51
Alison Oates & Maria Taranto VEGETATION MAPPING OF THE PORT PHILLIP & WESTERNPORT REGION Arthur Rylah Institute for Environmental Research November 2001

EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

Alison Oates & Maria Taranto

VEGETATION MAPPING OF THEPORT PHILLIP & WESTERNPORT

REGION

Arthur Rylah Institute for Environmental Research

November 2001

Page 2: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

VEGETATION MAPPING OF THE

PORT PHILLIP & WESTERNPORT

REGION

Alison Oates & Maria Taranto

Arthur Rylah Institute for Environmental Research

November 2001

Page 3: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

The State of Victoria, Department of Natural Resources and Environment

http://www.nre.vic.gov.au

This publication is copyright. Apart from any fair dealings for the purposes of private study, research,

criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied,

transmitted in any form or by any means (electronic, mechanical or graphic) without prior permission

of the State of Victoria, Department of Natural Resources and Environment. All requests and enquiries

should be directed to the Copyright Officer, Library Information Services, Department of Natural

Resources and Environment, 5/250 Victoria Parade, East Melbourne, Victoria 3002.

ISBN 0 7311 5104 6

General Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not

guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular

purposes and therefore disclaims all liability for any error, loss or other consequence which may arise

from you relying on any information in this publication.

Photographs:

Front Cover: Alison Oates and Maria Taranto except top left-hand photograph (Jim

Robinson, Greening Australia, Victoria).

Page 4: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

i

ACKNOWLEDGMENTS

The authors would like to acknowledge the direct assistance and support of many people who have

contributed to this project. Completion of this project, within a limited time frame, was only

accomplished by the combined efforts of several people including staff of the Arthur Rylah Institute

(ARI), consultants, local governments and other agencies including Parks Victoria. In particular, we

would like to acknowledge the following people and organisations that assisted with this project.

Firstly, thanks must go to David Parkes (Principal Policy Analyst, Flora & Fauna Directorate, NRE)

for his continued support of the project and maintaining calm through all the storms. ARI staff

members, aside from the authors, who carried out the vegetation mapping were David Rankin, Kylie

Singleton and Jaimie Brown. Several other ARI staff members were also drawn into the project

before its completion date. Michelle Tumino, Judy Downe, Jane Dickins, Geoff Sutter and Obe Carter

answered our call for help during the project and the combined effort from these persons was

invaluable. A special thanks to Jaimie Brown for assisting in formatting and editing the final report.

Thanks also to Dale Tonkinson for sharing his knowledge of the Mornington Peninsula and finally, but

not least, David Cheal and Vivienne Turner, for keeping us on track. Three ecological consultants

worked on this project. Doug Frood not only completed a considerable proportion of the pre-1750

mapping, over and beyond his commitment, but he generously gave more of his time over many cups

of coffee to help with EVC descriptions and clarify typology. Randall Robinson showed us all that it

is possible to work to deadlines. Jeff Yugovic shared his insight on a landscape close to his heart, the

Mornington Peninsula. We gratefully acknowledge the contribution made by each of these

consultants.

Australian Research Centre for Urban Ecology (ARCUE) was contracted to map extant vegetation in

Inner Melbourne. In particular we would like to thank Mark McDonnell, Nick Williams, Emma Leary

and Jeannie Campbell.

Numerous other NRE staff must be acknowledged, including Karen Lester (Box Hill) for being our

liaison with local government agencies, John Davies (formerly of the Warragul office) for invaluable

assistance in the field and Susan Taylor (Yarram) for assistance in locating sites in the Inverloch area.

Rodney Thomas (Box Hill) for his technical expertise in regard to GIS related matters, Frank

Cardamone (Yarram) for access to his property at Wonthaggi, Samuel Blaschke, Bill Constantineas

and Liz Patterson (Box Hill) for allowing us to borrow a large proportion of their aerial photographs.

We thank the numerous staff of Parks Victoria who enabled access to reserves and national parks as

well as providing assistance and information when needed. In particular we would like to thank the

following. Wonthaggi Office: Mike Wellings, Brian Martin & Danny Drummond, French Island:

Mick Douglas, Aaron Leddon, Churchill National Park and Lysterfield Lake Park:

Page 5: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

ii

Mick Vanderbreed, Mornington Westernport District: Scott Coutts and Brett Manders, Coolart

Reserve: Brian Thomas and Organ Pipes National Park and Brimbank Park: Ann Casey. Also staff of

Phillip Island Nature Park, in particular Peter Dan, Research Manager and Scott Campbell, Churchill

Island.

Local councils have provided invaluable information and assistance. We would especially like to

thank the following people: Paul Smith, Derek Hibbett (Bass Coast Shire) and Sue Harris (Cardinia

Shire) for the loan of aerial photographs, and Garrique Pergl (Mornington Shire), Ian Stevenson (City

of Casey) and Alan Brennan (Melton Shire).

We would like to acknowledge the following people who provided ARCUE with valuable assistance

while mapping inner Melbourne, Banyule: Pat Vaughan and Lisa Kermode. Bayside: Amy Weir and

Boroonadara: Gaynce McMurtry. Peter Lynch of Parks Victoria, Yarra Bend and Darebin: Adam

Shalakof. Adrian Daniell at Latrobe University Wildlife Reserves, Darebin Parklands and Glen Eira:

Paul Kaines of the Glen Eira Environment Group. Greater Dandenong: John Wisniewski and Andrew

Shannon, Hobsons Bay. Mark Cullen of Parks Victoria, Cheetham Wetlands. Kingston: Doug Evans

and Luke Murphy, Knox. Ian Marshall of Parks Victoria, Lysterfield Park and Libby Ward of

Manningham. Maribyrnong: Gavin Mountjoy, Maroondah: Brad Curtis and Melbourne: Ian Shears.

Monash: Kim Watson, Michael Grant; Moonee Valley: Jo Connor, Gavin O’Neill of Moonee Ponds

Creek Co-ordination Committee; Moreland: Alastair Phillips, Judy Bush and Brian Bainbridge of the

Merri Creek Management Committee. Port Phillip: Rob Scott of Naturelinks, Neil Blake of Port

Phillip Eco-centre; Stonnington: Mark Phillips; Whitehorse:David Stewart, Lindsay Bergin of Parks

Victoria, Sheperds Bush, Minette Russell-Young of Greenlink Box Hill; Yarra: Sylvana Predebon.

The project has had great support from Michael Conroy and George Mifsud from the Land

Information Group. Michael and George endured our continual demands for maps to be formatted and

produced to our specifications. Thanks also to Land Information & Cartographic Services (LICs),

especially Eric Greenwood, who had the unenviable task of digitising the maps. Thanks for being so

tolerant during the difficult editing phase. Acknowledgement must be given to members of local

communities who were eager to provide support. In particular we thank Murray and Wendy McIntosh

of Pakenham and Paul Spiers and Roy Ruddle from Archies Creek and Mike Free from Mt Martha for

giving us access to their private properties. Clive and Fay Gordes of French Island, for their local

botanical knowledge; Gidga Walker from Mornington Peninsula; Anne Westwood, for sharing her

local knowledge of the Grantville area and allowing us to borrow reports; Mark Marsden (geologist)

for allowing us to borrow geological maps and reports of the Westernport area. Several other

individuals and organisations provided assistance. Ecology Australia and Biosis Research for

Page 6: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

iii

allowing us access to reports (only with the approval of clients). Damien Cook for providing

information on the distribution of Plains Grassy Wetland sites. Gunther Scheffield, Charlie Birill and

Andrew McBride for access to the General Motors Holden Proving Ground, Lang Lang. Staff of

HMAS Cerberus and the Flinders Naval Base for access to land at the bases. Chris O’Brien for access

to land in the vicinity of Norris Barracks, Portsea and Luke Johnston, Claire Moxham and Simon Scott

for assistance in the field.

Page 7: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

iv

SUMMARY

The Port Phillip region has significant remnant vegetation that is continually under threat by an

expanding population and pressures of urban and industrial development. Threats to remnant

vegetation in this region have been intensified by the lack of broad scale mapping of extant vegetation

that would otherwise enable a more scientific approach to conservation and management. This project

represents a milestone for the conservation of remnant vegetation in the Port Phillip and Westernport

area. Whilst there have been numerous small studies on the native vegetation of localized areas

throughout the study area, it has never been mapped so extensively, including all private and public

land. The mapping completed for this project now represents the most accurate, broad-scale mapping

of remnant vegetation in the Port Phillip and Westernport region. In addition, pre-1750 mapping

provides a glimpse of the vegetation that blanketed the landscape over 250 years ago. In combination,

the mapping of remnant and pre-1750 vegetation allows issues of conservation and management to be

negotiated in the context of past and present distribution.

The EVC mapping of extant vegetation of the Port Phillip and Westernport region is based on detailed

interpretation of aerial photograph images and extensive fieldwork. It is hoped that all land managers,

including local government agencies and staff of Parks Victoria, use this resource as a basis for future

conservation and management decisions. These maps will provide a valuable resource for

development of planning scheme overlays, assist land managers in protecting the remaining flora and

fauna sites of significance and guide local efforts to plant suitable indigenous vegetation within the

region.

Page 8: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

v

TABLE OF CONTENTS PAGE NO.

ACKNOWLEDGMENTS i

SUMMARY iv

INTRODUCTION 1

STUDY AREALOCATION & BOUNDARY 2GEOLOGY 5CLIMATE 13

TERMINOLOGY

ECOLOGICAL VEGETATION CLASS 15FLORISTIC COMMUNITY 15CHARACTER SPECIES 15INDICATOR SPECIES 15COMPLEX 16MOSAIC 16

NOMENCLATURE 16

METHODS

EXTANT VEGETATION (1:25 000) 16Floristic Analyses 17Capture of Botanical and Spatial Data

Base-map Scale 18Authorship of 1:25 000 Tiles 19Interpretation of Aerial Images(hard copy & digital images) 19Development of EVC Mapping Units 22Aerial Photograph Interpretation (API) 23Digitising and API 23Field Assessment 24Methodology for EVC Mapping ofInner Melbourne 25

Page 9: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

vi

MODELLING PRE-1750 VEGETATIONBase Mapping Scale 28Authorship of 1:100 000 Map Tiles 28Method 29Comments on Pre-1750 VegetationMapping 29

EVC MAPPING & THE CORPORATE GEOGRAPHIC DATA LIBRARY 29

RESULTS

DESCRIPTION OF ECOLOGICAL VEGETATION CLASSES, FLORISTICCOMMUNITIES, MOSAICS, COMPLEXES & FORMATIONS

(See Appendices 1-3) 31

RECOMMENDATIONS FOR FUTURE WORK 32

BIBLIOGRAPHY 34

FURTHER READING 36

LIST OF FIGURES1. Study Area in relation to Local Government Areas 42a. Mean Daily Temperature 142b. Mean Number of Rain Days 142c. Mean Monthly Rainfall. 143. Study Area Boundary in relation to 1:25 000 Map Tiles 204. Allocation of Study Area to Mapping Team for Extant Mapping 21

LIST OF TABLES1. A Summary of the Geological History of the Study Area. 6

APPENDICES

1. Numerical Listing of Ecological Vegetation Classes, associated FloristicCommunities, Mosaics, Complexes and Formations.

