percentage of Fe and Mn oxides and existing metal

concentrations. As vegetation within stormwater systems decays, organic matter can

accumulate. Igloria, et al.. (1997), studied the effects of natural organic matter (NOM) as

a source for attenuation of metals in stormwater, and as a facilitator of metal transport

within stormwater basins. Their conclusions were that the addition of NOM did not

enhance metals transport, but in fact, the high affinity of the NOM to the soil in

combination with the metals attraction to the NOM decreased the metals mobility

(Igloria, et al., 1997). Another study evaluated Cu and Cd distribution in forested soils

and determined that organic matter or Fe and Mn-oxides were responsible for

immobilizing Cu, and that Cd attenuation was also dependent upon metal-oxide

relationships (Keller and Vedy, 1994).

Similar results for metal deposition in relation to organic matter were reported by

Walker and Hurl (2002), and Goulet and Pick (2001). Metal distribution has been shown

dependent upon not only its association with organic matter, but with stormwater basin

design, such as depth and planted vegetation. Stormwater basins with shallow water

column depths may allow for a larger distribution pattern due to water turbulence stirring

and moving sediments (Goulet and Pick, 2001). In addition, vegetation can act as a plug,

slowing the velocity of stormwater inflow and reducing the effects from wind on shallow

surfaces in retention basins.

Metal uptake within stormwater retention basin soils may play a large part in the

spatial distribution at which contamination is detected. In vegetative wetlands, Cd, Cu,

and Zn concentrations have been measured the highest in 0 – 5 cm samples, while Pb

Page 53: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

40

concentration was shown to increase to a depth of 55 cm (Cheng et al., 2002). A study

conducted by Kao et al., (2001) compared contaminant removal rates from influent for

both vegetative and unplanted soils surfaces. In a wetland setting both Pb and Zn

concentrations decreased by 95% and 92% respectively, from stormwater inflow to water

quality exiting the system. Although lower, the unplanted treatment basin showed an

effluent contaminant removal rate of 32% for Pb, and 40% for Zn (Kao et al., 2001).

Typically redox potential may play a part in the partitioning of metals with

stormwater basin soils. In soils where the redox potential is greater than 100 mV, most

metals present within pore water will either precipitate as metal-oxides or adsorp to

organic matter. As redox potential decreases to between 100 mV and –100 mV,

reduction of metal-oxide can result in the release of dissolved metal back to solution. If

enough organic matter is present the metals may still adsorb, otherwise they may be

transported with the water column through sedimentation. Below –100 mV, metal-soil

relationships are developed strictly through reactions with monosulfides and organic

matter adsorption (Goulet and Pick, 2001).

Clearly studies have been completed which indicate relationships between soil

characteristics and their roles in metal attenuation. Sediments within the stormwater

retention basin at the NATL are no different that many of these study sites in terms of

organic content, contaminant input sources and other variables. Ignoring the possibility

of metal accumulation to potentially hazardous levels within sediments in the SEEP or

any other stormwater retention basin could be a dangerous oversight.

Page 54: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

41

OBJECTIVES

In the past, urban stormwater retention basins served the purpose of collecting and

treating stormwater runoff before it infiltrated or discharged into a water resource.

Basins were not created nor intended to be used for recreational purposes or to be

considered quality habitats for wildlife or aquatic organisms. Access to these areas may

have been limited through locked gates or minimized by undesirable site conditions, such

as dry retention ponds. The situation is changing with the integration of wetlands into

stormwater basins emerging as a method of enhancing treatment to improve the quality of

discharge.

With the development of the stormwater basin at the NATL focused on increased

opportunities of study for students and faculty at UF, in addition to creating a diverse

habitat for wildlife, exposure to contaminants commonly found in urban stormwater

water runoff could occur through ingestion, inhalation, or dermal contact. Regulatory

considerations focus mainly on environmental protection through water quality

improvement, with little emphasis on soil quality.

The lack of regulatory guidance for stormwater soil contamination played an

important role in the development of the objectives for this study. Both the ability to

provide information that could be used in determining the direction of future stormwater

studies at the basin, and to specifically address contamination concerns related to the

usage of the basin as a research site and as a wildlife habitat, were desired outcomes.

Page 55: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

42

Objective 1 – Evaluation of Current Soil Conditions for Future Studies

One anticipated study for the stormwater basin is to determine the efficiency and

effectiveness of the wetland design in pollutant removal from stormwater. Soils will play

an integral part in this process. No background levels of contamination or other soil

quality parameters exist for soils within the retention basin. By establishing these levels,

future studies can compare parameters similar to those that have been documented

through this research.

Objective 2 – Comparison of Current Metal Concentrations in Basin Soils to Soil TargetCleanup Levels

The University of Florida will continue to use the basin as a research site. With

the availability of contaminant exposure to students working in the area, current metal

concentrations will be compared to established SCTL concentrations. In doing so,

possible problematic areas can be identified and addressed accordingly. Additionally,

these values may be applied to evaluate potential contamination concerns

for wildlife.

Objective 3 – Comparison of Current Metal Concentrations in Basin Soils to Soil QualityAssessment Guidelines

As the basin ages, a diverse aquatic community is expected to thrive within the

wetland zones. The stability of this aquatic community relies upon its surrounding

environment. The SQAG’s establish concentration ranges for contaminants to evaluate

the possible adverse health effects that these ranges may pose upon the aquatic

community. Areas of concern can be delineated and marked for further studies in

bioavailability and accumulation.

Page 56: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

43

As previously stated, the objectives of this research were set to provide the

University of Florida with accurate information on existing soil quality in the NATL

stormwater retention basin. Information obtained through this research can be used in

determining the future direction in which the management and usage of the basin may

proceed.

Page 57: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

44

MATERIALS AND METHODS

Site Description

The study site was the retention basin at the Natural Area Teaching Lab (NATL),

located on the campus of the University of Florida. The NATL is located at the

southwestern corner of the University campus (Figure 7). This location affords

individuals an excellent opportunity to conduct field studies of multiple ecosystems. The

outdoor research facility consists of a total of 18.62 ha. Lying within this property are

three upland communities; hammock, upland pine, and old field succession, as well as

thriving wetland communities surrounding both a small sinkhole and the ecologically

enhanced retention basin (Figure 8).

Figure 7. Location of Retention Basin at Natural Area Teaching Lab

Page 58: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

45

Figure 8. Layout of Natural Area Teaching Lab

Nine departments in four colleges have dedicated studies involving areas of the

NATL (Wetlands Club, 2001). Included also, is the Wetlands Club, which has

coordinated with the NATL Advisory Committee and the UF Physical Plant to develop

what has now come to be known as the Stormwater Ecological Enhancement Project

(SEEP). The idea for the SEEP was to create a multi-stage wetlands designed not only to

treat and dispose of urban stormwater runoff, but to create desirable conditions that

would attract and sustain various wildlife species. Additional benefits derived from the

development of the SEEP project include:

1) An increase in the overall aesthetics of the NATL

N

Page 59: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

46

2) Expanding research opportunities to individuals interested in wetlands study

3) Affording students as well as the public the chance to study wetland systems

in a formal class setting or, by independent viewing.

The stormwater basin is a 1.21-hectare retention pond, which collects runoff from

a number of sources existing within the 40-hectare watershed that it serves. Natural

runoff from the surrounding undeveloped areas becomes mixed with runoff from the

watershed’s impervious surfaces that is transported through an underground network of

piping (Figure 9).

Figure 9. Photograph of stormwater runoff collection area covered with debris.

Of the approximately 41% impervious surfaces existing within the basin, the most

intensive and probable source for pollutant transport comes from parking surfaces,

Page 60: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

47

particularly an 1100-space commuter lot to the north, and parking for the

Entomology/Nematology building to the east (Figure 10)

Figure 10. Natural areas and parking surfaces draining to the retention basin. A)Transition area from old field succession to upland pine. B) Southerly view of commuterparking lot and garage. C) Entrance to Entomology & Nematology building located tothe east of the stormwater retention basin.

The basin was originally constructed in 1988 with permitted storage capacity

designed to accept and dispose of 18,855 m3 of stormwater runoff through infiltration and

evaporation. The collection period based on a 100-year flood event based over a 24-hour

A)

B)

C)

Page 61: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

48

span. Urban development within the watershed required that the basin be redesigned in

1990 to handle an additional 12,221 m3 of runoff, bringing its total capacity to 31,076 m3.

Design of the basin was traditional in its approach. The lack of surface water

discharge negated the use of a detention system to improve water quality of the disposed

stormwater, allowing for stormwater retention to be the driving force in design. With

retention basins that do not discharge to surface waters, there is greater emphasis on

storage of runoff as opposed to enhanced stormwater treatment. This particular design

was typical of a standard retention basin, dependent upon evaporation and percolation to

dispose of stormwater on-site. Uniform slopes lined the basin to the north, south, and

east, while the west side was contoured to a natural depressional area. Stormwater

entered the system through four major collection sites and was guided to the flat center of

the basin for disposal (Figure 11).

With the concept of the SEEP, basin design became more ecologically enhanced

by the addition of berms in the northern and southeastern portion of the retention basin

and by creating deep water infiltration ponds to the south (Figure 12). Functionality of

the basin shifted from a pure retention type system to a system incorporating retention

theory, using both vegetation and increased water detention periods in conjunction with

on-site disposal.

Page 62: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

49

Figure 11. Original design of stormwater retention basin before enhancement projectbegan. A) Stormwater inlet collecting discharge from commuter lot and garage. B)Stormwater inlet collecting runoff from Entomology & Nematology building. C)Stormwater inlet collecting runoff from behind and adjacent to Florida Museum ofNatural History, and the Performing Arts Center. D) Stormwater inlet collecting runofffrom unpaved parking lot and grass swales behind and to the west of the Entomology andNematology building.

A) B)

C)D)

N

Page 63: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

50

Figure 12. Diagram of the retention basin post enhancement that occurred in 1998.Berms added to the north and southeast sections of the basin increase and directstormwater flow. The two infiltration ponds to the south allow for increased settling ofstormwater particulate matter and evaporation.

Berm

Berm

Deep WaterInfiltrationPonds

N

Page 64: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

51

Sampling Locations

When developing a soil sample scheme for the stormwater management

system, the first step was to separate the basin into individual cells. Each cell could be

evaluated for contamination and comparative values would exist between each region.

The existing configuration of the stormwater basin dictated a division of three cells for

evaluation (Figure 13).

Figure 13. Breakdown of the sample cells inside the stormwater retention basin.

Cell 1

Cell 2

Cell 3

N

Page 65: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

52

Cell one represented the forebay, extending from the north end of the basin to the

northern berm, including three of the four stormwater inflow pipes. Cell two

encompassed the remaining stormwater inflow pipe located at the southeastern corner of

the basin and extended to the southernmost section of the berm bordering cell one. Cell

three, the final section of the stormwater management system, consisted of the two deep-

water ponds.

Cell one was further separated into three sections for evaluation. The first

section, located in the northwestern corner of the stormwater management system,

contained two of the three stormwater inflow pipes, which drained the entire impervious

surface of the major parking area. Flow patterns were established through observed

channeling from the inflow areas, and five locations, A1 through A5, were sampled

(Figure 14). The emphasis on these sites was to determine soil quality from the

stormwater inflows to the center of the forebay. All the sites chosen in this area consisted

of soils that had been left undisturbed during re-contouring.

The second section of cell one consisted of a single point just west of the

stormwater inlet pipe located in the northeastern part of the basin. This point, labeled A6

(Figure 14), represented undisturbed basin soils to the east of center in the forebay.

Flows in this area were made up of sheet flow from a two-lane road and parking lot

runoff from the front section of the Entomolgy/Nematology building.

The third section of this cell was the center of the forebay. The majority of this

area, represented by sites A7 through A12 (Figure 14), was scraped during the 1998 re-

contouring. However, site A9, located in the northern part of this section appeared not to

have been disturbed based on the surface texture, and from a visual inspection of the site

Page 66: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

53

after the re-contouring. Sample site locations within this section represented contaminant

and suspended particle movement from the stormwater inflows through the forebay,

exiting from the weir into cell two.

In cell two, five sample locations were chosen for evaluation. Sites B1, B2, & B3

(Figure 14) were located south of the weir in an area that had been scraped in 1998. This

represented water flow movement as it entered into cell two, dispersing either south,

southeast, or southwest. A major decision for choosing these points is that soil quality

can be compared between their locations and site A7 to evaluate the efficiency of the

forebay in pollutant removal. Site B4 was situated in the direct flow path coming from

the remaining stormwater inlet pipe to the southeast of the basin. Water flow in this area

was channeled towards the deep-water infiltration ponds by the southern berm and

several small elevated mounds. The soil surface in this area had again been scraped in

1998. The remaining site in cell two, B5, was located in the western portion of the basin.

This area had not been re-contoured in 1998 and was the only section consisting of

original undisturbed soil in cell two.