2. Alphabetical Listing of Ecological Vegetation Classes, associated FloristicCommunities, Mosaics, Complexes and Formations.

3. Description of Ecological Vegetation Classes, associated FloristicCommunities, Mosaics, Complexes and Formations.

Page 10: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

1

INTRODUCTION

Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest

Agreements (RFAs), driven by a need to determine a Forest Reserve System. However, due to the

scale of vegetation mapping produced, a wide application for a variety of other purposes has arisen,

including conservation and management of native flora. EVC mapping constitutes baseline data for

planning decisions at all levels of government and is invaluable data for the conservation and

management of remnant vegetation and for the development of revegetation programs. It has become

one of the key data sets used in terrestrial biodiversity management.

RFA mapping has been completed for over two-thirds of Victoria, including public and private land.

Victorian RFAs include the Central Highlands, the West and the North-East of the state, Gippsland

and East Gippsland. Prior to this study, the main areas in Victoria that had been excluded from EVC

mapping were the Wimmera/Little Desert areas, the Northern Plains, inner Melbourne, the

Mornington Peninsula and surrounds of Westernport. However, the significance of remnant

vegetation in the Port Phillip and Westerport region has necessitated mapping for conservation and

management purposes.

Whilst EVC mapping throughout Victoria represents a milestone for the conservation of native

vegetation, it is nonetheless a first draft. Future mapping of remnant vegetation, at a finer scale than

1:25 000 (the scale at which remnant vegetation was mapped in Port Phillip and Westernport) will

continue to improve this first draft. EVC mapping has been completed at a higher resolution for some

areas, for example, Phillip Island, and the Hurstbridge township.

The aims of this project were threefold.

1. To map all existing native vegetation, regardless of land tenure, to Ecological Vegetation

Class at a scale of 1:25,000.

2. To model pre-1750 (pre-European settlement) vegetation at a scale of 1:100,000.

3. To provide a brief report detailing the methods used and descriptions of the EVCs

mapped.

Maps will be incorporated into the NRE Corporate Geographical Data Library.

Page 11: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

2

STUDY AREA

LOCATION & BOUNDARY

The Port Phillip and Westernport study area is approximately 10 000 km2. Figure 1 (p.4) shows the

boundary of the study area in relation to Local Government Areas. In the north-west the study area

includes the entire Melbourne tile and is bounded by the existing West Regional Forest Agreement

(RFA) EVC mapping. In the north-east, the study area includes the entire Ringwood 1:100 000 tile

and is bounded by the existing Central Highlands RFA EVC mapping. In the south-east it includes the

western half of the Warragul 1:100 000 tile and the north-west quarter of the Wonthaggi 1:100 000 tile

and is bounded by the existing Gippsland EVC mapping. The study area also includes the entire

Westernport and Woolamai 1:100 000 tiles. The high water mark of the Mornington Peninsula, within

the Sorrento 1:100 000 tile marks the south-western boundary of the study area.

The study area encompasses 34 local government areas (LGAs) in the Port Phillip and Westernport

catchment, from Wyndham and Melton in the west, to Bass Coast in the east. Local Government

Areas within the boundary of the study area include those within inner Melbourne (Brimbank,

Boroondara, Bayside, Banyule, Darebin, Greater Dandenong, Glen Eira, Hobsons Bay, Kingston,

Knox, Monash, Maribyrnong, Maroondah, Manningham, Melbourne, Moreland, Moonee Valley, Port

Phillip, Stonnington, Whitehorse and Yarra) and outer Melbourne (Bass Coast, Cardinia, Casey,

Frankston, Greater Geelong, Hume, Melton, Moorabool, Mornington Peninsula, Nillumbik,

Whittlesea, Wyndham and Yarra Ranges) (Fig. 1). French Island was also mapped in this study and is

not part of a local government area.

ENVIRONMENTAL CHARACTERISTICS OF THE STUDY AREA

This study area has a distinctive geological history. In particular three distinctive geological

formations in inner Melbourne merge. These three formations are the Volcanic Plains (‘Werribee

Plains’) of the west, the Silurian-derived sedimentary hills in the east and north-east and the Tertiary

sands that extend from central Melbourne through the south-east to Frankston and inland to Springvale

and Cranbourne.

Distinctive environmental variation across the Port Phillip and Westernport region is also strongly

influenced by climate, which in turn is associated with altitude. The hills in the east and north-east

have a higher rainfall than the Volcanic Plains of the west and north-west. In addition to the

distinctive merging of geology and climate on a broad scale within the inner Melbourne area, the

complex of environmental characteristics throughout Mornington Peninsula and Westernport

contribute significantly to the uniqueness of coastal and near coastal areas.

Page 12: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

3

The following summaries of geology and climate provide a brief overview of the differences across

the study area. More detailed information is available in a range of publications (e.g. Society for

Growing Australian Plants Maroondah, Inc., 1991; Land Conservation Council, 1973; Tickell, 1992;

Spencer-Jones et al 1975 and Jenkin, 1962).

Page 13: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

4

Page 14: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

5

Geology and a Brief Comment on Soil and Plant Associations

There are three predominant geological formations in the study area. These are the Tertiary and

Quaternary Volcanic Plains (‘Werribee Plains’) of the west; the Silurian-derived sedimentary hills in

the east and north-east, and the Tertiary sediments that extend from central Melbourne to Cape

Schanck in the south-east and inland to Springvale and Cranbourne. In addition to the main geological

formations, several others occupy smaller parts of the study area including Ordovician marine

sediments in the north-west and Mornington Peninsula, Cambrian volcanics and marine sediments

(predominantly in the north-east and east) and Cretaceous sediments in the south-east. A summary of

the main geological events that have shaped the present-day landform, including the distribution of

geology, soil types, and topography, is given in Table 1 (pp.6-7). Additional discussion of geology

and brief comment on soil and vegetation associations is provided below. The discussion is divided

on the basis of seven broad regions. These regions are the Melbourne 1:100 000 tile, the Ringwood

1:100 000 tile, Mornington Peninsula, the northern half of Westernport, the Cardinia Shire on the

Warragul 1:100 000 tile, Phillip Island and French Island. The following discussion is drawn from

several sources including EVC mapping of extant vegetation, maps by the Geological Society of

Victoria, Society for Growing Australian Plants Maroondah (1991) and Quinn and Lacey (1999).

Melbourne 1:100 000 tile

Landform of the northern and western regions of Melbourne, within the Melbourne 1:100 000 tile, has

been strongly influenced by volcanic activity during the late Quaternary and early Tertiary periods

(Table 1). Volcanic activity during these periods formed expansive, low-lying and undulating basalt

plains, along with occasional rocky outcrops of earlier geological origins (Society for Growing

Australian Plants Maroondah 1991). The soil derived from the basalt plains is mainly fertile, poorly

drained, heavy cracking clays. These heavy clay soils, low rainfall and strong winds are ideal in

promoting the formation of grasslands and grassy wetlands. Hence, the Basalt Plains of the west are

home to the grasslands and grassy wetlands which once extensively covered this region. Whilst the

basalt plains dominate, Quaternary and Recent sediments occur around Werribee, Port Melbourne and

through the north-west. Tertiary sands from the south-east and Silurian sediments from the east merge

in the Melbourne CBD.

Ringwood 1:100 000 tile

The predominant feature to the east and north-east of Melbourne is the merging of the basalt plains of

the north and west with Silurian sediments from the east and Tertiary sands from the south.

Page 15: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

6

Table 1. A Summary of the Geological History of the Study Area, taken from LCC (1973).Era Period Timea Summary of Geological Events within the Study Area

Quaternary Today

1.8 Ma

Pleistocene EpochLate Pleistocene– Ice Age (approx. 20 000 years before present).The close of the ice age (approx. 18 000 years before present)resulted in an increase in sea level causing Port Phillip andWesternport sunklands to flood and separating Tasmania fromVictoria.Sedimentation in the Werribee and Yarra deltas, in the Carrum andKooweerup swamps, and in Port Phillip reflects the influence of sealevel changes during the ice ages.Middle Pleistocene – developing drainage systems dissected thePliocene sediments and volcanics. Wide valleys were eroded alongthe main streams and thin veneers of alluvial sediments deposited.

Tertiary 1.8 Ma

5 Ma

Pliocene EpochDifferential erosion of hard and soft rock responsible for presentlandscape.

5 Ma

23 Ma

Miocene EpochLate Miocene – basalt (newer volcanics) flows formed extensivesheets of the Werribee Plains. Extrusions of new volcanics(Quaternary in origin) were mostly restricted to relatively smallareas. Extrusions occurred from a larger number of small vents,many of which are still preserved as low hills throughout the plains.Continued extrusion of older volcanics that began during the earlyTertiary period.

23 Ma

38 Ma

Oligocene EpochLate Oligocene – slow subsidence began marking the onset of marinedeposition in the southern part of the study area. At the same time, auniform sequence of silt and silty clay was deposited in the westernbasin.Continued extrusion of older volcanics that began during the earlyTertiary period.

38 Ma

54 Ma

Eocene EpochContinued extrusion of older volcanics that began during thePalaeocene.

54 Ma

65 Ma

Palaeocene EpochBeginning of older volcanic extrusion that continued through to theMiocene period. In some cases the volcanics formed thick piles indownfaulted basins, as on Mornington Peninsula.Phase of terrestrial sedimentation with intermittent volcanic activity.Sediments from this phase include sand, silt, gravel and brown coaland are represented in the Port Phillip and Westernport basins. Thecoal seams are mined in four locations around Victoria includingBacchus Marsh. These sediments are of Palaeocene to perhapsOligocene age.

Note: Cenozoic sedimentation described above was mainly confined to three main basins including the PortPhillip sunkland and the Westernport basin, both within the study area.

Page 16: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

7

Table 1 cont.Eras Periods Timea

(Ma) Cretaceous 65 Ma

146 Ma

By the close of the Cretaceous period, the fundamental topographyof the study area was formed.An east-west chain of lakes and swamps formed across southernVictoria and rapidly filled with sediments. Block faulting lifted thesesediments to form, among others, the Barrabool Hills.

Jurassic 146 Ma

208 Ma

A long east-west trough was formed in southern Victoria and wasrapidly filled with a thick sequence of sandstone containing feldsparand andesitic rock fragments mudstone and conglomerates.

A period of long and continued erosion. Triassic 208 Ma

245 MaLong and continuos erosion occurred during this time forming alandscape of low relief.

Permian 245 Ma

286 Ma

Beginning of a lengthy period of slow erosion continued through theTriassic and Jurassic periods.Widespread deposits of sandstone and siltstone during this periodwere subsequently removed by erosion in the majority of areas.