In cell three, two locations were chosen for evaluation (Figure 14). Site C1 was

located in the center of the first deep-water pond, while C2 was centered in the

southernmost deep-water pond. Due to the need to restructure the infiltration ponds when

creating the SEEP, the entire area within this cell had been re-contoured. An additional

sample, D1, was taken from outside the stormwater management system to act as a

control site. This site was located to the west of the system, directly behind the

Performing Arts Center.

Page 67: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

54

Figure 14. Location of sample sites in the stormwater retention basin.

A12A11 A10

A9

A8

A7 A6

A5A4A3

A2

A1 B1

B2B3

B4

B5

C1

C2

D1

N

10m

Page 68: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

55

Secondary consideration was given to sample site locations for the evaluation of

soils left in place from the original construction of the stormwater management system,

as compared to soils from the recently re-contoured areas (Figure 15). Eight of the 19

sites within the basin were located in areas left undisturbed, allowing for evaluation and

the creation of baseline data for undisturbed and scraped areas (Table 4).

Figure 15. Sample site locations for the stormwater management system. Areas outlinedin red contain soils left undisturbed during the 1998 re-contouring of the system.

A 12A 11 A 10

A 9

A 8

A 7 A 6

A 5

A 4A 3

A 2

A 1 B 1

B 2B 3

B 4

B 5

C 1

C 2

D 1

N10m

Page 69: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

56

Information gathered from the 20 sample sites selected has been used to set

baseline data for future studies at this site. From the locations selected, a good

representation of the extent of contamination within the basin already can be seen, and

some assumptions made based on current soil quality conditions.

Table 4. Sample site status for each cell evaluated.

C ell S ite L o catio n S crap ed / U nd isturb edA 1 U nd isturb edA 2 U nd isturb edA 3 U nd isturb edA 4 U nd isturb edA 5 U nd isturb edA 6 U nd isturb edA 7 S crap edA 8 S crap edA 9 U nd isturb edA 1 0 S crap edA 1 1 S crap edA 1 2 S crap ed

B 1 S crap edB 2 S crap edB 3 S crap edB 4 S crap edB 5 U nd isturb ed

C 1 S crap edC 2 S crap ed

2

3

1

Page 70: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

57

Field Procedures

Samples were taken using the guidelines set forth in the Comprehensive Quality

Assurance Plan of the Southwest Florida Water Management District, (1993). All soil

samples were collected with shovels and stainless steel equipment. Soils surfaces, that

came into contact with steel equipment, were removed through the use of non-metallic

spatulas. All loose debris not affixed with the soil was remove before sampling. Coring

devices and spatulas were cleaned with distilled water after each core sample was

completed. Once obtained, samples were stored on ice until transfer was complete to the

University of Florida Environmental Pedology lab. Composite samples of 4 to 7 cores

within an area of 0.25m for each site were analyzed at depths of 0-5cm and 5-10cm.

In all, 20 sites were selected, bringing the total number of analyzed soil samples

to 40. Of the 20 sites, 19 (A1 – A12, B1 – B5, C1 – C2) were located inside the

stormwater management system, with one (D1) being taken outside the system to

represent background data.

Laboratory Procedures

All samples were prepared by first air drying and then running through a 2.0 mm

sieve before ball milling to achieve a homogeneous mixture. Samples were analyzed for

heavy metals, organic carbon content, organic matter content, pH, and particle-size

distribution (Table 5).

Page 71: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

58

Table 5. Sediment analysis and methods used in study

Metal Analysis

The heavy metals selected for analysis were chosen based on their rank as the

most common determined in urban stormwater runoff during a 1995 DEP study of

contamination in 87 stormwater management facilities (Livingston, et al., 1995). The

specific metals analyzed were Cd, Cr, Cu, Pb, Ni, and Zn.

A one-gram sample digestion of dried soil was completed at the UF Soil

Environmental Pedology Lab using EPA Method 3050, as directed under the standard

operating procedure guidelines set by UF Professor, Dr. Lena Ma. Sample solutions were

then placed in standardized containers and sent to the Analytical Research Laboratory,

located on the University of Florida campus for analysis by an Inductively Coupled

Plasma (ICP) analyzer. Minimum detection limits for all metals was 0.01 mg/kg, with

the exception of Cr, which was 0.04 mg/kg.

Organic Carbon Content

The organic carbon analysis was completed using the Walkley-Black method.

Samples which exceeded the acceptable range for percent organic carbon using this

method were run again by lowering the samples size to 0.125g or 0.025g, making the

SOIL ANALYSIS METHODMetals (Cd, Cr, Cu, Ni, Pb, Zn) Digestion - EPA 3050

Analysis - Inductively Coupled Plasma (ICP)

Organic Carbon Content Walkey-Black Method(Soil Survey Laboratory Methods Manual, 1996)

Soil Organic Matter Loss On Ignition (Broadbent, 1953)

Particle Size Distribution Pipette Method (Day, 1965)

Soil pH Soil Survey Laboratory Methods Manual (1996)

Page 72: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

59

appropriate calculations to obtained percent organic carbon. While the Walkley-Black

method works well on soils with less than 6% organic matter, the loss on ignition method

better suits soils with organic matter contents greater than 6% (Agvise Laboratories,

2002).

Organic Matter Content

To determine organic matter content, the loss on ignition method, as described by

Broadbent (1965), was used. Three grams of soil were placed into 20 ml crucibles and

brought to a temperature of 105ºC for 2 hours. Samples were then weighed to

+0.01grams, then brought to a temperature of 500ºC for a period of eight hours. After

being allowed to cool in a moisture-free environment using a desiccator, the samples

were again weighed and recorded. To determine the percent organic matter the following

equation was used:

% Organic Matter =(Sample Weight 105ºC – Sample Weight 500ºC x 100) / Sample

Weight 105ºC

Particle-Size Distribution

Particle-size distribution was determined on the samples using the pipette method

as described by Day (1965). Since the clay content of these samples was unknown, a

sample weight of 25.0g (+/- 0.1g) was used. Values obtained were compared with a soil

texture classification triangle to determine the appropriate textural class.

pH Analysis

Stormwater retention basin soils were analyzed for pH using the method

described in the Soil Survey Laboratory Methods Manual (1996). Twenty five grams of

soils was analyzed using both water and potassium chloride.

Page 73: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

60

Statistical Methods

Statistical analysis was done using the Number Cruncher Statistical

System (NCSS) data analysis software program. Linear regression analysis was

conducted to examine relationships for all dependent variables (metals) to the

independent variables, pH, organic carbon, organic matter, and percent clay content.

Estimating Metal Loading Rates

Analytical data presented in this thesis has indicted that metal concentrations at

certain locations within the stormwater retention basin exceed several indirect guidelines

for soil clean-up and quality assessments. At what point soils within this and similar

basins reach potentially toxic levels is unclear, without regulatory requirements for

periodic soil monitoring. If certain information is known about a particular basin, then

estimates can be made as to a particular concentration of contaminant loading.

For this study, water quality data was not collected, ruling out the option for site

specific loading rates. There are, however, ways to determine rough estimates of metal

loading based on computer-generated programs. One such program is the Long-Term

Hydrological Impact Analysis (L-THIA) GIS – based model. This analysis uses

established hydrologic data, based on a long-term average in combination with defined

land use and soil classes to establish stormwater runoff rates. When site specific data

relating to stormwater metal concentrations is not used with this model, non-point source

pollutant averages established by the Texas Natural Resource Conservation Commission

(TNRCC) becomes the default.

Arial photography was used to create a land-use layer for the SEEP watershed.

The land use and the soils layer will be combined with 20-years of local rainfall data to

Page 74: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

61

generate curve numbers and runoff volumes on a one-meter cell grid. L-THIA then

averages these volumes and calculates the average annual runoff volume for each of the

one-meter cells in the drainage basin. These volumes are summarized for each land use

class and combined with runoff coefficients for each metal based on those land use

classes. The total average annual loading of each metal on the SEEP can then be

calculated. These loading rates can be used to place in context the concentrations of

metals found in SEEP soils.

Page 75: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

62

RESULTS

The initial objective of this study was to analyze current soil conditions within the

SEEP located at the NATL. Since limited soil data exists for this area, evaluating

parameters such as organic carbon content, organic matter content, pH, and particle-size

distribution may lay the foundation for establishing baseline standards for future studies

at this site.

Urban development of adjacent land within the watershed has required

improvements and upgrades to the stormwater basin, altering soils from their original

pedogenic stages. Soil dating back to the initial construction of the basin indicate soils

not representative of what can be identified today.

Just as important as the altering of soils within the basin for stormwater runoff

collection, are the effects that outside inputs carried in stormwater can have on the

environmental quality of the system. Pollutants, such as heavy metals in stormwater

runoff, may interact differently in soil depending upon soil characteristics.

While it is not uncommon to detect various heavy metals in soils through either

natural deposition or anthropogenic processes, concentrations should be maintained at

levels acceptable to the environment. Metal concentrations of the soils inside the

stormwater retention basin were compared to baseline concentrations for Florida surface

soils established by Chen et al, (1999). Additionally, indirect comparisons were made

with the screening levels referenced by the SQAGs, and the SCTLs.

Page 76: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

63

Organic Matter Content

Soils within the stormwater basin were analyzed for percent organic matter at

both 0-5cm and 5-10cm depths (Figure 16). The results indicated the highest organic

matter values in cell 1, within the heavily vegetated northwestern corner of the wetland

basin, sites A1 through A5. At these locations, percent organic matter ranged from 2.7%

to 22% in the upper 5cm samples with an average of 11.3%. The 5-10cm samples ranged

between 1.7% and 21%, averaging 7.7%. The remaining seven sites in cell one ranged

from 2% to 7%, averaging 4.5% in the upper samples, and from 1% to 5.3%, averaging

3.9% in the 5-10cm samples.

In cell 2, percent organic matter ranged from 5.1% to 7.1% in the 0-5cm samples

with an average of 6.0% within the cell. The 5-10cm samples ranged from 5.1% to 7%,

averaging 5.7%. Four of the five sites evaluated in this cell had been previously scraped

during the 1998 re-contouring of the stormwater basin. Excavation at these sites had

removed what little sandy deposits that may have been present, exposing the argillic

horizon to the surface.

Samples taken in cell 3 were limited to two locations, C1 and C2, both scraped

during 1998 construction and redesign of the basin. Percent organic carbon in the 0-5cm

samples was 11% and 8% respectively, and 7% and 8.3% in the 5-10cm samples. The

slightly higher averages for this cell in relationship to cell 2 may be explained by a thin 2

cm biomat that had formed in the dry pond region.

Additional analysis for organic matter content was completed on the control

sample located outside the basin, site D1. At this location, the upper limit sample had a

concentration of 3.6% organic matter, and the lower sample depth was 2.6%. A complete

list of organic matter contents for all of the sample locations are shown in appendix C-4.

Page 77: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Cell 1 Cell 2 Cell 3

0

5

10

15

20

25

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A11

A12

B1 B2 B3 B4 B5 C1 C2

Site Location

0-5cm5-10cm

Figure 16. Percent organic matter in soils within the stormwater retention basin.

% O

rgan

ic M

atte

r

64

Page 78: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

65

Organic Carbon Content

Quantitative limitations of the Walkley-Black method created a data gap for

several sites where organic carbon content was above the upper limits of detection (6%).

Specifically sites A2, A3, & A5 could not be evaluated. For the remainder of the basin,

percent organic carbon ranged from 0.11% to 4.19%, with highest values in cell 1. There

were five sites within cell 1 that had a percentage greater than 1%; site A1(0-5cm) 1.5%,

site A4(0-5cm) 2.3% and (5-10cm) 1.1%, site A6(0-5cm) 4.1%, site A10(0-5cm) 3.5%,

and site A11(0-5cm) 4.2%. There was only one other site where percent organic carbon

exceeded 1%, which was C1 (0-5cm) at 1.7%. At the control site, percent organic carbon

was calculated to be 0.78% in the in the 0-5cm sample, and 0.75% in the 5-10cm sample.

The higher than expected percentages of organic carbon determined to be present

in these soil samples, may indicate complete oxidation of organic material was not have

been achieved. Thus, values obtained for percent organic carbon may be considered

marginal quantitative data at best. A complete list of percent organic carbon results are in

appendix C-4.

Soil pH

Soil pH was analyzed in both water and potassium chloride for all the sample

sites. The results for water analysis and presented in this study (Figure 17). For this

analysis, four locations, including the northwestern corner of cell 1, the remainder of cell

1, cell 2, and cell 3, will be separated for discussion.

In the northwestern corner of cell 1, the pH ranged from 7.3 to 8.3 in the 0-5cm

samples. The 5-10cm samples had a pH range of 7.2 to 7.8. The pH values in this

section were higher than in any other part of the basin. A possible source of this pH

Page 79: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

66

increase could be coming from limestone particulates that have been washed into the cell

from road runoff. In the remainder of cell 1, the 0-5cm samples had a pH range from 5.9

to 7.2. The 5-10 cm samples had a pH range of 5.5 to 6.8.