Carboniferous 286 Ma360 Ma

Thick sediments widespread as a result of prior marinesedimentation.

Devonian 360 Ma

410 Ma

Upper Devonian - Intrusions and flows of acid igneous rocks into orover folded marine sediments occurred in many areas. Thick piles ofvolcanics were extruded into dish-shaped basins called cauldronsubsidences. Conglomerates, sandstones, and siltstones laid down inriver and lake systems precede the volcanics. Examples of cauldronsubsidences occur in Dandenong. Many other granitic intrusionsoccurred during this period. The most notable examples in the studyarea include Arthurs Seat, Mount Martha, and Mount Eliza.Middle Devonian - A period where marine sediments depositedduring early Palaeozoic era were lifted and folded along axes tendingnorth-south. The resultant folding caused tight folding of Ordovicianmarine sediments, although marine sediments near Melbourne(Silurian and Devonian) were more open. Intrusions of granitic rocksbeneath the surface. Thick flows of acid volcanics occurred in someplaces and formed the bedrock of the study area.Lower Devonian - Marine sedimentation continues from theCambrian period into the early Devonian - Lower Devoniansediments north-east of Melbourne approx. 4 300 Ma).

Silurian 410 Ma440 Ma

Marine sedimentation continues from the Cambrian period - Siluriansediments west of Melbourne.

Ordovician 440508 Ma

Marine sedimentation continues from the Cambrian period.

Cambrian 508 Ma544 Ma

Extrusions of submarine volcanics followed by marine sedimentationconsisting of interbedded sandstone and siltstone and black shale.The area stayed beneath the sea for much of this period.

a: Approximate time (Ma -Million years ago, unless otherwise stated) of the beginning of the era and period.

Page 17: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

8

Flanking the Silurian sediments to the north, east and south-east are Devonian sediments of siltstone

with inter-bedded sandstone. In the east occurs a complex of Silurian sediments, granite through the

Dandenong Ranges, granordiorite through Lysterfield Reservoir and Cardinia Creek, older basalts east

and north-east of the Silvan Reservoir and Recent river alluvium (sand, silt, clay and minor gravel)

associated with many of the main tributaries

The undulating basalt plains of the west are adjacent to a wide band of Silurian sediments forming

mountainous topography (i.e. Kinglake National Park and the surrounding area). The soils derived

from these geological formations are generally light grey loams over clay. Within the drainage lines

of these areas, darker loams overlie clays and sand. These profiles tend to be moist in winter, tending

to dry out during summer. Darker loams, containing a greater proportion of organic matter, tend to be

moister in winter than the grey loams. Typical of the dacite origin of the area around the Dandenong

Ranges, the soils are coarse textured. Light grey loams, and in some areas red loams, overlie clay,

whilst red loams predominate on the eastern face of the Dandenong Ranges. Originating from Tertiary

sediments, the soils along the eastern side of Port Phillip Bay vary from dark loams, clays and local

sands and dark grey sands over clay, to light grey loams over clay and deep sands.

Along with a change in geology from the expansive Basalt Plains to a more complex and diverse

landscape of the eastern sediments, in conjunction with a significant increase in rainfall, is a

significant change in plant communities and species diversity. Open woodland is located on

undulating hills, while the steeper slopes are densely forested. The variation in surface and sub-

surface soil profiles of the Tertiary sands is mirrored by a large diversity of plant communities. In

addition, this region supports species-poor, but nonetheless significant vegetation communities such as

Swamp Scrub, and a variety of woodland and forest ecosystems.

Mornington Peninsula

Mornington Peninsula has a complex geological history described in detail by Tickell (1992).

Calcareous sands and dune limestone from the Pleistocene Epoch extend from Point Nepean to Rye on

the north coast and south-east to the southern end of Main Creek. Siliceous sands from the same

period cover much of the area east of the calcareous sand from the southern end of Main Creek to

Rosebud. East of these sands, Arthurs Seat and Red Hill are located on Devonian granite. North of

the granite are alluvium and gravel and extending north of these sediments, south of Mt Martha, is a

pocket of Devonian hornblende dacite. South-east of Arthurs Seat is an extensive region of Eocene

basalts that extend north-east to the edge of Merricks Creek. Dissected through the basalt and beyond,

the creeks and other tributaries are lined with Quaternary alluvium, gravel and sand. North of the

basalt, following the Devilbend Faultline to just north of Devilbend Reservoir and west to Balcombe is

Page 18: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

9

a dissected band of Ordovician sandstone, slate and chert. An extensive band of Tertiary sandstone,

know as Baxter sandstone, extends from Somers and Balnarring north to Somerville and Olivers Hill,

south of Frankston. These Tertiary sediments are dissected by several patches of Silurian mudstone,

claystone, sandstone and hornfels, in addition to Quaternary sands along drainage lines, and Devonian

granite and aplite around Mount Eliza. North of the Baxter Sandstone, are Quaternary sands and a

continuation of patches of Silurian sediments from further south. Along the western side of

Mornington Peninsula, recent swamp and lagoonal deposits line the coast. The distribution of

geology, soil types and plant communities in the Mornington Peninsula varies from extensively

uniform to more complex associations. For example, calcareous sands almost exclusively support

widespread and relatively uniform expanses of Coastal Alkaline Scrub. In contrast, there are more

complex associations on the more fertile loams derived from granites in the Arthurs Seat National

Park.

Siliceous sands east of Point Nepean support a complex of species-rich plant communities including

Damp Heathland and Damp Sands Herb-rich Woodland, among several other vegetation types. Sandy

loams derived from Tertiary basalts also support forest and woodland communities, while the alluvium

along creek beds support vegetation types such as Swampy Riparian Woodland and Swamp Scrub.

Northern half of Westernport 1:100 000 tile

This section of the study area extends from Frankston, Langwarrin and Pearcedale, along the northern

boundary of the Mornington Peninsula and extends north to Mordialloc, north-east to Upper

Beaconsfield and east to Koo-Wee-Rup. From the Mornington Peninsula, the complex of Silurian

sediments (mudstone, claystone, sandstone and hornfels) among Quaternary sand and limestone

extends to south of Cranbourne where it comes into contact with a band of Tertiary basalt in and

around Cranbourne. Surrounding the basalt is a large expanse of Tertiary sediments (sandstone, sandy

clay and ligneous clay) that extends in discontinuous sheets from as far south as Stony Point on the

Mornington Peninsula. Silurian sediments, Devonian granite and Tertiary basalts also occur in the

north-east corner of the tile from Hallam through to Beaconsfield and Pakenham. However, the most

prominent feature of this area is the extensive sheets of Quaternary sediments of stream alluvium,

sand, silt, clay, gravel and limestone. In the north-east, these sediments extend from Sweetwater

Creek, south of Frankston, north to Mordialloc and east to Lyndhurst. Whilst not uncommon through

Mornington Peninsula and Westernport, the alluvial sediments are confined to drainage lines amongst

Tertiary sands elsewhere on the Westernport tile. The swamp and lagoonal deposits extend to the

south coast, while along the Bay the coast is lined with Quaternary dunes, aeolian siliceous sand

sheets, estuarine sands and shell beds.

Page 19: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

10

The swamp deposits along the north coast of Westernport Bay support EVCs such as Mangrove

Shrubland, Coastal Saltmarsh, Swampy Woodland, Swamp Scrub, Damp Heathland and Damp Sands

Herb-rich Woodland. North of the coast, now almost completely cleared of its original vegetation, the

swampy sediments would have supported Plains Grassy Woodland/Plains Grassland with riparian

communities along drainage lines, evidenced by the few small remnant patches. The complex of more

fertile loam and clay sediments derived from Tertiary, Silurian and Devonian sediments support forest

communities, such as Grassy Forest and Lowland Forest, with riparian vegetation such as Swampy

Riparian Complex on Quaternary sands along drainage lines.

Cardinia Shire on the Warragul 1:100 000 tile

Quaternary sediments extend from Bass Coast Shire north into Cardinia Shire, largely in association

with the Heath Hill Fault. Eocene sediments of basalt are along the southern margin of the fault and

Tertiary sand, silt and gravel along the northern margin. Upper Devonian granite occurs north of the

Quaternary sediments, roughly from Nar Nar Goon to Tynong and Garfield. Quaternary gravel, sand,

silt and swamp deposits, that cover much of the Cardinia Shire within the Warragul tile,

predominantly support Swampy Riparian Woodland and Swamp Scrub. A mosaic of Plains Grassy

Woodland and Plains Grassland would have occurred on the flat country in the Pakenham to

Beaconsfield area, with Grassy Woodland in the northern section going into the Upper Devonian

granite. Further into the more nutrient-rich soil derived from granite is a complex of woodland and

forest communities.

Bass Coast Shire

The distribution of different geological features of Bass Coast Shire is broadly associated with fault

lines that cut through the landscape in a south-west to north-easterly direction. The most complex

associations occur in an area in the southern part of Bass Coast Shire. This area consists of a complex

of sediments including fluvial sand and silt, and aeolian dune deposits of sand and clay, Cretaceous

sediments of fluvial sandstone and siltstone, and coal, and a small area (approx. 2km2) of Silurian

mudstone and sandstone of marine origin situated south of Wonthaggi. Fluvial gravel, sand and silt

extend from this area through the basin of the Powlett River. South of the river is a wide expanse of

Tertiary sand, silt and gravel. North of the river between the Kongwak Monocline and the Heath Hill

Fault, a broad band of Cretaceous sandstone, siltstone, minor conglomerate and coal extends beyond

the boundary of the study area. The Bass river north-west of the Heath Hill Fault, like that of the

Powlett River, lies within a basin of Quaternary sediments. Tertiary sediment lines the Heath Hill

Fault and north of this is a large expanse of Quaternary swamp and lagoon deposits. These deposits

extend through to the western-most extent of Bass Coast Shire, whilst Tertiary basalt and sandstone

occurs in the north-west corner to Settlement Point. Quaternary sediments around Wonthaggi, that are

Page 20: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

11

largely nutrient-poor, support a complex of woodlands, the heathlands south of Wonthaggi and

riparian vegetation along the Powlett River. Cretaceous sediments support Lowland Forest on the

northern edge of the coastal plain and Damp Forest further north and north-east as rainfall increases

toward the Strzelecki Range.

The Recent Quaternary sediments through the basin of the Bass River support Riparian Forest. Over

the large expanse of Quaternary lagoonal and swamp deposits, there is a complex of Grassy

Woodland, Swampy Woodland and Swampy Riparian Woodland. Plains Grassy Woodland and Damp

Sands Herb-rich Woodland occur on the Tertiary basalt and sandstone.

Phillip Island

Basalt from the older volcanics of the Eocene era covers the majority of Phillip Island. Other

formations include Quaternary alluvial sediments that follow the main tributaries, a few isolated

patches of other Quaternary sediments (dunes, aeolian siliceous sand sheets, raised beaches, estuarine

sands and shell beds) and Devonian granite at Cape Woolamai.

Soils derived from the extensive sheets of basalt on Phillip Island are either dark brownish grey clay

loams or very fine sandy clay loams that overlie similarly textured soils beneath which are medium to

heavy clays. These soils mainly support Plains Grassy Woodland. Alluvial sediments along

tributaries support Swamp Scrub and the exposed granite outcrop at Cape Woolamai supports a

severely pruned Coastal Headland Scrub. Behind the granite tip is basalt mantled by a recent deposit

of sand. This area also supports Plains Grassy Woodland. An inlet at Rhyll in the north-east corner of

the Island supports estuarine communities including Coastal Salt Marsh and Estuarine Brackish

Wetland.

French Island

The geological formations of French Island consist predominantly of Tertiary gravels, sands and clay

and Quaternary sediments. The Quaternary sediments are mainly Pleistocene sand ridges and sheets

with extensive swamp deposits in depressions through the Quaternary sediments and sand clay and silt

in the north and south-east. A few small patches of older Tertiary basalt and Devonian granite and

granordiorite are distributed predominantly along the southern coastline. Saltmarsh and mangroves

flank the northern and north-western coastline.

French Island has extensive heathlands overlying Quaternary sediment. Intermittent among the

heathland is open forest on Tertiary sediments and wetlands in peaty sand and clay depressions of

Page 21: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

12

Quaternary origin. The more fertile basalts and granites in the south support Plains Grassy Woodland

with isolated pockets of Herb-rich Foothill Forest along the steep, sheltered coastal cliffs.

Page 22: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

13

Climate

The Port Phillip and Westernport study area, like much of Australia, has a Mediterranean climate

(Dallman 1998). Rainfall has significant spatial variation across the study area. The mean monthly

rainfall for Melbourne (Bureau of Meteorology, Melbourne Regional Office, Elevation: 31m, 1885 to

2001) is 657 mm, with an average of 147 days of rainfall per year (Figures. 2b and 2c, p.14). The

Volcanic Plains to the west of Melbourne have the lowest rainfall in the study area (Fig. 2c, p.14). For

example, the mean annual rainfall for Laverton (Bureau of Meteorology, Laverton RAAF Station,

Elevation: 16.0 m, 1941 to 2001) is 557 mm, although the number of rainfall days is similar to that in

inner Melbourne. Rainfall increases significantly from west to east. Mean annual rainfall is 899 mm

in Scoresby (Bureau of Meteorology, ‘Scoresby Research Institute, Elevation: 104m, 1948 to 2001,

Fig. 2c) over 168 days of rain per year. As altitude rises into the Dandenong Ranges (Bureau of

Meteorology, Mt Dandenong GTV9, Elevation: 620m, 1968 to 2001) the long-term rainfall averages

increased to 1202 mm, almost twice that of inner Melbourne, with, on average, an additional 40 days

of rain each year in comparison to inner Melbourne (Fig. 2b).

The south-eastern extent of the study area incorporates the Mornington Peninsula, French and Phillip

Islands and Bass Coast Shire. Mornington Peninsula (Bureau of Meteorology, Mornington, Elevation:

46 m, 1868 to 2001) and Phillip Island (Bureau of Meteorology, Cowes, Elevation:12 m, 1882 to

1978) have similar mean annual rainfall averages, 740 and 765 mm respectively, Mornington

Peninsula has fewer days of rain, 137 and 153 respectively. Finally, the mean annual rainfall of the

most south-easterly region of the study area, Bass Coast Shire, (Bureau of Meteorology, Wonthaggi,

Elevation:52 m, (1911 to 2001) is 937 mm.

Temperature, unlike rainfall, is fairly uniform across the study area (Fig. 2a, p.14). For example, the

mean daily maximum temperatures of Laverton, Melbourne, Mornington, Cowes, and Wonthaggi are

19.6°C, 19.8°C, 18.9°C, 17.9°C and 18.7°C respectively. Mean daily minimum temperatures are also

similar. The greatest deviation of temperature from these figures is the Dandenong Ranges where

mean daily maximum and minimum temperatures are a couple of degrees lower than surrounding

areas.

Page 23: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

14

Figures 2a-c. Mean Daily Temperature, Mean Number of Rain Days and Mean Monthly

Rainfall.Figures 2a-c. Mean Daily Temperature, Mean Number of Rain Days and Mean

Monthly Rainfall.

Figure 2a. Mean Daily Temperature

02468

10121416182022

Melbou

rne

Lavert

on

Morning

tonCow

es

Won

thagg

i

Scores

by

Mt Dan

denon

g

Bureau of Meteorology - Recording Station

Tem

pera

ture

oC

Max tempMin temp

Figure 2c. Mean Monthly Rainfall (mm)

400500600700800900

1000110012001300

Melbou

rne

Lavert

on

Morning

tonCow

es

Won

thagg

i

Scoresb

y

Mt Dan

deno

ng

Bureau of Meteorology - Recording Station

Rai

nfal

l (m

m)

Figure 2b. Mean Number of Rain Days

100110120130140150160170180190200

Melbou

rne

Lavert

on

Morning

tonCow

es

Won

thagg

i

Scores

by

Mt Dan

deno

ng

Bureau of Meteorology - Recording Stations

No.

of D

ays

Page 24: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

15

TERMINOLOGY

The following definitions derive from Tumino and Roberts (1998)

ECOLOGICAL VEGETATION CLASS (EVC)

An Ecological Vegetation Class (EVC) is a basic vegetation mapping unit used for conservation

assessment and planning (Commonwealth and Victorian RFA Steering Committee, 1999). It

represents the highest level in the hierarchical vegetation typology used across the state of Victoria.

An EVC consists of one or more floristic communities that exist under a common regime of ecological

processes within a particular environment at a regional, state or continental scale (Woodgate et al.

1994). The homogeneity of floristic communities within an EVC is manifested in analogous life

forms, genera, families, vegetation structure and landscape position (Woodgate et al. 1994). Floristic

community differences within EVCs are often geographically or geologically driven.

FLORISTIC COMMUNITY (FC)

A ‘Floristic Community’ is a group of species that are similar in terms of structure and response to

major environmental variables such as landform, geology, soil, altitude, aspect, slope and rainfall

(Muir et al. 1995, Woodgate et al. 1994). A combination of these variables provides suitable habitat

for species that are characteristic of a Floristic Community. Consequently, where a combination of

variables is repeated in the landscape at a local scale and broadscale, a particular Floristic Community

can occur.

CHARACTER SPECIES

A ‘Character Species’ is a species that consistently and frequently occurs in a particular Floristic

Community. These species can be ubiquitous across the study area and therefore may be shared with

other Floristic Communities.

INDICATOR SPECIES

An ‘Indicator Species’ is a species that is generally specific to an EVC, or a Floristic Community.

These species tend to have more specific habitat requirements and consequently occur in fewer

communities. When comparing two Floristic Communities, indicator species help to delineate the

boundary or ecotone between communities. For example, Amphibromus spp. are restricted to

perennially or seasonally swampy land, thus most of their distribution lies within Plains Grassy

Wetland throughout the study area.

Page 25: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

16

COMPLEX (in relation to EVCs)

The term ‘complex’ is used to identify a mapping unit that cannot be identified as a single EVC due to

the presence of character species associated with at least two EVCs. For example, Floodplain Wetland

Complex can consist of character species from a number of wetland EVCs.

MOSAIC (in relation to EVCs)

The term ‘mosaic’ is used to identify a polygon within which at least two EVCs have been identified,

although the size of the polygon (scale of mapping) prevents the delineation of these EVCs within the

polygon. Individual patches of each EVC are clearly identified on the ground but are too small to

isolate as individual polygons at the scale of mapping. Therefore, the polygon is labelled as a mosaic

of the EVCs it contains. For example, Grassy Woodland/Damp Sands Herb-rich Woodland Mosaic

consists of these two component EVCs.

NOMENCLATURE

Plant nomenclature follows the NRE Flora Information System (FIS 2001), managed by the

Biodiversity Information Management Section. Information stored in the FIS is based on the Flora of

Victoria, Volumes II, III & IV (Walsh & Entwistle, 1994, 1996 & 1999) and the Victorian Census

(Ross, 2000).

METHOD

EXTANT VEGETATION (1:25 000)

The method employed to map extant vegetation at EVC classification in Port Phillip and Westernport

(excluding inner Melbourne, see ARCUE’s methodology below) is similar to the methods employed to

map EVCs in Gippsland (Davies et al., in prep). The major difference employed in this project was

the use of digital aerial photography, where available, to capture native vegetation polygons, which

was used for approximately one-third of the study area. For the remainder of the study area, polygons

were captured using aerial photograph interpretation (API, see below for details). The differences

between these two methods will be described, firstly as a brief summary, followed by a more detailed

description of each stage that leads to the final production of colour-coded maps.

Mapping EVCs in Port Phillip and Westernport involved several stages, beginning with the analysis of

floristic data and the capture of native vegetation polygons. Analysis of all available floristic data

enables identification of the majority of EVCs present in the study area, and definition of EVCs based

on character species. The capture of native vegetation polygons was completed either by aerial

photograph interpretation (API, see definition below), or by digitising aerial images using

‘ARCVIEWTM’, a mapping software package. The next stage was extensive field assessment via all

Page 26: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

17

accessible roads. Field assessments enable polygons to be labelled and the typology of EVCs to be

developed in relation to vegetation structure, composition and canopy pattern as shown on aerial

images (hard copy aerials and digital images), as well as environmental characteristics such as

geology, soil type, aspect and topography. Polygons were edited as required as a result of field

assessments. For the digital aerial photography, Land Information and Cartography Services (LICS)

edited the polygons on-screen. Polygons on the hard copy aerial photograph overlays were transferred

to base-maps. These base maps were then digitized by LICS. The final phase of mapping, which

involved final edits of polygons, labels, colour coding and formatting of the colour-coded key of

EVCs, was carried out by the Land Information Group (LIG), NRE and Spatial Vision. Each of the

stages is described in more detail below.

Floristic Analysis

Data on the distribution and abundance of flora species have been collated from many sources and

consolidated into a statewide database known as the ‘Victorian Flora Information System’ (FIS). The

Information Management Section of Parks, Flora and Fauna (PFF) of the Department of Natural

Resources and Environment (NRE) manages the FIS. Currently, the FIS contains approximately

35000 entries of quadrat data for localities throughout Victoria. Over 7000 of these entries are from

localities within the study area. These data were used as the basis of a floristic analysis to assign

vegetation to EVCs and identify EVCs present in the study area.