In cell 2, the 0-5cm samples had a pH from 5.1 to 7.1. The 5-10cm samples had a

pH range of 5.1 to 7.0. The 2 sites in cell 3 had a pH range of 6.7 to 7.0 in the 0-5cm

sample, and a range of 5.3 to 6.8 in the 5-10cm sample. The pH for the control sample

was 6.1 in the 0-5cm depth, and 6.2 in the 5-10cm sample. The data for pH can be found

in appendix C-4.

Page 80: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

0123456789

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A11

A12

B1 B2 B3 B4 B5 C1 C2

Site Locations

pH

0-5cm Sample 5-10 cm Samples

Cell 1 (NW Section) Cell 1 (Center & NE Section) Cell 2 Cell 3

Figure 17. Soil pH at locations within the stormwater retention basin.

67

Page 81: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

68

Particle-Size Distribution

Percent sand, silt, and clay were determined and compared to the soil textural

triangle to establish a major texture class for each sample. Also, field texturing was

conducted at each site using the “feel” method described in Brady (1999). Values are

reported at all locations with the exception of sites A4 and B4, where laboratory error

gave invalid results. The following breakdown of cells describes the soil textures as

determined by the particle-size distribution.

For the purpose of study, soil analysis in the stormwater basin was separated into

four areas: the northwest corner of cell 1, the center and eastern portion of cell 1, all of

cell 2, and all of cell 3. The major textural classes in the northwestern portion of cell 1,

sites A1 through A5, were determined to be sandy and loamy materials. Analysis

indicated that 4 of the 5 surface samples in this location were classified as sands, with the

remaining site, A3, texture a loamy sand. The subsurface samples ranged from sand to a

loam texture. All of these site locations were in areas where no recent scrapping had

occurred.

In the remaining locations of cell 1, A6 through A12, surface textures varied from

loamy sand to sandy clay loam. The sandier locations were represented by sites A6 and

A9, which were not scraped during the re-contouring of the SEEP. Loamy sand extended

into the 5-10cm depth at each of these locations. The remaining sites within cell 1 had

been scrapped down to the argillic horizon, leaving a sandy clay loam present at the

surface, extending through the 5-10cm sample.

The majority of sites sampled within cell 2 were of similar texture class as those

identified in the center of cell 1. The surfaces for sites B1 through B4 had been removed

Page 82: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

69

during redesign of the basin, exposing finer textured sandy clay loam material. Site B5 in

the westerly region of this cell, however, had remained untouched, leaving sandy to

loamy sand textured material.

Cell 3 had been entirely reworked as part of the plan to enlarge and deepen the

ponds to the south of the retention basin. Excavation in this area completely removed

any of the sandier textured soils down to the argillic horizon. Both sites evaluated in cell

3 fell within the textural triangle as either sandy clay loam or sandy clay. The control site

soils were classified as sands in both the 0-5cm sample and the 5-10cm sample. Data for

the particle-size distribution in the basin soils is listed in appendix C-1.

Metals: Cadmium

Cd vs. Baseline Concentration Levels

Cd was detected at 5 of 19 soil sample locations within the stormwater retention

basin. Concentrations in the 0-5cm samples ranged from 0-2.5 mg/kg and were identical

in the 5-10cm sample depth. Detection above the upper limit of the baseline

concentration range occurred in 4 of the 0-5cm samples and in 2 of the 5-10cm samples

(Figure 18). Three of the sites where detection occurred were within the initial treatment

zone, cell 1. The two remaining sites were split between cell 2 and cell 3. The sites

where Cd was present were above the baseline concentration range of 0-0.33 mg/kg as

established for Florida surface soils (Chen et al., 1999). Cd was not detected in the

control site sample located outside the retention basin.

Cd Concentrations Compared With Various Screening Levels

Of the 5 sites where Cd was detected, concentrations at three locations, all in cell

1, were above the TEL of 0.676 mg/kg established by the SQAGs (Figure 19). There

Page 83: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

70

were no exceedences for PELs of 4.20 mg/kg, or the SCTLs residential and commercial

based values of 75 mg/kg and 1300 mg/kg respectively (Figure 20).

Page 84: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

������������������������������������������������� ������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������ ������������������������������������ �����������������������������������0

0.5

1

1.5

2

2.5

3A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Cadmium Concentration (mg/kg)

0-5cm

5-10cm

0-0.33 mg/kg Baseline Concentration

Figure 18. Cadmium concentrations in the stormwater basin soils. The baseline concentration range for cadmium in Florida surfacesoils is represented by the red shaded region..

71

Page 85: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

72

A12A11 A10

A9

A8

A7 A6

A5A4A3

A2

A1 B1

B2B3

B4C1

C2

D1

Figure 19. Location of sites where cadmium concentrations were detected abovethreshold effects levels (TELs) derived by the soil quality assessment guidelines. Sitesabove TELs are shaded in yellow.

N

10m

B5

Page 86: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

0.5

1

1.5

2

2.5

3

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Cadmium Concentration (mg/kg)

0-5cm

5-10cm

0.676 mg/kg TEL

Cell 1 Cell 2 Cell 3

Figure 20. Comparison of cadmium concentrations to screening criteria throughout the entire basin. These concentrations wereevaluated at depths of 0-5cm and 5-10cm. Exceedences of screening criteria occurred for the threshold effects level (TEL) derived bythe soil quality assessment guidelines (SQAG’s).

73

Page 87: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

74

Metals: Chromium (Cr)

Cr vs. Baseline Concentration Levels

Cr was detected at all 19 sites within the stormwater retention basin with

concentrations ranging from 21.0 -262.5 mg/kg in the 0-5cm samples and from 12.0-180

mg/kg in the 5-10cm samples. When compared to baseline concentration data there were

4 sites that exceeded the established range of 0.89-80.7 mg/kg (Figure 21). These sites

were located in cell 1, to the northwest corner of the retention basin. The highest

concentrations of Cr in these areas were detected in the 0-5cm samples, with baseline

exceedences in the 5-10cm samples occurring at only 2 of the 4 locations. When

comparing elevations of Cr in the control sample, they fell within established baseline

concentrations at both the 0-5cm sample (20.5 mg/kg), and the 5-10cm sample (23.5

mg/kg).

Cr Concentrations Compared With Various Screening Levels

Cr concentrations were compared to the derived protection levels established

under the SQAGs. Exceedences of TELs set at 52.3 mg/kg occurred at 4 sites within cell

1 to the northwest corner of the retention basin (Figure 22). Levels of concern extended

into the 5-10cm depths at 2 of the locations. Additionally, concentrations of Cr were

high enough at these same 4 sites to exceed the PEL of 160 mg/kg, although, only one

site showed a PEL exceedence at a 5-10cm depth.

When comparing the data to the SCTL residential and commercial toxicity values,

2 sites contained Cr concentrations above the SCTL residential value of 210 mg/kg. The

concentration of Cr above SCTLs did not extend to the 5-10 cm depth. There were no Cr

concentrations above the SCTL commercial-based values of 420 mg/kg. Concentration

Page 88: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

75

of Cr in the 5-10cm samples exceeded levels in the 0-5cm samples at 6 of the 19

locations within the basin (Figure 23).

Page 89: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

����������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������ ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������ �������������������������������������������������������������������0

50

100

150

200

250

300

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Chrom

ium Concentration (mg/kg)

0-5cm

5-10cm

0.89 - 80.7 mg/kg Baseline Concentration Range

Figure 21. Chromium concentrations in the stormwater retention basin soils. The baseline concentration range for chromium inFlorida surface soils is represented by the red shaded region

76

Page 90: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 22. Location of sites where chromium was detected above contaminant screening levels. (A) Sites exceeding threshold effectslevels (TEL’s) as established by the soil quality assessment guidelines (SQAG’s) are shaded in yellow. (B) Sites exceeding probableeffects levels (PEL’s) as established by the SQAG’s are shaded in red. (C) Sites exceeding soil cleanup target levels (SCTL’s)established in Chapter 62-777, Florida Administrative Code. Sites shaded in orange represent residential toxicity value exceedences(RTV’s).

A12A11 A10

A9

A8

A7 A6

A5

A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

A

A12A11 A10

A9

A8

A7 A6

A5

A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

B

A12A11 A10

A9

A8

A7 A6

A5

A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

C

N

20m 20m 20m

N N

77

Page 91: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

50

100

150

200

250

300

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Chrom

ium Concentration (mg/kg)

0-5cm

5-10cm

52.3 mg/kg TEL

160 mg/kg PEL

210 mg/kg SCTL RTV

Cell 1 Cell 2 Cell 3

Figure 23. Comparison of chromium concentrations to screening criteria throughout the entire basin. These concentrations wereevaluated at depths of 0-5cm and 5-10cm. Exceedences of screening criteria occurred for the threshold effects levels (TEL's) andprobable effects levels (PEL’s) established by the soil quality assessment guidelines. Additionally, concentrations exceeded soilcleanup target levels (SCTL’s) for residential values (RTV’s). Concentrations of chromium in the 5-10cm depth samples exceededthe concentrations in the 0-5cm sample depths at 5 of the 19 sample site locations.

78

Page 92: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

79

Metals: Copper (Cu)

Cu Vs. Baseline Concentration Levels

Cu concentrations were detected at all 19 sites within the stormwater retention

basin. Levels ranged from 5.5-235 mg/kg in the 0-5cm sample depths and from 3.0-102

mg/kg in the 5-10cm samples. Seven sites exceeded the upper limit of the baseline

concentration range (Figure 24). Similar to both Cd and Cr, exceedences were observed

in the northwest corner of cell 1. Elevated levels were also documented at three other

locations within cell 1, including the highest concentration at the northeastern stormwater

inlet, and at one location in cell 3. In 18 of the 19 sites the 0-5cm sample depths

contained a higher concentration of Cu, with the one exception being site A2. This was

also the only location where the 5-10cm sample depth exceeded the baseline range upper

limit. Cu concentration in the control sample was at 3.0 mg/kg at both depths, which falls

within the established baseline range.

Cu Concentrations Compared With Various Screening Levels

The SQAGs have a derived TEL for copper of 18.7 mg/kg. Cu concentrations in

the soils of the retention basin exceeded TELs at 8 sites. Seven of these sites were

located in cell 1, with the remaining site located in cell 3. Two of the sites had levels of

Cu in concentrations higher than the PEL of 108 mg/kg. Each of these two locations

were in direct flow from the stormwater inlets to the northwest and northeast areas of cell

1.

The SCTLs have established exposure protection limits from Cu for residential

and commercial applications of 110 mg/kg, and 76,000 mg/kg, respectively. Residential

exposure concentrations were exceeded at the two sites in direct flow from the inlets in

Page 93: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

80

cell1 (Figure 25). Cu was not detected at levels exceeding the commercial based values

established by the SCTLs.

As indicated with the comparison to the baseline concentration range,

concentrations of Cu in the 5-10cm depth samples tended to be lower than in the upper

sample. Of the 7 sites where Cu was detected above screening levels, exceedences in the

5-10cm sample depths occurred at only one site (Figure 26). This was consistent with the

entire basin.

Page 94: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

����������������������������������������� ������������������������������ ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������� ������������������������������ �������������������0

50

100

150

200

250

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Copper Concentration (mg/kg)

0-5cm

5-10cm

0.22 - 21.9 mg/kg Baseline Concentration Range

Figure 24. Copper concentrations in the stormwater retention basin soils. The baseline concentration range for copper in Floridasurface soils is represented by the red shaded region

81

Page 95: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 25. Location of sites where copper was detected above contaminant screening levels. (A) Sites exceeding threshold effectslevels (TEL’s) as established by the soil quality assessment guidelines (SQAG’s) are shaded in yellow. (B) Sites exceeding probableeffects levels (PEL’s) as established by the SQAG’s are shaded in red. (C) Sites exceeding soil cleanup target levels (SCTL’s)established in Chapter 62-777, Florida Administrative Code. Sites shaded in orange represent residential toxicity value exceedences(RTV’s).

A12A11

A10

A9

A8

A7 A6A5A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

A

A12A11 A10

A9

A8

A7 A6A5A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

B

A12A11 A10

A9

A8

A7 A6

A5A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

C

N30m

N30m

N30m

82

Page 96: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

50

100

150

200

250

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Copper Concentration (mg/kg)

0-5cm

5-10cm

18.7 mg/kg TEL

108 mg/kg PEL

110 mg/kg SCTL RV

Cell 1 Cell 2 Cell 3

Figure 26. Comparison of copper concentrations to screening criteria throughout the entire basin. These concentrations wereevaluated at depths of 0-5cm and 5-10cm. Exceedences of screening criteria occurred for the threshold effects levels (TEL's) andprobable effects levels (PEL’s) established by the soil quality assessment guidelines. Additionally, concentrations exceeded soilcleanup target levels (SCTL’s) for residential values (RTV’s). Concentrations of copper in the 5-10cm depth samples exceeded theconcentrations in the 0-5cm sample depths at only one site within the basin.