Quadrat data were extracted from the FIS and the range standardised median cover-abundance data

using PATN software package (Belbin 1987). Each quadrat was compared to all others, and a

dissimilarity matrix was calculated using the Bray-Curtis co-efficient. The hierarchical agglomerative

clustering strategy, Unweighted Pair Group Mean Averaging (UPGMA, B=0.1) was applied to the

dissimilarity matrix to produce a dendrogram. The dendrogram provides a visual display of the

relationships among data. Controlling the clustering of groups according to a priori estimation of the

number of EVCs within the study area results in the dendrogram isolating EVCs.

From this analysis, the FIS was used to produce lists of species frequency, tables of character species

and location maps. Lists of species frequencies provide an inventory of the occurrence of species

among quadrats. Tables of character species provide a list of the most commonly occurring species of

a group. In addition to character species, statistics are provided on a range of environmental attributes

of groups. Statistical information included the total number of sites sampled, the maximum, minimum

and mean altitude, the mean floristic richness per site and the percentage occurrence of weeds. For

each group, a map was printed of the distribution of quadrats within the study area.

Page 27: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

18

Data on the FIS requires constant curation to check the validity of data and standardisation of

nomenclature. Whilst curation of the data is a continuous process undertaken by a senior botanist, the

database is only updated annually. Consequently, the FIS is only as up-to-date as the last annual

correction of the database. Floristic analysis of data sets taken from the FIS should therefore be

curated prior to analysis to correct problems with nomenclature. In addition, the FIS includes native

as well as noxious and environmental weeds.

Comprehensive curation of the more than 7000 quadrats that were the data set for the floristic analyses

was impossible, given the time and budgetary constraints imposed. This did not greatly hamper the

analyses and subsequent EVC recognition as there was a large number of appropriately analyzed

surveys and other studies completed and published as a basis for this project. In addition, the data set

was very large, hence immersing data of unreliable curation. Nevertheless, lack of detailed curation

did highlight some problems- namely that the analysis failed to distinguish every EVC mapped in the

study area and floristic communities within some EVCs could not be identified and labelled. The

former problem also reflects an inadequate base data set, with some EVCs decidedly undersampled.

Weeds occurred in almost all quadrats and vegetation stands and were frequently of such abundance

and dominance that they interfered with the natural vegetation patterns and obscured ecological

relationships and determinants. Large floristic data sets are required to elucidate ecological

relationships in relatively undisturbed vegetation. Considerably more data are required if the

vegetation is significantly disturbed, with many vegetation communities effectively locally extinct or

so weed-invaded as to be barely recognizable-as is typical in this study area. Consequently, while

floristic analyses, as described above, were used to identify and describe most of the EVCs of the

study area, these descriptions and analyses are not presented in the report.

Capture of Botanical and Spatial Data

Base-map Scale

Extant vegetation in the study area was mapped at a scale of 1:25 000. Figure 3 (p.20) shows each of

the sixty-nine 1:25 000 tiles in relation to the boundary of the study area. At a scale of 1:25 000, the

minimum size of polygons on the final product is approximately 4mm2, equating to approximately

2500m2 on the ground. In some cases narrow polygons along streams and roadsides were exaggerated

in width in order to capture the EVC.

Page 28: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

19

Authorship of 1:25 000 Tiles

The study area was divided into sections and each section allocated to an experienced botanical

mapper (see Figure 4, p.21). Alison Oates mapped extant vegetation of Bass Coast Shire, French

Island, part of Cardinia Shire and Mornington Peninsula. Kylie Singleton and Maria Taranto assisted

Alison in the field. Kylie Singleton mapped Cardinia Shire and the City of Casey with the assistance

of Jaimie Brown. David Rankin mapped west and north of Melbourne excluding the inner Melbourne

area. Maria Taranto mapped part of Mornington Peninsula with the assistance of Jaimie Brown. Inner

Melbourne was mapped by the Australian Research Centre for Urban Ecology. Michelle Tumino,

Judy Downe, Doug Frood and Randall Robinson mapped part of the north-east part of the study area.

Jeff Yugovic mapped the Mt Eliza area on the Mornington Peninsula.

Interpretation of Aerial Images (hard copy and digital format)

Interpretation of aerial images involves the gathering together of a number of environmental themes

(both ecological and structural) to extrapolate polygon development from visited to unvisited areas.

The aim is to create an homogeneous and robust extrapolation. The themes may be as permanent as

the underlying geology or as temporal as fire frequency. Sometimes, one theme will dominate all

others. The following describes some of the environmental themes used for mapping. Certain EVCs

are closely aligned with one or more environmental themes.

Examples of environmental themes include:

- relative crown size - rain-shadow zones

- high or low rainfall zones - canopy density

- topography - tree crown opacity

- aspect - underlying geology

- relative patch size - overall forest colour

- evidence of mining and quarrying - tree ferns visible

- altitude - presence/absence of overstorey

-soils

Page 29: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

20

Figure 3. The study area boundary in relation to 1:25 000 Map Tile Sheets

Study Area Boundary

Page 30: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

21

See Attachment for Figure 4

Page 31: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

22

Development of EVC Mapping Units

Mapping units are derived from models of typology, the latter dependent upon two assumptions.

Firstly, that there exists a group of co-habiting species that link the model to an EVC. Secondly, that

each typology is based on adequate sampling of an EVC. Confident identification of EVCs using

aerial photograph interpretation is achieved as a result of suitable environmental characteristics of both

the landscape and of specific EVCs, in addition to access to adequate and reliable data. Examples of

factors that contribute to congruent or incongruent resolutions are as follows:

Congruent Resolutions

Typology that is based on sufficient data.

Effective overstorey correlation.

Large homogeneous patch size.

Distinctive contrast between overstorey and understorey.

Correlation between geology and specific EVCs.

Sharp boundaries between EVCs.

EVCs having distinctive canopy density.

EVCs with distinctive topographic associations

Distinctive understorey signature.

Incongruent Resolutions

Insufficient data used to describe typology.

Structural variation with EVCs.

EVCs camouflaged by surrounding EVCs.

EVCs distributed across a variety of ecological niches.

Inability to identify EVCs due to a recent fire event.

Variation in the density of the canopy.

Variable understorey signature.

Inaccurate interpretations based on preconceived ideas.

Indistinct boundaries between EVCs due to an ecotone.

Page 32: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

23

Aerial Photograph Interpretation (API)

Aerial photographs were borrowed from Port Phillip Regional Office (NRE, Box Hill), Cardinia Shire

and Bass Coast Shire. Photographs covering the Bass Coast were at a scale of 1:25 000. However,

photographs covering the remainder of the study area were only available at a resolution greater than

1:25 000, hence transferral of polygons from aerial photographs to base-maps required photo-

enlargement. Before using the aerial photographs in the field, the photo-effective area (the central area

of a photograph excluding approximately 2cm of the periphery, that when used for API results in

minimal temporal distortion of polygons) is determined. The aerial photographs were protected from

damage during the API process by plastic overlay film. Cadastral boundaries were marked on each

overlay for use when transferring polygons onto base maps. Polygons of native vegetation were

identified in stereo vision using pairs of aerial photographs (where available), the covers of which

were overlapping and polygons were scribed onto plastic overlays. Some polygons were labelled prior

to field assessment, depending on the familiarity of the botanist with certain EVCs. The validity of

polygons labelled prior to field assessment was nonetheless checked in the field. Completed base

maps were subsequently digitised.

Digitising and API

A geo-corrected, digital layer of aerial photography, covering most of the study area (excluding

French Island and the majority of Bass Coast Shire) was purchased from Photo Mapping Services.

The aerial photographs were taken at a height of 1:15 000 during March and April of 2000.

Photographs were scanned at a resolution of 600 dpi, 24 bit colour and ortho-rectified with accuracy of

approximately 10m to the supplied State Cadastral Database. The digital photographs were supplied

as fourteen mosaics.

ARCVIEW v3.2, a GIS software package, was used to view aerial images and digitise polygons of

native vegetation. The resolution at which aerial images were originally scanned allowed digitising to

be done at a resolution of 1:5 000. API of hard copy images was used for polygons having either a

complex mosaic of EVCs, or less than adequate resolution. Areas of limited resolution were primarily

due to environmental factors at the time the aerial photograph was taken (eg. fog and smoke). A

printout of each 1:25 000 tile, including digitised polygons and 1km gridlines, was used for field

assessments. Polygons were edited as required in accordance with field assessments. Subsequently

the edited printout of each tile was used to edit the digital layer and label the polygons.

Page 33: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

24

Field Assessment

EVC Determination

Extensive field assessment was used to determine the EVCs in the study area except for the Cardinia

Creek, Silvan, Lysterfield and Kilsyth 1:25 000 map sheets. Time constraints forced this area to be

mapped by overlaying extant polygons on the existing pre-1750’s Central Highlands RFA EVC

mapping. In the rest of the study area, approximately 2-3 days on average was spent assessing each

1:25 000 tile, by driving on readily accessible roads. Due to time constraints, access to most private

land areas was not possible. Binoculars were used, where appropriate, to assess polygons inaccessible

by road. Where vegetation could not be observed directly or by using binoculars it was modelled on

the basis of aerial photograph patterns in accordance with surrounding EVCs. Navigation in the field

was primarily achieved using topographic maps and aerial photographs.

Polygons can be divided into a number of broad categories according to the ease with which the

corresponding EVC can be determined. Examples of these categories are as follows:

Category Polygon

Accessible

Overstorey

Largely

Intact

Understorey at

least partially

intact

Photo-pattern

Clear

EVC

Identifiable

1 √ √ √ √ √

2 √ √ Χ √ √

3 √ √ √ Χ √

4 √ unknown √ Χ Χ

5 Χ √ unknown √ Χ

6 Χ √ unknown Χ Χ

Whilst a reliability code has been used in conjunction with EVC labelling of some earlier mapping

projects (eg. Tumino and Roberts 1998), such a code was not used for this study due to time

restrictions.

Labelling Polygons

Providing the EVC could be determined in the field, polygons (on aerial photographs or printouts of

digital aerial images) were labelled with the appropriate EVC number. In some locations, the EVC

could not be determined primarily due to unresolved EVC descriptions. In these circumstances, a

Page 34: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

25

comprehensive list of species was compiled from suitable sites, referred to here as ‘sample sites’, for

determination of the EVC at a later date, often with the assistance of expert advice. Species lists from

sample sites will be incorporated into the FIS database.

Disturbance/Weediness

For the purposes of EVC mapping of remnant vegetation in the study area, a polygon with a greater

than 50% cover of weeds was generally not included. This label obviously has its limitations and

should be treated with caution as considerable interpretation was involved. For urban areas where

overstorey trees were the only remaining evidence of native vegetation, these polygons were excluded

from the study except for the mapping of inner Melbourne. Revegetated areas were mapped where the

vegetation had reached a stage that resembled the original EVC, both in the overstorey and

understorey layers.

Methodology for EVC Mapping of Inner Melbourne

EVC mapping of inner Melbourne was conducted by Nicholas Williams, Emma Leary and Gemma

Phelan of the Australian Research Centre for Urban Ecology, Royal Botanic Gardens, Melbourne.