83

Page 97: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

84

Metals: Lead (Pb)

Pb Vs. Baseline Concentration Levels

Concentrations of Pb were detected in soils at all 19 sites within the retention

basin. Concentrations in the surface samples ranged from 7.0-61.0 mg/kg, and from 0.5-

64.5 mg/kg in the 5-10cm depth samples. When compared the baseline concentrations, 2

sites exceeded the upper limits of the concentration range established at 0.69-42.0 mg/kg.

Both locations were in cell 1 at the northwestern corner of the basin. Exceedences

occurred in the upper samples at both locations and in the 5-10cm sample at one site

(Figure 27). Pb concentration in the control samples was at 4.5mg/kg and 5.0 mg/kg in

the 0-5cm sample and the 5-10cm sample respectively.

Pb Concentrations Compared With Various Screening Levels

The concentrations of Pb in soils were compared to screening levels established in

the SQAGs and the SCTLs. The SQAGs have derived a protection value of 30.2 mg/kg

as a TEL for Pb in sediments. Basin soils exceeded this value at 4 locations, 3 of these

sites being located in the northwestern corner of cell 1, and one site on the northern end

of cell 3 (Figure 28). Exceedences occurred at the 0-5cm sample depth in 2 of the 3

locations in cell 1, and in the lone location in cell 3. Pb concentrations in the 5-10cm

samples exceeded TELs at 2 locations in cell 1 only. When evaluating the entire basin,

Pb concentrations in the 5-10cm samples exceeded the upper 0-5cm samples at 5 of 19

sites, or 26% (Figure 29). Pb did not exceed the PEL of 111.9 mg/kg or SCTLs for

residential (400 mg/kg) and commercial (920 mg/kg) exposures.

Page 98: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

10

20

30

40

50

60

70A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Lead Concentration (mg/kg)

0-5cm

5-10cm

0.69 - 42.0 mg/kg Baseline Concentration Range

Figure 27. Lead concentrations in the stormwater retention basin soils. The baseline concentration range for lead in Florida surfacesoils is represented by the red shaded region

85

Page 99: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

86

Figure 28. Location of sites where lead concentrations were detected above thresholdeffects levels (TEL’s) derived by the soil quality assessment guidelines. Sites aboveTEL’s are shaded in yellow.

A12A11 A10

A9

A8

A7 A6

A5

A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

N

10m

Page 100: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

10

20

30

40

50

60

70A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Lead Concentration (mg/kg)

0-5cm

5-10cm30.2 mg/kg TEL

Cell 1 Cell 2 Cell 3

Figure 29. Comparison of lead concentrations to screening criteria throughout the entire basin. These concentrations were evaluatedat depths of 0-5cm and 5-10cm. Exceedences of screening criteria occurred for the threshold effects level (TEL) derived by the soilquality assessment guidelines. Concentrations of lead in the 5-10cm depth samples exceeded the concentrations in the 0-5cm sampledepths at 5 of the 19 sites within the stormwater basin.

87

Page 101: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

88

Metals: Nickel (Ni)

Ni Vs. Baseline Concentration Levels

Ni concentrations were detected at all 19 sites located within the stormwater

retention basin. Concentrations ranged from 5.5-29.0 mg/kg in the 0-5cm sample depths,

and from 4.0-31.5 mg/kg in the 5-10cm samples. When compared to the Ni baseline

concentration range of 1.70-48.5 mg/kg there were no exceedences of the upper limits

(Figure 30). In the control sample, the 0-5cm sample contained 2.5 mg/kg of Ni, and the

5-10cm sample contained a concentration of 3.0 mg/kg.

Ni Concentrations Compared With Various Screening Levels

When Ni concentrations in the retention basin were compared to the SQAGs, 2

sites had levels elevated above the TEL of 15.9 mg/kg. Both locations were in the

northwest corner of cell 1, adjacent to the stormwater inlets (Figure 31). A third site in

cell 1 had a Ni concentration of 15.0 mg/kg in the 0-5cm sample. Exceedences occurred

in the 0-5cm samples at both locations, and in the 5-10cm sample at one site. There were

no exceedences for the PEL of 15.8 mg/kg, or for the SCTL residential (110 mg/kg) and

commercial (28,000 mg/kg) exposures at any of the sites. When evaluating Ni

concentration throughout the entire retention basin, levels decreased from the upper

samples to the lower depths at 15 of the 19 sites (Figure 32).

Page 102: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

0

5

10

15

20

25

30

35A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Nickel Concentration (mg/kg)

0-5cm

5-10cm

1.70 - 48.5 mg/kg Baseline Concentration Range

Figure 30. Nickel concentrations in the stormwater retention basin soils. The baseline concentration range for nickel in Floridasurface soils is represented by the red shaded region

89

Page 103: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

90

A12A11 A10

A9

A8

A7 A6

A5

A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

Figure 31. Location of sites where nickel concentrations were detected above thresholdeffects levels (TEL’s) derived by the soil quality assessment guidelines. Sites aboveTEL’s are shaded in yellow.

N

10m

Page 104: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

5

10

15

20

25

30

35A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Nickel Concentration (mg/kg)

0-5cm

5-10cm15.9 mg/kg TEL

Cell 1 Cell 2 Cell 3

Figure 32. Comparison of nickel concentrations to screening criteria throughout the entire basin. These concentrations wereevaluated at depths of 0-5cm and 5-10cm. Exceedences of screening criteria occurred for the threshold effects level (TEL) derived bythe soil quality assessment guidelines. Concentrations of nickel in the 5-10cm depth samples exceeded the concentrations in the 0-5cm sample depths at 2 of the 19 sites within the stormwater basin.

91

Page 105: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

92

Metals: Zinc (Zn)

Zn Vs. Baseline Concentration Levels

Zn was detected at all 19 sites within the stormwater retention basin.

Concentrations ranged from 10.5-720 mg/kg in the 0-5cm sample depths, and from 6.5-

558 mg/kg in the 5-10cm samples. When compared to the baseline concentration range

of 0.89-29.6 mg/kg, there were 10 sites that exceeded the upper limit of this range (Figure

33). The 0-5cm samples at these 10 locations were all above the baseline range, and 5 of

these sites contained levels above the range into the 5-10cm sample depths. Seven of

these locations were in cell 1, with the highest concentrations located in the northwestern

corner. One site was in cell 2, and the other 2 were located in cell 3. Zn concentrations

in the control sample were also above the baseline concentration range at 32.5 mg/kg in

the 0-5cm sample depth, and at 35.5 mg/kg in the 5-10cm sample.

Zn Concentrations Compared With Various Screening Levels

The SQAGs have established a TEL for Zn at 124 mg/kg. Concentrations within

the stormwater retention basin exceeded this level at 3 locations in the northwestern

corner of cell 1, adjacent to a major inflow. The levels, which were present at these

locations, also exceeded the PEL for Zn of 271 mg/kg (Figure 34). Levels of Zn above

SQAGs were present in the 0-5cm samples at all 3 locations, but extended into the lower

samples at only one site. There were no concentrations above SCTLs for residential

(23,000 mg/kg) or commercial (560,000 mg/kg) exposures. When looking at all 19 sites

within the retention basin, Zn concentrations decreased from the upper to the lower depth

samples at 18 locations (Figure 35).

Page 106: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 33. Zinc concentrations in the stormwater retention basin soil. The baseline concentration range for zinc in Florida surfacesoils is represented by the red shaded region

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

100

200

300

400

500

600

700

800

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Zinc Concentration (mg/kg)

0-5cm

5-10cm

0.89 - 29.6 mg/kg Baseline Concentration Range

93

Page 107: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 34. Location of sites where zinc was detected above contaminant screening levels. (A) Sites exceeding threshold effects levels(TEL’s) as established by the soil quality assessment guidelines (SQAG’s) are shaded in yellow. (B) Sites exceeding probable effectslevels (PEL’s) as established by the SQAG’s are shaded in red.

A12A11 A10

A9

A8

A7 A6

A5

A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

A

A12A11 A10

A9

A8

A7 A6

A5

A4A3

A1

A2

B1

B2B3

B4C1

C2

D1

B5

B

N

20m

N

20m

94

Page 108: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

95

Figure 35. Comparison of zinc concentrations to screening criteria throughout the entire basin. These concentrations were evaluatedat depths of 0-5cm and 5-10cm. Exceedences of screening criteria occurred for the threshold effects level (TEL) derived by the soilquality assessment guidelines. Concentrations of lead in the 5-10cm depth samples exceeded the concentrations in the 0-5cm sampledepths at only one of the 19 sites within the stormwater basin.

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������ ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0

100

200

300

400

500

600

700

800

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12 B1

B2

B3

B4

B5

C1

C2

Site Locations

Zinc Concentration (mg/kg)

0-5cm

5-10cm

124 mg/kg TEL

271 mg/kg PEL

Cell 1 Cell 2 Cell 3

95

Page 109: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

96

Linear Regression Analysis

Linear regression analyses were conducted to determine correlations between

metals and certain soil properties. All metals were regressed on pH, percent clay content,

organic carbon, and organic matter. Variables with significant r2 values and

corresponding p-values were identified and reported.

Page 110: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

97

DISCUSSION

This research focused mainly on heavy metal pollutant concentration

identification and the possible threats these contaminants pose to both wildlife and human

communities. The significance of contamination should be measured by its potential to

impact upon an identified community. Through soil analysis, heavy metals were

identified to be present within some soils in the stormwater basin at the NATL.

Upon review of the results for this study, several points of discussion can be made

regarding the current soil conditions and the heavy metal contaminant concentrations

existing within the stormwater management system.

With the exception of Cd, the remaining five metals analyzed were detected at all

19 sites within the stormwater management system, and at the control site outside the

basin. Metal concentrations within the basin exceeded typical background levels for

Florida surface soils at 10 sample locations. The most common metal detected in excess

of background levels was Zn, exceeding background levels at 10 sites, followed by Cu

(7), Cd (5), Cr (4) and Pb (2). The only metal not detected above what was considered to

be baseline concentrations was Ni.

Eight of the 10 sites where background exceedences occurred were at locations

left undisturbed during the 1998 re-contouring of the basin. Sites A1 through A5 were

the most prevelant in containing soils with background exceedences. There were two

locations that had been scraped in 1998, which did show concentrations of Zn, and Cu

above background levels, sites A11 and C1. Both of these locations lay within eight

Page 111: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

98

meters of soils left in place from original basin construction. Since they were not within

a direct flow path adjacent to stormwater inflow pipes, contaminant concentrations may

be attributed to either metal release from soils in the older areas or from metal-organic

matter complexes, allowing for smaller particulates to short circuit natural depositional

pathways increasing their mobility.

In addition to its prevalence within the stormwater retention basin, Zn was

detected above background levels in the control sample outside the stormwater collection

area. The reason for this control sample exceedence may be stormwater runoff from

behind the Performing Arts Center. Although runoff from this parking area is directed

towards the stormwater inlet in cell 1, heavy rainfall events may allow sheet flow to

discharge in the vicinity of the control sample site location. Other studies have suggested

that Zn in rainfall may contribute directly to levels of Zn within stormwater basins, which

may explain why no other stormwater related metals were exceeding background levels

at the control site (Carr et al., 1995).

Metals were detected at nine sites within the basin at concentrations above TELs,

as established by the SQAGs. The most common exceedence was Cu at 37%, followed

by Pb and Cr at 21%. Cd, Ni, and Zn ranged from 16% to 11% respectively. Six of the

nine locations where TEL exceedences occurred were undisturbed soils that had been in

place since original basin construction. Sites A2 through A5 in the northwestern corner

on the retention basin contained the greatest number of TEL exceedences for each metal.

Other locations included A6 at the northeastern inlet pipe, A12 adjacent to that point, the

northern most point A9, and in two of the re-contoured areas A11 and C1. While TEL

exceedences occurred mainly in the 0-5cm samples, elevated concentration of metals in

Page 112: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

99

the 5-10cm samples were detected at the A2 and A5 locations. With A2 being located

directly in the flow path of the main stormwater inlet, and A5 being adjacent to this area

the majority of the stormwater entering the basin would be directed to these locations. It

was noted that the highest organic materials were present in the northwestern corner of

cell 1, which correlated with soils previously not scraped and the greater number of TEL

exceedences.

PEL exceedences occurred at five sites within the stormwater retention basin.

Metals detected above PELs were Cr, Cu and Zn, with four of the 5 sites being located in

the northwestern corner of cell 1, and the remaining site located at the stormwater inlet to

the east of the same cell. All five locations were soils that had been previously left

untouched during the 1998 construction. PEL concentrations extended into the 5-10cm

samples for Cr and Zn at site A2, which again corresponds to high organic concentrations

within both sample depths, and is in direct flow from the major stormwater input.

Cr and Cu were detected at concentrations exceeding SCTLs for residential

exposures as established in Chapter 62-777, F.A.C. Locations of exceedences were

consistent with the TEL concentrations.

From the data analyzed, the concentration of metals in the northwestern portion of

cell 1 was not surprising. This area collects the greatest amount of stormwater entering

the system from the commuter lot and parking garage. The levels at which these metals

were identified were of concern however, since this basin, at 12 years of age, is

considered relatively young.

In addition to the areas of concern for contaminant build-up, it was noted that

during heavy rain events, stormwater runoff entering the system from the southeastern

Page 113: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

100

portion of the SEEP was short-circuiting the treatment marsh. As sheet flows increased,

runoff was able to discharge untreated directly to the infiltration pond (Figure 36).

Figure 36. Diagram of the SEEP with areas of concern and short-circuiting pathhighlighted. Area colored in red indicates region where contaminants were detected insoils not scraped during basin re-contouring. Areas colored in green indicatecontamination detected in soils that were scrapped during the recontouring of the basin.The blue arrow indicates stormwater inflow into the basin, short circuiting the treatmentzones.

N10m

Page 114: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

101

The identification of elevated levels of metals in the soil, while significant, is only

part of the contaminant equation. To complete the cycle we must know the potential for

a community to be negatively impacted. That potential comes from the concept of the

NATL and the SEEP.

As stated on its website, the NATL is a tract of land dedicated for use as a

teaching facility by the University. Right now the major benefactors are the students at

UF, but, the facility is open to the public. As indicated earlier, nine departments in four

of the Colleges at UF either currently or plan to use the NATL as part of their teaching

curriculum. Data obtained from the NATL website estimates that approximately 2500

UF students will be receiving some type of course work relating to the site. Several of

the Departments have indicated the desire to use the facility for other projects outside the

normal classroom studies, which will increase the number of individuals visiting the area

(Natural Area Teaching Lab, http://natl.ifas.ufl.edu/natluses).

In addition to the input of students from UF, the Florida Museum of Natural

History gives guided tours of the NATL to K-12 students from Alachua and surrounding

counties. The number of these types of visits is around 2400 students per year, and is

expected to grow as the area develops (Natural Area Teaching Lab,

http://natl.ifas.ufl.edu/natluses). These numbers do not include any visitations from the

general public, not associated with the University of Florida. While estimates may reach

over 5,000 people a year visiting the site, the actual number that could access the

stormwater retention basin is unclear.

The research and educational opportunities that the SEEP offers students and

others are not the only planned benefits of this area. In addition, the design of the basin is

Page 115: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

102

expected to be beneficial in creating plant diversity, a more diverse wildlife habitat,

improved landscape appearance, and an overall increase in the overall quality of the

stormwater exiting the system. Plantings were made throughout the basin intending to

create species diversity, and let the natural processes of wetlands dictate the vegetative

diversity (Wetlands Club, Undated)

As the vegetative community has developed, wildlife activity in the area has

increased. During the course of this research many different species of the avian

community were noticed, including several species of wading birds, which fed on

organisms or other material in the soils of the basin. Another occupant of the stormwater

basins northwestern corner was an alligator. She nested in the area where the majority of

the elevated metal concentrations were detected.

In an effort to create an aesthetic environment (one of the desired outcomes of the

SEEP) the basin was planted with a variety of species to mimic various wetland

communities. The forebay, where the majority of the stormwater enters the basin, was

planted with species known for their ability to take up metals and nutrients. Additional

design considerations of the basin, including the increased holding times of stormwater

offered in the holding bay, were in place to improve the overall water quality. Although

bio-availability was not assessed in this study, vegetation selection and increased

stormwater retention in combination with the scrapping of soils during re-contouring may

have been a reason that contamination was not seen distributed throughout the entire

basin.

Another factor influencing metal distribution within the stormwater basin may be

the leaching potential of the soils. As determined through soil analysis, the underlying

Page 116: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

103

horizons in the basin appear to be thick argillic horizons. These clays were additionally

identified in previous soil logs throughout the basin. As organic matter- stormwater

contaminant complexes form, increased retention times may allow for further bonding

between metals with the organic materials and clay minerals.

While the concentrations of metal contaminants within the stormwater basin do

warrant attention, their effects on both human and wildlife species may be limited. As

previously detailed, there are no direct standards that apply to contaminant concentrations

in soils of stormwater retention basins, nor an effective way to regulate any developable

measures. Studies in Florida compare their findings to several regulatory program

guidelines indirectly. Two common references are the SCTLs outlined in Chapter 62-

777, Contaminant Cleanup Target Levels, and the threshold and probable effects levels

described in SQAGs manual.

The SCTL standards are developed for risk assessments based on factors such as

individual body weight, exposure times, and exposure concentrations. One-time visitors

or even researcher doing limited work in the SEEP would be at low risk due to short

exposure time. Another factor influencing risk is that the contamination is basically

limited to a small area within the basin. Identifying these areas may lead too a greater

awareness, and precautionary steps can be taken to limit dermal and inhalation exposures.

The wildcard could be the effects on the vegetative and wildlife communities of the

stormwater basin. With smaller organisms the effects may be magnified to a point where

concentration, exposure time may be decreased for adverse effects to occur.

Use of the SQAGs for defining absolute contaminant issues are limited as well.

These numbers were originally developed for coastal communities. The lack of good

Page 117: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

104

freshwater data has led researchers to apply these standards indirectly to freshwater

systems anyway. Guidelines for freshwater systems are currently being developed by the

FDEP, but were not available during the course of this study. As stated in the manual,

SQAGs are to be used with factors such as bio-availability studies when determining

aquatic community risk evaluations. There is some evidence, though, that suggests soils

with contaminant concentrations above PELs may pose a threat to the biotic communities

existing within this system (FDEP, 2001). Several areas within the forebay, or cell 1, had

exceedences of PEL’s. The vegetative cover and availability of water in these areas may

make them prime locations for biological activity.

The research completed detected various contaminants at varying concentrations

within the stormwater basin. While the effects of their presence within this system are

not currently known, to ignore their existence could be a mistake. Indirectly applying

regulatory standards for the purpose of environmental assessment studies may be the only

tools available to profile these contaminant concentrations. Removal and remediation of

soils may not always be the most effective measures when addressing this contamination.

Instead, by identifying and detailing contaminant locations, procedures can be put in

place to effectively monitor and manage existing ecosystems.

Simple Linear Regression

Simple linear regression analyses were conducted on the six dependent metal

variables to determine any significant correlation to certain soil characteristics. The

independent soil characteristics used were pH, percent clay, organic carbon, and organic

matter. Cd was not reported due to the limited number of detection sites available.

Initial regressions were run using the entire set of 38 points. From that data set, r2

values obtained were very low for metals regressed with pH, and percent clay content.

Page 118: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

105

Both Cr and Zn had moderately low r2 values of 0.36 and 0.24 respectively. Upon

reviewing their associated regression curve it was noted that several outliers may have

been influencing their relationships. When these points were removed, the model

lowered r2 in both cases. Organic carbon content initially showed a moderate correlation

to all metals. When analyzing the data set, there were several points where organic

carbon content was not determined, but instead assigned a limited value. The results if

used may poorly reflect the relationships that exist.

The strongest correlation for metal relationships was organic matter. Cr (r2 =

0.48), Ni (r2 = 0.27), Pb (r2 = 0.44), and Zn (r2 = 0.34), showed influence from organic

matter content with n = 38. Recognizing that 2 separate population may exist with th 0 –

5 cm samples and the 5 – 10 cm samples, regression r2 = 0.50s were run on both these

data sets. In the surface samples, the r2 increased for Ni (r2 = 0.51), Pb (r2 = 0.50), and Zn

(r2 = 0.47). Cr decreased slightly to a r2 of 0.46. Statistically, the 5 – 10 cm samples had

r2 values below 0.5 with the exception of Cr (r2 = 0.56). Taking the regression one step

further, the 0 – 5 cm samples were run for all locations within cell 1, sites A1 through

A12. Reviewing the regression reports it was noticed that 2 locations within cell 1 may

have been influenced by position within the cell. Using the linear regression model it

appeared both sites lay outside the normal probability plot. When these points, A2 and

A5 were removed, the data set of n = 10 yielded strong r2 values of 0.91 for Ni, 0.93 for

Pb, and 0.79 for Zn. These numbers by far were the strongest of any regression plot run,

indicating organic matter content to be significantly correlated to the presence of Ni, Pb,

and Zn. A complete table with all r2 and p-values can be found in Appendix C.

Additional linear regression analysis curves are listed in Appendix D.

Page 119: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

106

Metal Loading Rates

Since no regulations require frequent monitoring of contaminant build-up over

time within stormwater basin soils, it may be difficult to assess at what point these soils

reach potentially toxic levels of metals. A method for estimation could be to take average

concentrations of pollutants over time, combined with rainfall data to estimate total

pollutant loads. This method would not account though for stormwater lost through

infiltration, and could lead to over estimating loading. The option chosen for this

research was to use the L-THIA GIS-based model. Using the L-THIA model, estimated

annual loading rates were established for the SEEP basin. Before loading rates could be

calculated, several steps were first taken.

First, one of the prime components in generating runoff curve numbers in L-

THIA is land use category. Since no land use GIS layer existed that was compatible for

the L-THIA model, it had to be created. To do this, an aerial photograph of the area was

obtained (Figure 36). By examining the photograph areas were designated as either open

land, forested, or impervious surface for compatibility to L-THIA (Figure 37). Once

these land use categories were in place, the total water shed area was designated using

United States Geological Survey quad maps (Figure 38). An existing soil type layer was

added to the map (Figure 39). Using both the land use category, and soil classification

layers, L-THIA generated the SCS curve number for the watershed based on one-meter

cells. The next step was to apply annual rainfall data for the area based on 20-years of

data. These estimates were obtained for Alachua County, and put into the model. L-

THIA now generated estimated runoff from the watershed basin into the SEEP.

Page 120: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 37. GIS photograph of the area adjacent to the stormwater retention basin

107

Page 121: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 38. GIS land use classification designations for the areas surrounding the retention basin.

108

Page 122: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 39. GIS designated land use classes within the retention basin watershed.

109

Page 123: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure 40. GIS soils layer added to land use classifications.

110

Page 124: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

111

The final part of the equation was to compare metal concentrations in stormwater

with the estimated runoff values generated by L-THIA. Since no site specific stormwater

quality data was collected, the L-THIA default values, obtained from the TNRCC study

were used (Table 6)

Table 6. Metal concentrations in stormwater runoff (Baird and Jennings, 1996)

Metal Commercial Transiton Mixed Agriculture Rangeµg/L µg/L µg/L µg/L µg/L

Pb 13 11 12 1.5 5Cu 14.5 11 13.9 1.5 10Zn 180 60 141 16 6Cd 0.96 1 1.05 1 1Cr 10 3 5.5 10 7.5Ni 11.8 4 7.3 N/A N/A

Using metal concentrations in stormwater runoff obtained by Baird and Jenning

(1996), estimates of total annual loading to the retention basin were calculated. These

annual rates were then compared to the calculated total mass of each metal existing in the

upper 10 cm of soil in cell 1 of the basin, to determine the expected time frame needed to

reach these specific levels (Table 7).

Table 7. L-THIA generated loading rates compared to estimated total mass in SEEP.

Estimated Age of SoilSurface (Yr)

(total mass/loading rate)

Cd 90.00 92.2 1.0Cr 20,628 303.2 68.0Cu 10,482.00 978.1 10.7Ni 2,916.00 353.6 8.2Pb 9,177 978.1 9.4Zn 30,096.00 5,364.6 5.6

MetalTotal Mass inUpper 10 cmof Soil (kg)

L-THIA GeneratedLoading Rates (kg/yr)

Page 125: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

112

When evaluating the results from L-THIA compared to actual metal

concentrations, Cu, Ni and Pb, were the closest concentrations in years of loading to the

time frame of 11 years, which was the age of the basin when the sampling was

conducted. Rates for Cd, Cr, and Zn, were less accurate. Factors affecting the out come

of these results may come from not using site specific data, and the fact that the basin was

assumed to have the same land use categories for the entire 11 years, not reflecting any

development in the area. In spite of the difference in values obtained for the last three

metals, the L-THIA model may be a valuable tool in determining pollutant build-up over

time. Site specific data could play a major role in determining assessments for build-up,

which could lead to regulations for site remediation.

Page 126: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

113

RECOMMENDATIONS

From data collected, literature reviewed, and field observations, the following

recommendations are offered in regards to continued operation of the SEEP.