Subsequent re-assessment of EVC labelling was carried out by Alison Oates and Doug Frood. A high

proportion of vegetation communities mapped in the inner Melbourne area are highly disturbed, with

the majority of sites having >50% cover of weeds. In many instances, only the overstorey of these

communities is intact. As a result, the polygons mapped within the inner Melbourne region have a

greater level of disturbance than those mapped elsewhere in the study area.

Data Collection Period:

Most of the source data was collected in 2001, although some were collected at an earlier date.

Data Sources:

The EVC polygons were based on a variety of sources including the following:

GPS surveys.

Reports undertaken by consultants for local councils or developers, and reports

commissioned by the Victorian Government.

Existing digital data sets.

Aerial photography interpretation.

Page 35: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

26

Data Set Production Methods:

The EVC data set was created using ESRI ARCVIEWTM GIS software and MS Excel. Initially, a

separate data set was created for each of 20 individual LGAs within the inner Melbourne study area.

Remnant vegetation was identified from reports, consultation with council and other relevant groups,

and existing digital data sets. The list of sites was then examined to determine whether sites required

field checking. Subsequently one of the following methods was used.

1.Mapping with fieldwork –

Field checking was used to verify the patch boundaries at each site, and also to determine the character

species present using lists supplied by NRE. The boundaries of each patch were mapped either by

GPS survey, or aerial photograph interpretation (API) in the field, using printouts of digital aerial

photography.

2.Mapping without fieldwork –

Field checking was not required if there was enough existing information about the site to provide

acceptable EVC and boundary information. The boundaries of each patch were then mapped either by

API on-screen or from reports or from existing digital data sets. Where polygon boundaries were

identified in the field, polygons were captured in ARCVIEWTM, using on-screen digitising over a

digital layer of aerial photography (provided by NRE for use on this project), identical to the printout

used in the field.

However, if reports, including maps, were available on sites within the study area, the maps were

scanned, the images registered and the polygon boundaries were digitised in ARCVIEWTM. GPS

survey data and digital data sets were processed with the appropriate software and incorporated with

other digital data in ARCVIEWTM. All EVC polygon boundaries were checked with the aerial

photography for appropriate placement.

Attribute information about each polygon in the LGAs was collated in an Excel spreadsheet. These

data were subsequently linked to the ARCVIEWTM shapefile. Data sets for each LGA of inner

Melbourne were eventually merged into one file and checked for position and attribute accuracy. GPS

data collected in the field were accurate to approximately half a metre. However, the accuracy of

digital data acquired elsewhere is variable.

Page 36: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

27

Errors due to the conversion process:

Due to the relatively small size of most polygons in inner Melbourne, the error associated with

scanning maps from reports would be insignificant in comparison with all other errors associated with

the digitising process itself.

Errors due to the manipulation process:

The accuracy of digitising polygons directly on-screen is limited by the accuracy of background data

used for reference, in this case aerial photography.

The digital aerial photography, purchased from Photo mapping Services, was accurate to

approximately 5 metres. Consequently, the accuracy of the digitised polygons is also approximately 5

metres.

Attribute Accuracy:

Attribute values added to the data set were derived from several different sources. Therefore, the

accuracy of these data is dependent entirely on the accuracy of the source. Sites mapped without

fieldwork rely on EVC information found in reports. Sites mapped with fieldwork have EVC

designations based on staff appraisal of the site and the EVC descriptions. The validity of all

attributes was checked.

Mapping and EVC issues:

There were several issues identified in relation to the mapping and EVC determination of vegetation

patches. Briefly, these were:

Mapping of revegetation sites:

It was not possible to map revegetation sites in inner Melbourne within the time frame of this project.

This was due to the large number of revegetation sites in the study area, most of which are not readily

identifiable as native vegetation on aerial photographs. Revegetation sites in urban areas are typically

small and have complex boundaries. Mapping these sites would require numerous hours of field

validation.

Mapping of private land:

Providing the EVC of vegetation on private land could be identified using aerial photographs,

mapping was undertaken without fieldwork (as described in the methodology). However, if the EVC

could not be determined from aerial images, the polygons were not mapped.

Page 37: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

28

Mapping overstorey, understorey and disturbed patches

Some vegetation patches are identified as ‘overstorey only’. This indicates they have a continuous

overstorey of native vegetation, but are substantially devoid of native understorey species. The

opposite is true of patches identified as ‘understorey only’. In addition, some polygons of Sand

Heathland and Heathy Woodland are identified as ‘disturbed’, indicating that the EVC could be

determined but the vegetation was in an extremely disturbed state. Such disturbance was usually the

result of invasion by environmental weeds, such as Leptospermum laevigatum.

It was not possible to field check all streets within the inner Melbourne area, consequently, not all

remnant patches of vegetation, consisting of overstorey, but devoid of understorey, have been mapped.

Additional Issues Relating to Mapping Vegetation of Inner Melbourne

Comprehensive EVC mapping had already been completed for three LGAs of inner Melbourne at the

time of this project. The three LGAs are Yarra, Kingston and Moreland. These data were provided

for use on this project and hence no further mapping was undertaken within these LGAs. Biosis

Research mapped Yarra City Council and provided the data. Rapid Map and Ecology Australia

mapped Kingston City Council and Kingston City Council provided the digital data. These data

required some alteration to original polygons and EVC classification, and additional data were added

for some areas (e.g. golf courses). The Moreland City Council provided digital data. These data

required conversion of the vegetation types recognized to EVC typology.

MODELLING PRE-1750 VEGETATION

Base Mapping Scale

Pre-1750 EVCs of the study area were mapped at a scale of 1:100 000 except for the area mapped by

Doug Frood and Jeff Yugovic that was digitized at 1:25 000. At a scale of 1:100 000, the minimum

size of polygons on the final product is approximately 2mm2, which equates to an area of

approximately 200m2on the ground.

Authorship of 1:100 000 Tiles

The study area was divided into sections and each section allocated. Geoff Sutter modelled that part

of the study area within the following 1:100 000 tiles: Warragul, Sorrento and Westernport (excluding

Phillip and French Islands). David Rankin modelled the Melbourne tile excluding the inner

Melbourne area. Alison Oates modelled the Woolamai and Wonthaggi tiles and Phillip and French

Islands. Doug Frood modelled the Ringwood 1:100 000 tile and Inner Melbourne (which extends over

Page 38: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

29

part of the Ringwood and Melbourne tiles) at a scale of 1:25 000. Jeff Yugovic modelled the

Frankston 1:25 000 tile.

Method

Pre-1750 EVC mapping was modelled using available data on environmental attributes (in particular,

geology, soils, altitude and aspect) some historical information and expert knowledge. However, it

should be noted that due to time limitations only scant historical information was used.

Base maps were overlaid on maps of geology, topography and a pre-1750 wetland layer called

WETLAND_1788 (Natural Resources and Environment Corporate Geospatial Data Library 2000) and

vegetation unit distributions were extrapolated from a map of extant vegetation. The maps were

digitized and formatted at a scale of 1:100 000 for inclusion in the Corporate Geographic Data Library.

Comments on Pre-1750s Vegetation Mapping

Pre-1750 vegetation mapping at 1:100 000 depicts broad patterns of vegetation across a landscape

rather than precise detail at a specific spot. As a result, smaller mapping units identified in 1:25 000

extant layers may not be represented on 1:100 000 pre-1750 map sheets. Some mapping units

identified as specific EVCs in the pre-1750 mapping exercise have been assigned a different EVC in

the extant mapping layer due to changes in land management since European settlement, affecting

vegetation community structure and composition (e.g. changes in hydrology, fire regimes and land

usage). An example of this could be the construction of a drainage system resulting in the

establishment of a monoculture of an adventive species such as Melaleuca ericifolia that would not

have existed previously, or only as a small component of the vegetation community.

EVC MAPPING & THE CORPORATE GEOGRAPHIC DATA LIBRARY

NRE is the principal holder of digital data relating to native vegetation cover and flora and fauna

information with a library of digital information called the Corporate Geographic Data Library

(CGDL). The CGDL contains information on a wide range of environmental data including EVC

Mapping of Victoria, a component that is managed by Parks, Flora and Fauna (PFF). Management of

this mapping requires the development of standards relating to EVC typology, accuracy of data

collection, presentation and incorporation of additional data into the CGDL. EVC mapping of Port

Phillip and Westernport almost completes EVC mapping for Victoria. The only area of Victoria now

without EVC mapping is in the north-west of the state in an area south and east of the Mallee and

north of the Goldfields, to the Murray River. Parks, Flora and Fauna have, in recent years, made data

on the CGDL more accessible to agencies and individuals by negotiating data exchange agreements

Page 39: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

30

with private and public organisations. Maps of extant and pre-1750 vegetation at EVC classification,

in addition to other data, are also available in ‘pdf’ format via relevant external web sites.

Page 40: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

31

RESULTS

DESCRIPTION OF THE MAPPING UNITS

63 Ecological Vegetation Classes, 10 Floristic Communities, 29 Mosaics, 8 Complexes and 1

Formation were mapped in the study area. Appendices 1 and 2 provide a numerical and alphabetical

listing, respectively, of Ecological Vegetation Classes, Floristic Communities, Mosaics, Complexes

and formations located in the study area. Appendix 3 describes the Ecological Vegetation Classes,

Floristic Communities, Mosaics, Complexes and Formations detailing geological, topographical,

floristic and geographic attributes. These descriptions are subject to change as further sampling

enhances the knowledge that has been collected during this and past projects.

Page 41: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

32

RECOMMENDATIONS FOR FUTURE WORK

Developing a typology for statewide flora is a long-term process that requires continual curation with

the defining characteristics of each class further refined as statewide EVC mapping progresses. The

Port Phillip and Westernport region is a particularly difficult area regarding EVC typology as it is the

region where a number of different EVC mapping projects merge. This merger has created problems

that will have to be addressed by a future project.

1. There are several inconsistencies that occur between adjacent EVCs along boundaries between

previous EVC mapping projects and this project. This has arisen primarily due to the inability to

derive consistent typology across Victoria before each area had been studied and therefore was to be

expected. Consequently, both the digital data and maps available to the public will need to be

corrected in the future when a more consistent typology is developed.

2. Now that most of the state has been mapped at EVC level, EVC descriptions and definitions should

be standardised across the state and re-written to remove any ambiguity and confusion. Such

ambiguity was encountered during this project making EVC determination difficult in some cases.

This problem was accentuated due to the merging of this mapping with several adjacent mapping

studies.

3. Due to the occurrence of few species in some wetland EVCs such as Reed Swamp, the use of

dominance rather than floristics to define EVCs in such cases should be explored.

4. Ground truthing of the Lysterfield, Cardinia Creek, Silvan and Kilsyth 1:25 000 map sheets was not

completed due to time constraints and the EVCs for these tiles were modelled from existing data

available on pre-1750s EVC mapping of the RFA area. A re-assessment of these areas is required in

the future following more detailed field checking of sites.

5. Pre-1750 EVC mapping should be completed at a finer scale of 1:25 000 rather than 1:100 000 for

the Sorrento, Westernport, Warragul, Woolamai and Wonthaggi map sheets, including more extensive

research of historical information for use by local governments and community groups in such areas as

revegetating of disturbed sites.

6. Additional sampling of threatened EVCs in the study area needs to be carried out where data is

lacking. Relevant EVCs include Coastal Alkaline Scrub, Berm Grassy Shrubland, Damp Sands Herb-

rich Woodland, wetter forms of Swamp Scrub, Floodplain Riparian Woodland, Creekline Grassy

Page 42: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

33

Woodland, Swampy Riparian Woodland, Swampy Woodland, Shrubby Gully Forest, Sedge Wetland,

Creekline Herb-rich Woodland, Reed Swamp, Riparian Woodland, Aquatic Herbland, Sandy Stream

Woodland, Damp Heathy Woodland, Spray-zone Coastal Shrubland, Escarpment Shrubland, Coastal

Basalt Mosaic, Gully Woodland and Estuarine Flats Grassland. In some instances it will be difficult if

not impossible to locate relatively intact remnants within the study area. For some EVCs such as

Brackish Grassland and Creekline Grassy Woodland there is no opportunity to collect representative

data from the region.

Page 43: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

34

BIBLIOGRAPHY

Belbin, L. (1987). PATN Pattern Analysis Package. CSIRO, Canberra.

Cameron D. (1996). An investigation into botanical significance of grassland vegetation in the open

grassy paddocks of the State Electricity land near Red Bluff, French Island. Department

of Natural Resources & Environment, Melbourne.

Commonwealth/Victoria RFA Steering Committee, Department of Natural Resources and

Environment and Environment Australia (1999). Gippsland Comprehensive Regional

Assessment, Commonwealth/Victoria RFA Steering Committee, Melbourne.

Dallman P. R. (1998). Plant Life in the World’s Mediterranean Climates. California Native Plant

Society Press, California.

Davies J.B., Oates A. M. & Trumbleward A. (in prep). Ecological Vegetation Class mapping at

1:25,000 in Gippsland. Department Natural Resources & Environment, Traralgon,

Victoria.

Jenkin J. J. (1962). The geology and hydrogeology of the Western Port area. Underground water

investigation report No. 5. Department of Mines, Victoria Geological Survey, Victoria.

Land Conservation Council. (1973). Report on north eastern study area district 2. Land Conservation

Council, Melbourne.

Muir A. M., Edwards S. A. & Dickens J. M. (1995). Description and Conservation Status of the

Vegetation of the Box-Ironbark Ecosystem in Victoria. Flora & Fauna Technical Report.

Department of Conservation and Natural Resources, Melbourne.

Natural Resources and Environment Corporate Geospatial Data Library. 2000. WETLAND_1788

layer. Natural Resources and Environment, Melbourne.

Opie A. M., Gullan P. K., van Berkel S. C. & van Rees H. (1984). Sites of botanical significance in the

Westernport region. Department of Conservation, Forests & Lands, Victoria.

Quinn D. & Lacey G. (1999). Birds of French Island Wetlands. Spectrum Publications, Melbourne.

Ross J. H. (2000). A Census of the Vascular Plants of Victoria. National Herbarium of Victoria, Royal

Botanical Gardens, South Yarra, Victoria.

Society for Growing Australian Plants: Maroondah Group. (1991). Flora of Melbourne: A guide to the

indigenous plants of the Greater Melbourne area. Hyland House Publishing Pty Limited,

Melbourne.

Spencer-Jones D., Marsden M. A. H., Barton C.M. & Carrillo-Rivera S.S. (1975) Geology of the

Westernport Sunkland. Royal Society of Victoria Proceedings. 87, 43-68.

Tickell S. J. (1992). Uplift History of Mornington Peninsula. Department of Manufacturing and

Industry Development, Victoria.

Page 44: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

35

Tumino M. & Roberts I. (1998). Greater Grampians floristic community mapping project: floristic

community description and mapping methodology. Flora Research and Assessment,

Natural Resources & Environment; & Earth Resource Analysis, Victoria.

Walsh N. G. & Entwisle, T. J. (eds) (1994,1996 & 1999). Flora of Victoria, Vol. 2-4. Inkata Press,

Melbourne.

Woodgate P. W., Peel W. D., Ritman K. T., Coram J. E., Brady A.., Rule A. J. & Banks J. C. G.

(1994). A Study of the Old Growth Forests of East Gippsland. Department of

Conservation and Natural Resources, Melbourne.

Page 45: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

36

FURTHER READING

Andrew D. L., Lumsden L. F. & Dixon J. M. (1981). Sites of zoological significance in the

Westernport region (W04-903): Interim report planning policy area one and French

Island. National Museum of Victoria, Melbourne.

Anthony E. (1994). Melbourne’s Pre-European Vegetation: A Reconstruction. Honours Thesis.

University of Melbourne, Parkville, Melbourne.

Beardsell C. (1997). The NEROC Report: Sites of Faunal and Habitat Significance in North East

Melbourne. Nillumbik Shire Council, Melbourne.

Beardsell C. (2000). Vegetation Communities of the City of Banyule. The City of Banyule,

Melbourne.

Bedggood S. E. (1993). Hopetoun and Norfolk Reserves, Mount Martha, Victoria: the vegetation and

management prescriptions. Ecology Australia, Fairfield, Victoria.

Bedggood S. E. & McMahon A.R.G. (1989). Vegetation and faunal survey, assessment of significance

and management recommendations for Woods Reserve, Shire of Mornington, Victoria.

Ecology Australia, Fairfield, Victoria.

Biosis Research, & Ratio Consultants. (1994). Development plan for the Bittern Coastal Wetland and

Warringine Park: preliminary report. Biosis Research, & Ratio Consultants, Victoria.

Carr G. W. & Todd J. A., McMahon A. R.. G. & Bedggood S. E. (1989). Description and significance

of the vegetation on the proposed Mt. Eliza Lake Estate, Mt. Eliza, Victoria. Ecology

Australia, Fairfield, Victoria.

Carr G. W. (1983). The vegetation of Gresswell Forest Reserve and its management. Prepared for the

La Trobe University Wildlife Reserve Committee of Management, Melbourne.

Cheal D.C. (1984). Report on the vegetation of Langwarrin Reserve, Victoria. National Parks Service,

Melbourne.

Cheal D. C., Lau J. A., Robinson R. W., Ellis J. E. & Cameron D. G. (1989). Vegetation survey and

sites of botanical significance in the Melbourne area. Department of Conservation,

Forests & Lands (Lands and Forest Division), Melbourne.

Commonwealth/Victoria RFA Steering Committee, Department of Natural Resources and

Environment and Environment Australia (1997). Central Highlands Comprehensive

Regional Assessment. Commonwealth/Victoria RFA Steering Committee, Melbourne.

Commonwealth/Victoria RFA Steering Committee, Department of Natural Resources and

Environment and Environment Australia (2000). West Victoria Comprehensive Regional

Assessment. Commonwealth/Victoria RFA Steering Committee, Melbourne.

Page 46: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

37

Costello C. & Wilson J. (1997). Process for native vegetation retention assessment. Biosis Research,

Port Melbourne, Victoria.

Costermans L. (1983). Native Trees and Shrubs of South-Eastern Australia. Weldon Publishing,

Willoughby, NSW.

Craigie V. & Stuwe J. (1992). Derrimut Grassland Reserve: draft management plan. Department of

Conservation & Environment, Melbourne.

Dann P. (1992). Distribution, population trends and factors influencing the population size of Little

Penguins Eudyptula minor on Phillip Island, Victoria. EMU. 91, 263-272.

Department of Conservation & Environment (1990). Remnant native grasslands and grassy woodlands

of the Melbourne area. Department of Conservation & Environment, Melbourne.

Department of Conservation, Forest & Lands (1989). Point Nepean National Park Management Plan.

Department of Conservation (Forests & Lands), Victoria.

Donnelly A., Kunert C., Schleiger P. & Blake T. (1985). Ecology and management of Seaford Swamp:

a study of a remnant wetland on the rural fringe of metropolitan Melbourne,

Environmental Report No.25. Graduate School of Environmental Science, Monash

University, Melbourne.

Downe J. & Birchall T. (2000). Rare and threatened plants of Warringine Heritage Park. Arthur Rylah

Institute For Environmental Research & Kareelah Bush Nursery, Victoria.

Ecology Australia (1996) Mornington Peninsula-Western Port Roadsides Management Plan. Ecology

Australia, Fairfield, Victoria.

Ecology Australia (1998) Flora and fauna assessment of the proposed Castlebrook Estate, Langwarrin.

Ecology Australia, Fairfield, Victoria.

Ecology Australia & Parks Victoria (1998) Cape Schanck Car Park Area, Flora and Fauna

Investigation. Ecology Australia, Fairfield, Victoria.

Ecology Australia, Arthur Rylah Institute & Assessment & Earth Resources Analysis (1998) Floristic

survey, Ecological Vegetation Class mapping and Pre-1750 modelling of the Portland

Wimmera Study Area.. Ecology Australia, Arthur Rylah Institute & Assessment & Earth

Resource Analysis, Melbourne.

Elton D. J. R. (1979). Landscape management in a coastal reserve (Cape Schanck Coastal Park).

Environmental Studies Division, Ministry for Conservation, Melbourne.

Frood D. (1991). The Vegetation of Victorian Wetlands. Draft Report to Department of Conservation

and Environment, Melbourne.

Frood D. (1992). Vegetation of the Native Grasslands in the Merri Creek Valley, Outer Melbourne

Area. Ecological Report No. 42. Department of Conservation and Environment,

Melbourne.

Page 47: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

38

Frood D. (1999). An Assessment of Valley Heathy Forest in the Melbourne Area. Pathways

Experiences, Melbourne.

Frood D. (2001). Vegetation descriptions of King Lake National Park. Information supplied to

accompany map for Parks Victoria. Pathways Experiences, Hurstbridge and Centre for

Environmental Management, Ballarat University, Melbourne.

Grant K. (1972). Terrain classification for engineering purposes of the Melbourne Area, Victoria.

Commonwealth Scientific & Industrial Research Organization, Melbourne.

Grant K. & Ferguson T. G. (1978). Terrain analysis and classification for engineering purposes of the

Warragul area, Victoria. Commonwealth Scientific & Industrial Research Organisation,

Melbourne.

Gullan P. K. (1978-81). Vegetation of the Royal Botanic Gardens Annexe at Cranbourne, Victoria.

Proceedings of the Royal Society of Victoria, 90, 225-240.