1. A study to determine contaminant bio-availability should be completed at several

sites within the SEEP. Metal concentrations above TELs and PELs as established in

the SQAGs were documented to exist at these locations. While SQAG values may

indicate the potential for adverse biological effects, they alone should not be used to

establish sediment removal criteria.

2. Sediments should be removed from the three locations where contaminant

concentrations were above residential toxicity values for the SCTLs, established in

Chapter 62-777, F.A.C. These levels are based on exposure through dermal contact,

ingestion or inhalation potential. While the potential may be low for human safety

factors, the risk to the wildlife communities in the area is unknown.

3. An assessment of the sediments for traffic related petroleum hydrocarbons and PAH’s

should be conducted.

4. Toxicity Characteristics Leaching Procedures (TCLP’s) should be performed in areas

where the Soil Contaminant Cleanup Target Levels have been exceeded. This can

assess the potential of the contaminants to spread throughout the basin, and will be

useful in directing the method of sediment disposal upon removal.

Page 127: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

114

5. A study at the SEEP should be completed on the effects metal contamination may

have on wildlife and vegetative communities. This study could directly impact the

future direction in which the SEEP develops.

6. Monitoring should be continued for contamination of sediments within the SEEP.

Now that concentrations for metals have been established, periodic checks, based on

resource availability, should be completed by UF. This will generate data regarding

the efficiency of the stormwater system on pollutant removal, and allow for

potentially toxic or hazardous areas to be identified and addressed accordingly.

7. The SEEP area should be posted with signs indicating the potential for exposure to

possible contaminants contained in stormwater, and that precautions should be taken

when working within the basin.

As focus on the disposal of urban stormwater runoff continues to shift from

quantity to quality based concerns, more research will be required to assess the

functionality of wetland systems being used as contaminant filters. While studies have

shown wetlands are capable of removing pollutants from stormwater runoff, higher

quality of discharge does not always equate to increased environmental protection. We

should not solely accept the benefits of ground and surface water protection through the

use of stormwater management systems, without recognizing the potential for localized

sediment contamination. Stormwater management system evaluations similar to the one

conducted on the SEEP have shown the potential for contamination in sediments to reach

levels above toxicity guidelines established for soil cleanup sites, as well as exceedences

of biological effects levels for aquatic organisms (FDEP, 2001).

Page 128: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

115

State, regional, and local governmental codes have been established to regulate

stormwater runoff relating to issues of flood control, on-site sediment containment, and

quality of discharge to receiving waters. Regulation on sediment quality within

stormwater management systems is not adequately addressed. Differing techniques of

studies along with the variability of urban stormwater discharge between sites has made it

difficult to establish rules governing the pollutant potential of these sediments. Many

times, guidelines such as the SCTLs or the SQAG are indirectly applied to sediment

studies for assessment purposes only. In the past, environmental protection from

contaminated sediments was controlled through limiting access and decreasing

desirability of stormwater management systems. However, as wetland systems become a

more popular method of stormwater treatment and disposal, opportunities increase for the

direct exposure of contamination from sediments to a variety of ecological communities,

with the SEEP being no exception.

The University of Florida has created a unique opportunity of environmental

study with the development of the SEEP at the NATL. The design for this stormwater

management system, with its multiple wetland communities, creates conditions

conducive to attracting and sustaining a variety of wildlife species. In addition, the

University’s plan for using this site for continuing classroom study and research, along

with the ease of accessibility by the public, bridge the barriers protecting humans and

wildlife from exposure to possible contaminated sediments. By addressing current

contaminant areas, and monitoring for future concerns, the retention basin at the NATL

may continue to be a vital research area, without the possessing the potential to impact

human and environmental health.

Page 129: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

APPENDIX AACRONYM LIST OF AGENCIES AND PROGRAM AREAS

Page 130: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

117

Table A-1. Common acronyms used in this text.

FDEP Florida Department of Environmental Protection

Texas Natural Resource Conservation CommissionUnited States Environmental Protection Agency

DCA

EPAERP

FDOTNATLNOM

NPDES

Soil Quality Assessment GuidelineSuwannee River Water Management DistrictSouthwest Florida Water Management DistrictThreshold Effects Level

Soil Conservation ServiceSoil Clean-up Target LevelStormwater Ecological Enhancement ProgramSt. Johns River Water Management District

National Pollutant Discharge Elimination SystemNon-Point Source Management ProgramNationwide Urban Runoff ProgramProbable Effects Level

TNRCCUSEPA

Department of Community AffairsDepartment of Environmental RegulationEnvironmental Protection AgencyEnvironmental Resource Permit

Florida Department of TransportationNatural Area Teaching LabNatural Organic Matter

SQAGSRWMD

SWFWMDTEL

SCSSCTLSEEP

SJRWMD

NPSMPNURPPEL

DER

ATSDR

AcronymACEPD Alachua County Environmental Protection Department

Title

Agency for Toxic Substances and Disease Registry

Page 131: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

APPENDIX BADDITIONAL FIGURES

Page 132: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

119

Existing Pond

ProposedStormwaterBasin - 1988

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

Figure B-1. 1988 proposed retention basin with soil boring locations.

Page 133: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure B-2. Soil boring locations 1 – 4. Borings conducted in 1988 by Bishop Beville for the University of Florida.

120

Page 134: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure B-3. Soil boring locations 5 – 8. Borings conducted in 1988 by Bishop Beville for the University of Florida.

121

Page 135: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure B-4. Soil boring locations 9 – 12. Borings conducted in 1988 by Bishop Beville for the University of Florida.

122

Page 136: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure B-5. Soil boring location 13. Borings conducted in 1988 by Bishop Beville for the University of Florida.

123

Page 137: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

APPENDIX CANALYTICAL RESULTS

Page 138: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

125

Table C-1. Particle-size analysis for cell 1

Site Depth % Sand % Silt % Clay Textural ClassA1 0-5cm 89.24 7.40 3.36 SandA1 5-10cm 93.56 4.84 1.60 SandA2 0-5cm 96.24 2.64 1.12 SandA2 5-10cm 92.36 2.36 5.28 SandA3 0-5cm 82.30 4.58 13.12 Loamy SandA3 5-10cm 82.69 5.31 12.00 Loamy SandA4 0-5cm 96.58 1.98 1.44 SandA4 5-10cm LAB ERROR N/A N/AA5 0-5cm 89.74 4.82 5.44 SandA5 5-10cm 37.23 47.25 15.52 LoamA6 0-5cm 87.80 3.24 8.96 Loamy SandA6 5-10cm 95.28 2.48 2.24 SandA7 0-5cm 73.78 4.94 21.28 Sandy Clay LoamA7 5-10cm 74.54 4.34 21.12 Sandy Clay LoamA8 0-5cm 67.88 5.72 26.40 Sandy Clay LoamA8 5-10cm 65.16 4.60 30.24 Sandy Clay LoamA9 0-5cm 85.62 4.94 9.44 Loamy SandA9 5-10cm 83.49 5.79 10.72 Loamy SandA10 0-5cm 64.29 8.03 27.68 Sandy Clay LoamA10 5-10cm 64.56 5.20 30.24 Sandy Clay LoamA11 0-5cm 64.90 8.86 26.24 Sandy Clay LoamA11 5-10cm 65.28 7.68 27.04 Sandy Clay LoamA12 0-5cm 55.45 11.75 32.80 Sandy Clay LoamA12 5-10cm 62.16 3.76 34.08 Sandy Clay Loam

Page 139: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

126

Table C-2. Particle-size analysis for cell 2

Site Depth % Sand % Silt % Clay Textural ClassB1 0-5cm 65.22 5.34 29.44 Sandy Clay LoamB1 5-10cm 70.76 3.96 25.28 Sandy Clay LoamB2 0-5cm 67.67 7.37 24.96 Sandy Clay LoamB2 5-10cm 67.57 4.43 28.00 Sandy Clay LoamB3 0-5cm 67.40 7.96 24.64 Sandy Clay LoamB3 5-10cm 69.07 6.29 24.64 Sandy Clay LoamB4 0-5cm 58.48 6.16 35.36 Sandy Clay LoamB4 5-10cm 61.96 7.64 30.40 Sandy Clay LoamB5 0-5cm 52.22 14.66 33.12 Sandy Clay LoamB5 5-10cm 71.49 9.95 18.56 Sandy Loam

Table C-3. Particle-size analysis for cell 3 and control site

Site Depth % Sand % Silt % Clay Textural ClassC1 0-5cm 39.72 15.64 44.64 ClayC1 5-10cm 41.45 13.43 45.12 Clay LoamC2 0-5cm 68.70 5.86 25.44 Sandy Clay LoamC2 5-10cm 84.76 8.04 7.20 Loamy SandD1 0-5cm 96.58 1.98 1.44 SandD1 5-10cm 89.22 6.62 4.16 Sand

Page 140: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

127

Table C-4. Laboratory analysis for percent organic carbon (%OC), percent organicmatter (%OM), and pH.

Site Location Depth %OC %OM pH (H20) pH (KCl)A1 0-5cm 1.52 3.70 7.6 7.1

5-10cm 0.96 2.70 7.6 7.5

A2 0-5cm 7.00 13.62 7.9 7.8

5-10cm 7.00 10.00 8.1 7.7

A3 0-5cm 7.00 14.62 7.8 7.1

5-10cm 0.99 3.00 8.1 7.5

A4 0-5cm 2.33 2.70 8.3 7.8

5-10cm 1.11 1.70 8.3 7.9

A5 0-5cm 7.00 22.00 8.3 7.8

5-10cm 7.00 21.00 7.6 7.4

A6 0-5cm 4.11 7.00 6.2 4.7

5-10cm 0.36 5.00 5.9 4.7

A7 0-5cm 0.64 4.30 6.8 6.6

5-10cm 0.18 3.70 6.8 5.9

A8 0-5cm 2.10 4.00 6.5 5.4

5-10cm 0.11 5.00 5.8 4.2

A9 0-5cm 0.58 2.00 5.9 4.5

5-10cm 0.23 2.00 5.5 4.3

A10 0-5cm 3.48 6.70 7.2 6.6

5-10cm 0.14 5.30 5.5 4.3

A11 0-5cm 4.19 5.30 6.4 5.4

5-10cm 0.47 5.30 5.7 4.5

A12 0-5cm 0.85 2.00 5.9 4.5

5-10cm 0.37 1.00 6.2 4.9

B1 0-5cm 0.38 5.30 5.4 4.2

5-10cm 0.11 4.30 5.1 3.9

B2 0-5cm 0.27 4.00 7.1 5.8

5-10cm 0.21 4.70 7.0 5.7

B3 0-5cm 0.23 4.30 6.7 6.0

5-10cm 0.11 3.70 5.5 4.0

B4 0-5cm 0.23 5.00 5.8 4.7

5-10cm 0.11 5.00 5.6 4.4

B5 0-5cm 0.24 8.60 5.1 4.6

5-10cm 0.18 4.30 5.1 4.2

Page 141: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

128

Table C-4. Continued

Site Location Depth %OC %OM pH (H20) pH (KCl)C1 0-5cm 1.72 11.00 7.0 5.8

5-10cm 0.54 7.00 6.8 5.6

C2 0-5cm 0.63 8.00 6.7 5.3

5-10cm 0.12 8.30 5.3 4.0

D1 0-5cm 0.78 3.60 6.1 5.5

5-10cm 0.75 2.60 6.2 5.6

Page 142: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

129

Table C-5. Metal Concentrations

Site Location Depth Cd Cr Zn Cu Ni Pb(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

A1 0-5cm 0 45.5 41 16.5 5.5 75-10cm 0 20 22 13 4 3

A2 0-5cm 2.5 262.5 720 99.5 29 615-10cm 2.5 180 558 102 31.5 64.5

A3 0-5cm 1.5 250 444 148 19 42.55-10cm 0 40 39 9 11.5 18.5

A4 0-5cm 0 160 41.5 12.5 6 115-10cm 0 20.5 30.5 12 5.5 13.5

A5 0-5cm 1 177.5 276.5 61 15 24.55-10cm 0 139 94.5 18 6.5 32.5

A6 0-5cm 0 44.5 41 235 11.5 23.55-10cm 0 35.5 13 6 10.5 21.5

A7 0-5cm 0 21 17.5 15 8 145-10cm 0 23 9.5 4 7.5 14.5

A8 0-5cm 0 29 13 10.5 10 16.55-10cm 0 12 22 3.5 4 3.5

A9 0-5cm 0 27.5 18.5 45.5 7 8.55-10cm 0 13 12 3.5 4.5 2.5

A10 0-5cm 0 39.5 14 5.5 9.5 165-10cm 0 29.5 12.5 3 7.5 16.5

A11 0-5cm 0 38 36.5 22.5 10.5 195-10cm 0 32 14.5 4 9.5 18.5

A12 0-5cm 0 38 10.5 19 6 75-10cm 0 41.5 6.5 5 3.5 0.5

B1 0-5cm 0 25.5 15.5 11.5 8 17.55-10cm 0 24 9 5.5 7 13.5

B2 0-5cm 0 24.5 17 7.5 7 145-10cm 0 30 11 6 7.5 13.5

B3 0-5cm 0 27 16 5.5 7.5 145-10cm 0 27 12 4 7.5 12.5

B4 0-5cm 0 22.5 20.5 15 7.5 145-10cm 0 22.5 18 15 8 13

B5 0-5cm 0.5 44.5 57 15.5 11.5 26.55-10cm 0 21 28.5 9.5 5.5 11.5

C1 0-5cm 0 38.5 40 41 10 31.55-10cm 0 47.5 35 16 10 21.5

C2 0-5cm 0 32 35 16.5 8.5 265-10cm 0.5 38.5 20.5 6 8 18.5

D1 0-5cm 0 20.5 32.5 3 2.5 4.55-10cm 0 23.5 35.5 3 3 5

Page 143: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

130

Table C-6. Metal concentrations compared to regulatory guidelines.

Metal (Cd)Site Concentration TEL PEL Residential Commercial

(mg/kg) (0.676 mg/kg) (4.21 mg/kg) (75 mg/kg) (1300 mg/kg)A2 0 - 5 cm 2.5 Yes No No NoA2 5 - 10 cm 2.5 Yes No No NoA3 0 - 5 cm 1.5 Yes No No NoA5 0 - 5 cm 1 Yes No No No

SQAGs SCTLs

Metal (Cr)Site Concentration TEL PEL Residential Commercial

(mg/kg) (52.3 mg/kg) (160 mg/kg) (210 mg/kg) (420 mg/kg)A2 0 - 5 cm 262.5 Yes Yes Yes NoA2 5 - 10 cm 180 Yes Yes No NoA3 0 - 5 cm 250 Yes Yes Yes NoA4 0 - 5 cm 160 Yes Yes No NoA5 0 - 5 cm 177.5 Yes Yes No NoA5 5 - 10 cm 139 Yes No No No

SQAGs SCTL

Metal (Cu)Site Concentration TEL PEL Residential Commercial

(mg/kg) (18.7 mg/kg) (108 mg/kg) (110 mg/kg) 76,000 mg/kg)A2 0 - 5 cm 99.5 Yes No No NoA2 5 - 10 cm 102 Yes No No NoA3 0 - 5 cm 148 Yes Yes Yes NoA5 0 - 5 cm 61 Yes No No NoA6 0 - 5 cm 235 Yes Yes Yes NoA9 0 - 5 cm 45.5 Yes No No NoA11 0 - 5 cm 22.5 Yes No No NoA12 0 - 5 cm 19 Yes No No NoC1 0 - 5 cm 41 Yes No No No

SQAGs SCTL

Page 144: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

131

Table C-6 (cont.)

Metal (Zn)Site Concentration TEL PEL Residential Commercial

(mg/kg) (124 mg/kg) (271 mg/kg) (23,000 mg/kg) (560,000 mg/kg)A2 0 - 5 cm 720 Yes Yes No NoA2 5 - 10 cm 558 Yes Yes No NoA3 0 - 5 cm 444 Yes Yes No NoA5 0 - 5 cm 276.5 Yes Yes No No

SQAGs SCTLs

Metal (Pb)Site Concentration TEL PEL Residential Commercial

(mg/kg) (30.2 mg/kg) (112 mg/kg) (400 mg/kg) (920 mg/kg)A2 0 - 5 cm 61 Yes No No NoA2 5 - 10 cm 64.5 Yes No No NoA3 0 - 5 cm 42.5 Yes No No NoA5 5 - 10 cm 32.5 Yes No No NoC1 0 - 5 cm 31.5 Yes No No No

SQAGs SCTLs

Metal (Ni)Site Concentration TEL PEL Residential Commercial

(mg/kg) (15.9 mg/kg) (42.8 mg/kg) (110 mg/kg) (28,000 mg/kg)A2 0 - 5 cm 29 Yes No No NoA2 5 - 10 cm 31.5 Yes No No NoA3 0 - 5 cm 19 Yes No No No

SQAGs SCTLs

Page 145: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

132

Table C-7. Regression analysis on all sites, n = 38.

All Samples - 0-10cm Outliers RemovedRegression r 2 p-value r 2 p-value

Cd vs. OM 0.2842 0.0006 0.4957 0Cr vs. OM 0.484 0 0.2671 0.0018Cu vs. OM 0.162 0.0123 0.2119 0.0062Ni vs. OM 0.2718 0.0008 0.5975 0Pb vs. OM 0.4441 0 0.7772 0Zn vs. OM 0.3377 0.0001 0.4426 0Cd vs. OC 0.5017 0 0.3208 0.0005Cr vs. OC 0.7373 0 0.5197 0Cu vs. OC 0.408 0 0.4716 0Ni vs. OC 0.5123 0 0.4371 0Pb vs. OC 0.5428 0 0.2838 0.0012Zn vs. OC 0.6089 0 0.5225 0Cd vs. % Clay 0.1674 0.0119 0.0222 0.4078Cr vs. % Clay 0.2197 0.0034 0.0678 0.1432Cu vs. % Clay 0.1164 0.0388 0.0493 0.2143Ni vs. % Clay 0.1006 0.0558 0.0011 0.8539Pb vs. % Clay 0.0509 0.1793 0.0228 0.4014Zn vs. % Clay 0.1755 0.0099 0.0231 0.3982

Cd vs. [H +] (in H 20) 0.0137 0.4834 0.0112 0.5521Cr vs. [H+] (in H 20) 0.0864 0.0733 0.0427 0.2411Cu vs. [H+] (in H 20) 0.0662 0.1189 0.0431 0.2385Ni vs. [H+] (in H 20) 0.0447 0.2028 0.0177 0.453Pb vs. [H+] (in H 20) 0.0368 0.2484 0.004 0.7216Zn vs. [H+] (in H 20) 0.0478 0.1872 0.0143 0.5008Cd vs. [H+] (in KCl) 0.0308 0.2917 0 0.9798Cr vs. [H+] (in KCl) 0.1097 0.0422 0.0602 0.1619Cu vs. [H+] (in KCl) 0.092 0.0641 0.0645 0.1472Ni vs. [H+] (in KCl) 0.0678 0.1144 0.0458 0.224Pb vs. [H+] (in KCl) 0.0728 0.1015 0.0316 0.3147Zn vs. [H+] (in KCl) 0.0689 0.1114 0.0365 0.279

Page 146: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

133

Table C-8. Regression analysis on all sites 0 – 5 cm, n = 19

All Samples - 0-5cm Outliers RemovedRegression r 2 p-value r 2 p-value

Cd vs. OM 0.4943 0.0008 0.5414 0.0008Cr vs. OM 0.4569 0.0015 0.2675 0.0335Cu vs. OM 0.168 0.0814 0.2109 0.0636Ni vs. OM 0.508 0.0006 0.829 0Pb vs. OM 0.4968 0.0008 0.9409 0Zn vs. OM 0.4701 0.0012 0.5373 0.0008Cd vs. OC 0.5682 0.0002 0.3752 0.009Cr vs. OC 0.6858 0.5008 0.0015Cu vs. OC 0.3714 0.0056 0.4087 0.0057Ni vs. OC 0.6353 0 0.583 0.0004Pb vs. OC 0.4516 0.0016 0.3156 0.0189Zn vs. OC 0.618 0.0001 0.5189 0.0011Cd vs. % Clay 0.2031 0.0528 0.0175 0.6126Cr vs. % Clay 0.3752 0.0053 0.1967 0.0746Cu vs. % Clay 0.1795 0.0706 0.133 0.1501Ni vs. % Clay 0.1286 0.1316 0.0016 0.88Pb vs. % Clay 0.032 0.4637 0.0496 0.3903Zn vs. % Clay 0.2438 0.0317 0.0549 0.3656Cd vs. [H +] (in H 20) 0.0028 0.8295 0.023 0.5613Cr vs. [H+] (in H 20) 0.0538 0.3391 0.027 0.5285Cu vs. [H+] (in H 20) 0.0502 0.3566 0.0377 0.4554Ni vs. [H+] (in H 20) 0.0027 0.8325 0.0197 0.591Pb vs. [H+] (in H 20) 0 0.9832 0.0261 0.5359Zn vs. [H+] (in H 20) 0.0303 0.4762 0.0073 0.7444Cd vs. [H+] (in KCl) 0.0543 0.3372 0.0128 0.665Cr vs. [H+] (in KCl) 0.118 0.1499 0.0737 0.2919Cu vs. [H+] (in KCl) 0.0986 0.1906 0.0774 0.2795Ni vs. [H+] (in KCl) 0.0318 0.4653 0.0004 0.9386Pb vs. [H+] (in KCl) 0.0282 0.4919 0.0027 0.8424Zn vs. [H+] (in KCl) 0.0755 0.2549 0.0406 0.438

Page 147: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

134

Table C-9. Regression analysis on all samples, 5 – 10 cm, n = 19

All Samples - 5-10cm Outliers RemovedRegression r 2 p-value r 2 p-value

Cd vs. OM 0.0805 0.2391 0.3206 0.0178Cr vs. OM 0.5583 0.0002 0.1163 0.1804Cu vs. OM 0.123 0.1409 0.0048 0.7906Ni vs. OM 0.4016 0.228 0.2599 0.0366Pb vs. OM 0.3741 0.0054 0.406 0.0059Zn vs. OM 0.143 0.1104 0.0178 0.6099Cd vs. OC 0.4249 0.0025 0.0366 0.4619Cr vs. OC 0.9156 0 0.0262 0.5348Cu vs. OC 0.573 0.0002 0.2552 0.0386Ni vs. OC 0.381 0.0049 0.0075 0.7408Pb vs. OC 0.6419 0 0.0017 0.8759Zn vs. OC 0.6055 0.0001 0.3807 0.0083Cd vs. % Clay 0.1328 0.1371 0.1017 0.2288Cr vs. % Clay 0.0729 0.2784 0.047 0.42Cu vs. % Clay 0.0914 0.2228 0.011 0.011Ni vs. % Clay 0.0833 0.2454 0 0.9857Pb vs. % Clay 0.0803 0.2545 0.0015 0.8884Zn vs. % Clay 0.1076 0.1839 0.001 0.9079

Cd vs. [H +] (in H 20) 0.0185 0.5785 0.0736 0.2923Cr vs. [H+] (in H 20) 0.1145 0.1564 0.1037 0.2076Cu vs. [H+] (in H 20) 0.0622 0.3032 0.0464 0.4064Ni vs. [H+] (in H 20) 0.072 0.2666 0.0684 0.3107Pb vs. [H+] (in H 20) 0.0797 0.2416 0.0164 0.6247Zn vs. [H+] (in H 20) 0.0532 0.3421 0.0239 0.5536Cd vs. [H+] (in KCl) 0.0171 0.5941 0.1512 0.123Cr vs. [H+] (in KCl) 0.1224 0.142 0.0692 0.3078Cu vs. [H+] (in KCl) 0.0885 0.2162 0.1574 0.1239Ni vs. [H+] (in KCl) 0.0618 0.3049 0.0274 0.5259Pb vs. [H+] (in KCl) 0.0768 0.2506 0.0049 0.7901Zn vs. [H+] (in KCl) 0.0697 0.2747 0.1287 0.1574

Page 148: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

135

Table C-10. Regression analysis on cell 1, 0 – 5 cm, n = 12

All Samples - 0-5cm Cell 1 Outliers RemovedRegression r 2 p-value r 2 p-value

Cd vs. OM 0.5431 0.0063 0.7806 0.0007Cr vs. OM 0.5294 0.0073 0.4792 0.0265Cu vs. OM 0.1607 0.1965 0.35 0.0716Ni vs. OM 0.5194 0.0082 0.9056 0Pb vs. OM 0.4573 0.0158 0.9277 0Zn vs. OM 0.5165 0.0085 0.7912 0.0006Cd vs. OC 0.6381 0.0018 0.5551 0.0134Cr vs. OC 0.6486 0.0016 0.4643 0.03Cu vs. OC 0.2773 0.0786 0.3438 0.0748Ni vs. OC 0.706 0.0006 0.802 0.0005Pb vs. OC 0.6957 0.0007 0.8372 0.0002Zn vs. OC 0.6399 0.0018 0.5957 0.0089Cd vs. % Clay 0.1967 0.1487 0.0155 0.732Cr vs. % Clay 0.3277 0.0518 0.1545 0.2612Cu vs. % Clay 0.1329 0.2439 0.1087 0.3522Ni vs. % Clay 0.1176 0.2752 0.0046 0.8518Pb vs. % Clay 0.1221 0.2655 0.0005 0.9496Zn vs. % Clay 0.2209 0.1232 0.0379 0.59

Cd vs. [H +] (in H 20) 0.1549 0.2056 0.0815 0.4238Cr vs. [H+] (in H 20) 0.2627 0.0884 0.1824 0.2184Cu vs. [H+] (in H 20) 0.1349 0.2403 0.1176 0.332Ni vs. [H+] (in H 20) 0.0554 0.4615 0.0002 0.9722Pb vs. [H+] (in H 20) 0.0622 0.4345 0.0044 0.856Zn vs. [H+] (in H 20) 0.1626 0.1936 0.099 0.3758Cd vs. [H+] (in KCl) 0.1134 0.2845 0.0581 0.5025Cr vs. [H+] (in KCl) 0.1906 0.1559 0.1277 0.3107Cu vs. [H+] (in KCl) 0.1445 0.2229 0.1285 0.3092Ni vs. [H+] (in KCl) 0.0471 0.4981 0.0004 0.9554Pb vs. [H+] (in KCl) 0.0559 0.4592 0.0092 0.7923Zn vs. [H+] (in KCl) 0.1204 0.2692 0.0723 0.4525

Page 149: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

APPENDIX DREGRESSION ANALYSIS

Page 150: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure D-1. Regression curve for Cr, Ni, Pb and Zn; all points are observed.