Harris M. P. & Bode K. G. (1980). Populations of Little Penguins, Short-Tailed Shearwaters and other

Seabirds on Phillip Island, Victoria. EMU, 81, 20-28.

Howe D. F., Costello R. T. & Russell L. D. (1979). Land capability for urban and related uses in the

Berwick-Pakenham area and the shire of Hastings. Soil Conservation Authority, Kew,

Victoria.

Jaremovic R., Davies R., Goff H., Watson J., Wyatt A. & Read A. (1992). Conservation plan for the

Bittern Coastal Wetland area. Biosis Research, Hawthorn East, Victoria; Marine Science

& Ecology, Essendon, Victoria & Ratio Consultants, Hawthorn, Victoria.

Kern L. (1997). Remnant grasslands and grassy woodlands of the Latrobe Learning and Living

Precinct and adjacent Darebin Creek Catchment. Case study: management plan for

Bundoora Park Woodland and Plenty Road grassland site - DRAFT. Practical Ecology

Services, Preston, Victoria.

Larwill S., Costello C. & van Praagh B. (1995). Flora and fauna assessment of a proposed quarry,

McGrady road, Grantville. Biosis Research, Port Melbourne.

Land Conservation Council (1987) Melbourne area district 1 review: final recommendations. Land

Conservation Council, Melbourne.

Land Conservation Council (1991) Melbourne area district 2 review: descriptive report. Land

Conservation Council, Melbourne.

Land Conservation Council (1994) Melbourne area district 2 review: Final Recommendations. Land

Conservation Council, Melbourne.

Page 48: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

39

Lorimer G. S. (1998). A survey and management strategy for significant vegetation of roadsides in

Knox. Knox City Council, Knox, Victoria.

Lorimer G. S., Reid J. C., Smith L. P. & Moss H. (1997). Sites of biological significance in

Maroondah, Vol.1. Maroondah City Council, Ringwood, Victoria.

Lorimer G. S., Reid J. C., Smith L. P. & Moss H. (1997). Sites of biological significance in

Maroondah, Vol. 2. Maroondah City Council, Ringwood, Victoria.

Marsden M. A. H., Mallett C. W. & Donaldson A. K. (1979). Geological and physical setting,

sediments and environments, Western Port, Victoria. Marine Geology, 30, 11-46.

McDonnell M. J. (2000). The restoration and management of urban and suburban natural areas:

perspectives from the United States and Australia. Australian Research Centre for Urban

Ecology, Royal Botanic Gardens, Melbourne.

McDonnell M. J. & Williams S. G. (2000). Directions in revegetation and regeneration in Victoria.

Proceedings of a forum held at Greening Australia. The Royal Botanic Gardens,

Melbourne.

McDonnell M. J., Williams S. G. & Hahs A. K. (1999). A Reference Guide to the Ecology and Natural

Resources of the Melbourne Region: A Bibliography of the Biodiversity Literature for

Scientists, Teachers, Policy Makers, Planners and Natural Resource Managers. Royal

Botanic Gardens, Melbourne.

McDougall K. (1987). Sites of botanical significance in the Western Region of Melbourne. The

Department of Geography, University of Melbourne, Melbourne.

McGregor G. (1989). Point Nepean National Park Management Plan - Point Nepean Section.

Department of Conservation, Forests & Lands, Melbourne, Victoria.

McMahon A. R. G., Carr G. W. & Bedggood S. E. (1987). The vegetation on public land in the

Balcombe Creek Catchment, Mornington Peninsula. Ecology Australia, Fairfield,

Victoria.

McMahon A. R. G. & Race G. (1992). The vegetation of the Frankston Reservoir. Ecology Australia,

Fairfield, Victoria.

Moorress A. & Molnar C. (1992). Sites of botanical significance in the Land Conservation Council

Melbourne district 2 study area. Department of Conservation & Environment, Flora

Branch, Melbourne.

Mueck S. & Williams L. M. (1999). The ecological values of the Burdett Nominees Sand Quarry,

Potts road, Langwarrin: Opportunities and Constraints. Biosis Research, Port Melbourne,

Victoria.

Muir A. M., Tansley M., Bezuijen M. R., & Collinsons M. H. (1997). Frankston City Vegetation

Study. Ecology Australia, Fairfield, Victoria.

Page 49: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

40

Paget A. (1985). A revegetation design method. Volume 1: Revegetation of Knox. Royal Melbourne

Institute of Technology, Melbourne, Victoria.

Paget A. (1998). Botanical survey and assessment of the lower reaches of the Bass River, Bass,

Victoria, Ausbotany, Victoria.

Parr-Smith G. A. & Smith P. G. (1978). The vegetation of Greens Bush. Victorian National Parks

Service, East Melbourne.

Port Phillip & Westernport Catchment & Land Protection Board (2000) Draft Port Phillip and

Westernport native vegetation plan. Port Phillip & Westernport Catchment & Land

Protection Board, Melbourne.

Quin D. G., Carr G. W., Flann C. M. & Silveira C. E. (2000). City of Monash indigenous reserve

corridors conservation and management plan. Ecology Australia, Fairfield, Victoria.

Rees D. (2000). Land Systems of Victoria. Technical report. Centre for Land Protection Research,

Natural Resources & Environment, Melbourne.

Robinson R. W. (unpublished). A study of vegetation communities and sites of botanical significance

in the Greater Melbourne area and Mornington Peninsula.

Ross R. (2000). Mangroves and salt marshes in Westernport Bay, Victoria. Arthur Rylah Institute For

Environmental Research, Heidelberg, Victoria.

Rowan J. (1990). Land Systems of Victoria. Technical report. Land Protection Division, & Land

Conservation Council. East Melbourne, Victoria.

Sargeant (1974). A soil survey of the Westernport Bay Catchment. Soil survey report. Division of

Agricultural Chemistry, Department of Agriculture, East Melbourne, Victoria.

Schulz M., Beardsell C. & Sandiford K. (1991). Sites of faunal significance in the western wetlands of

Melbourne. Department of Conservation & Environment, Wildlife Branch, Melbourne.

Seddon G. (1975). Phillip Island: capability, conflict and compromise. Centre for Environmental

Studies, University of Melbourne, Melbourne.

Silveir C. E. & Muir A. M. (2000). South Gippsland highway, Kettles road, Lang Lang. Ecology

Australia, Fairfield, Victoria.

Strickland K. & Strickland P. (1992). Peninsula Plants-A Field Guide to Indigenous Plants of the

Mornington Peninsula suitable for cultivation. Kareelah Bush Nursery, Balnarring,

Victoria.

Strickland K. & Strickland P. (1994). Peninsula Plants-A Field Guide to Indigenous Plants of the

Mornington Peninsula with Notes on Cultivation. Kareelah Bush Nursery, Balnarring,

Victoria.

Page 50: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

41

Stuwe J. (1986). An assessment of the conservation status of native grasslands on the Western Plains,

Victoria and sites of botanical significance. Arthur Rylah Institute for Environmental

Research, Department of Conservation, Forests & Lands, Melbourne.

Sutter G. & Downe J. (2000). Vegetation community survey and mapping of the Phillip Island Nature

Park. Arthur Rylah Institute For Environmental Research, Heidelberg, Victoria.

Tokinson D. & Beardsell C. (1999). The flora and fauna of Norris Barracks, Point Nepean. Arthur

Rylah Institute for Environmental Research, Heidelberg, Victoria.

Tonkinson D. (1999). Vegetation survey and mapping of Coolart Reserve, Victoria. Greening

Australia, Melbourne.

Vanderzee M. P. (1988). A Vegetation Assessment of French Island State Park. Department of

Conservation & Natural Resources, East Melbourne, Victoria.

Victoria P. (1998). Mornington Peninsula National Park and Arthurs Seat State Park. Parks Victoria,

Melbourne.

Walker G. M. M. (1973). The Cowes-Rhyll Area, Phillip Island. School of Geology, University of

Melbourne, Melbourne.

Weir I. & Heislers A. (1998). French Island National Park Management Plan, Parks Victoria, Kew,

Victoria.

Westaway J., McMahon A. & Peake P. (1995). Burdett Nominees Pty Ltd proposed sand quarry,

Cranbourne - Frankston Road, Langwarrin: Flora and Fauna Assessment. Ecology

Australia, Fairfield Victoria.

Western Port & Peninsula Protection Council (1975) Assessment of the likely impact on the

environment of the Mornington Peninsula of urban development in the Baxter-Balcombe

Valley investigation area. Environmental Study - Supplementary Report, Vol. 1. Western

Port & Peninsula Protection Council, Victoria.

Western Port & Peninsula Protection Council (1975) Assessment of the likely impact on the

environment of the Mornington Peninsula of urban development in the Baxter-Balcombe

Valley investigation area.. Environmental Study - Supplementary Report, Vol. 2. Western

Port & Peninsula Protection Council, Victoria.

Williams N. (1999). Remnant vegetation in the Melbourne area and its values. Australian Research

Centre for Urban Ecology, Royal Botanic Gardens, Melbourne.

Williams N. S. G. & Molnar C. D. (1997). Botanical assessment of the northern section of Greens

Bush, Mornington Peninsula National Park. Flora Research and Assessment, Natural

Resources & Environment, Heidelberg, Victoria.

Yugovic J. (1999). Millbank Reserve, Mount Eliza, Victoria: vegetation assessment. Biosis Research,

Port Melbourne, Victoria.

Page 51: EVC MAPPING OF - ecavic.org.au · Ecological Vegetation Class (EVC) mapping was implemented as part of the Regional Forest Agreements (RFAs), driven by a need to determine a Forest

EVC Mapping of Port Phillip and Westernport: Extant and pre-1750

42

Yugovic J. (1999). Mount Martha Park, Victoria: Vegetation Assessment and Management

Recommendations. Biosis Research, Port Melbourne, Victoria.

Yugovic J. V. (1998). Vegetation dynamics of a bird-dominated island ecosystem: Mud Island, Port

Phillip Bay, Australia. PhD Thesis. Monash University, Melbourne.

Yugovic J. & Williams L. (1998). Scoresby transport corridor supplementary report No.1, Frankston

freeway median and adjacent wetland vegetation. Biosis Research, Port Melbourne,

Victoria.

Yugovic J. V. (1993). Mornington Rail Reserve, Shire of Mornington: vegetation assessment and

management guidelines - DRAFT. Biosis Research, Hawthorn East, Victoria.

Yugovic J. V., Crosby D. F., Ebert K., Lillywhite P., Saddlier S. R., Schulz M., Vaughan T. J.,

Wetaway J. & Yen A. L. (1990). Flora and fauna of the Koonung and Mullum Mullum

Valleys: proposed eastern arterial road and Ringwood bypass. Lands & Forests Division,

Department of Conservation, Forests & Lands, Melbourne.

Yugovic J. V. & Williams L. M. (2000). Flora and fauna assessment and management

recommendations: Rosebud Foreshore Reserve, Rosebud. Biosis Research, Port

Melbourne.