0.0

75.0

150.0

225.0

300.0

0.0 6.3 12.5 18.8 25.0

Cr vs X_OM

X_OM

Cr

-200.0

50.0

300.0

550.0

800.0

0.0 6.3 12.5 18.8 25.0

Zn vs X_OM

X_OM

Zn

0.0

8.8

17.5

26.3

35.0

0.0 6.3 12.5 18.8 25.0

Ni vs X_OM

X_OM

Ni

0.0

20.0

40.0

60.0

80.0

0.0 6.3 12.5 18.8 25.0

Pb vs X_OM

X_OM

Pb

rr22 == 00..4444

rr22 == 00..2277

rr22 == 00..3344

rr22 == 00..4488

AAllll DDaattaa PPooiinnttss

137

Page 151: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure D-2. Regression curve for Cr, Ni, Pb and Zn, with outliers removed

0.0

62.5

125.0

187.5

250.0

0.0 4.0 8.0 12.0 16.0

Cr vs X_OM

X_OM

Cr

-100.0

50.0

200.0

350.0

500.0

0.0 4.0 8.0 12.0 16.0

Zn vs X_OM

X_OM

Zn

0.0

5.0

10.0

15.0

20.0

0.0 4.0 8.0 12.0 16.0

Ni vs X_OM

X_OM

Ni

0.0

12.5

25.0

37.5

50.0

0.0 4.0 8.0 12.0 16.0

Pb vs X_OM

X_OM

Pb

rr22 == 00..7788

rr22 == 00..6600

rr22 00..4444

rr22 == 00..2266

OOuuttlliieerrss RReemmoovveedd

138

Page 152: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure D-3. Regression analysis for Pb and Ni in the top 5 cm of soil for every site throughout the entire basin.

5.0

15.0

25.0

35.0

45.0

2.0 5.5 9.0 12.5 16.0

Pb vs X_OM

X_OM

Pb

4.0

8.0

12.0

16.0

20.0

2.0 5.5 9.0 12.5 16.0

Ni vs X_OM

X_OM

Ni

rr22 == 00..9944 rr22 == 00..7766

EEnnttiirree BBaassiinn:: 00 -- 55 ccmm

139

Page 153: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

Figure D-4. Regression analysis for Pb and Ni in top 5 cm of soil for sites located in cell 1.

5.0

15.0

25.0

35.0

45.0

2.0 5.5 9.0 12.5 16.0

Pb vs X_OM

X_OM

Pb

4.0

8.0

12.0

16.0

20.0

2.0 5.5 9.0 12.5 16.0

Ni vs X_OM

X_OM

Ni

rr22 == 00..9944 rr22 == 00..7766

EEnnttiirree BBaassiinn:: 00 -- 55 ccmm

140

Page 154: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

141

REFERENCES

Agency for Toxic Substances and Disease Registry. Toxprofiles, updates information on hazardous substances. 2001. ATSDR, Atlanta, Georgia. Accessed 6/10/02. www.atsdr.cdc.gov/.

Agvise Laboratories, Soil Organic Matter: A Choice of Methods. 2001. Accessed6/6/02. www.agviselabs.com/.

Alachua, County of, Title 34, Chapter 343, Stormwater Management. 1992. CountyOrdinance, Gainesville, Florida. Accessed 6/15/02. http://livepublish.municode.com

Alachua, County of, Title 4, Chapter 44, Stormwater Management Utility. 1996. CountyOrdinance, Gainesville, Florida. Accessed 6/15/02. http://livepublish.municode.com

Athayde, D.N., Shelley, P.E., Driscoll, E.D., Gaboury, D., & Boyd, G. “Results of theNational Urban Runoff Program (NURP).” Executive Summary. 1983. U.S. Environmental Protection Agency, Washington D.C.

Beville, Bishop. 1988. Soil Boring Analysis at UF Basin #8. Bishop Beville & Associates, Inc, Gainesville, Florida.

Broadbent, F.E. “Organic Matter.” In C.A. Black (ed). Methods of Soil Analysis, Part 2. Agronomy 9. 1965. pp. 1397-1400. Am. Soc. Of Agron., Inc. Madison, Wisconsin.

Carleton, J.N., Grizzard, T.J., Godrej, A.N., & Post, H.E. “Factors Affecting The Performance of Stormwater Treatment Wetlands.” Journal of Water Resources, Vol. 35, No. 6. 2001. pp 1552-1562, 2001.

Carr, D.W. and Rushton, B.T. “Integrating A Native Herbaceous Wetland Into Stormwater Management.” 1995. Southwest Florida Water Management District, 2379 Broad St., Brookesville, Florida.

Page 155: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

142

Chen, M., Ma, L.Q., and Harris, W.G. “Baseline Concentrations of 15 Elements In Florida Surface Soils.” Journal of Environmental Quality, Vol. 28. 1999. pp. 1173-1181.

Cheng, S.P., Grosse, W., Karrenbrock, F., and Thoennessen, M. “Efficiency of constructed wetlands in decontamination of water polluted by heavy metals.”Ecological Engineering, vol. 18. 2002. pp. 317-325.

Cox, J.H., Allick, S., and Be, E. “Characterization of Stormwater Contaminated Sediment and Debris for Determining Proper Disposal Methods.” 1998. Florida Department of Environmental Protection, Division of Water Facilities, 2600 Blairstone Road. Tallahassee, Florida.

Day, P.R. “Particle Fractionation and Particle Size Analysis.” In: C.A. Black (ed). Methods of Soil Analysis, Part I. Agronomy 9. 1965. pp. 545-567.

Fischer, D., Charles, E.G., Baehr, A.L. “Effects of Stormwater Infiltration on Quality of Groundwater Beneath Retention and Detention Basins.” Journal of Environmental Engineering, Vol. 129, No. 5. 2003. pp. 464-471.

Florida Department of Environmental Protection. Model Local Government Stormwater Management Program. , Stormwater/Nonpoint Source Management Section, FDEP, 1993. 2600 Blairstone Road. Tallahassee, Florida.

Florida Department of Environmental Protection. Non-Point Source Management, Urban Stormwater Program. FDEP. 2001. Accessed 6/16/02.http://www.dep.state.fl.us/water/nonpoint/urban1.htm

Florida Department of Environmental Protection. Chapter 62-25 F.A.C., Regulation of Stormwater Discharge. 1995. FDEP. Tallhassee, Florida.

Florida Department of Environmental Protection. Chapter 62-777 F.A.C., Contaminant Cleanup Target Levels. 1999. FDEP. Tallhassee, Florida.

Florida Department of Environmental Protection. Soil Quality Assessment Guidelines forCoastal Sediments. 2000. Technical Document. FDEP. Tallhassee, Florida.

Gainesville, City of, Chapter 30, Section 30-270, Stormwater Management Generally; Erosion and Sedimentation Control; Design and Maintenance of Facilities. City Ordinance. 1992. Gainesville, Florida. Accessed 6/15/02. http://livepublish.municode.com

Gainesville, City of, Chapter 27, Article V, Section 27-238, Stormwater Management Utility, Established. City Ordinance. 1998. Gainesville, Florida. Accessed 6/15/02. http://livepublish.municode.com

Page 156: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

143

Goulet, R.R. and Pick, F.R. “The effects of cattails (Typha latifolia L.) on concentrationsand partitioning of metals in surficial sediments of surface-flow constructedwetlands.” Water Air and Soil Pollution. Vol. 132. 2001. pp. 275-291.

Igloria, R.V., Hathhorn, W.E., Member, ASCE, and Yonge, D.R. “NOM And Trace metal Attenuation During Stormwater Infitration.” Journal of HydrologicEngineering. Vol. 2, No. 3. July 1997. ASCE, ISSN.

Kao, C.M., Wang, J.Y., Lee, H.Y. and Wen, C.K. “Application of a constructed wetland for non-point source pollution control.” Water Science and Technology. Vol. 44 (11 – 12). 2001. pp. 585-590.

Keller, C. and Vedy, J.C. “Distribution of Copper And Cadmium Fractions In Two Forest Soils.” Journal of Environmental Quality. Vol. 23. 1994. pp. 987-999.

Lawrence, A.L., Marsalek, J., Ellis J.B., and Urbonas, B. “Stormwater detention & BMPs.” Journal of Hydraulic Research, Vol. 34, No. 6. 1996. pp. 799-813.

Livingston, E.H. and J.H. Cox. “Stormwater Sediments: Hazardous Waste orDirty Dirt?” Proceedings of the 4th Biennial Stormwater Research Conference. 1995. Published by Southwest Florida Water Management District, Brooksville, Florida.

Livingston, E.H. and McCarron, E. Stormwater Management: A Guide for Floridians. 1991. Florida Department of Environmental Regulation, Stormwater/Nonpoint Source Management, 2600 Blairstone Road. Tallahassee, Florida.

Mikkelsen, P.S., Hafliger, M., Ochs, M., Jacobsen, P., Tjell, J.C., and Boller, M.“Pollution of Soil And Groundwater From Infiltration of Highly Contaminated Stormwater – A Case Study.” Journal of Water Science Technology. Vol. 36. 1997. pp.325-330.

Rushton, B.T. and Dye, C.W. An In-Depth Analysis Of A Wet Detention Stormwater System. 1993. Southwest Florida Water Management District, 2379 Broad St. Brooksville, Florida.

Southwest Florida Water Management District. Comprehensive Quality Assurance Plan.1993. Southwest Florida Water Management District, 1379 Broad St. Brooksville, Florida.

St. John River Water Management District. Chapter 40C-4, Environmental Resource Permits: Surface Water Management Systems. 1995. SJRWMD, Palatka, Florida.

Page 157: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

144

Still, David. Suwannee River Water Management District. Telephone Interview. 14 Sept. 2000.

Thomas, B.P., Cummings, E. and Wittstruck, W.H. Soil Survey of Alachua County. 1985. Soil Conservation Service, United States Department of Agriculture.

University of Florida. Undated. Natural Area Teaching Laboratory. Accessed 5/1/03.http://natl.ifas.ufl.edu/natluses).

Walker, D.J., and Hurl, S. “The reduction of heavy metals in a stormwater wetland.” Ecological Engineering. VOL.18. 2001. pp. 407-414.

Walkley, A. and Black, I.A. 1934. “Chemical Analysis: Organic Carbon”. Soil Survey Laboratory Methods Manual, 1996. Report No. 42, Version 3.0, pg. 222. United Stated Department of Agriculture.

Wetlands Club, University of Florida. Undated. Stormwater Ecological Enhancement Project. Handout Brochure. Gainesville, Florida.

Page 158: EVALUATION OF SELECTED HEAVY METAL ......EVALUATION OF SELECTED HEAVY METAL CONCENTRATIONS IN SOILS OF AN URBAN STORMWATER RETENTION BASIN By MARK S. LANDER A THESIS PRESENTED TO THE

145

BIOGRAPHICAL SKETCH

Mark Stanton Lander was born April 2, 1965, in Naples, Florida. He graduated

from Naples High School in 1983 and entered Edison Community College in Fort Myers,

Florida.

Upon completion of community college requirements, Mr. Lander entered the

University of Florida, College of Agriculture, and was awarded a bachelor’s degree in

food and resource economics in 1989. After graduation, he became employed by the

Florida Department of Health conducting studies in sewage disposal practices along the

Suwannee River, in North Florida. In 1994, Mr. Lander accepted a position with the

Alachua County Health Department as an Environmental Specialist and was later

promoted to water/waster supervisor.

In 1998, Mr. Lander re-entered the University of Florida to pursue a Master of

Science degree with specialization in urban soils. In September of 2003, he accepted a

position at the Columbia County Health Department, as Director of Environmental

Health. After graduation, Mr. Lander will continue his work in the environmental health

field.