128
Technical Description Evolution Series Multi Service - Software Defined Microwave Radio System, 4 - 40GHz

Evolution Series Technical Description E

Embed Size (px)

DESCRIPTION

Nera

Citation preview

Page 1: Evolution Series Technical Description E

Technical Description

Evolution Series Multi Service - Software Defined

Microwave Radio System, 4 - 40GHz

Page 2: Evolution Series Technical Description E

This page is intentionally left blank

Page 3: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

1

The information in this documentation is subject to change without notice and describes only the product defined in the introduction of this documentation. This documentation is intended for the use of Nera's customers only for the purposes of the agreement under which the documentation is submitted, and no part of it may be reproduced or transmitted in any form or means without the prior written permission of Nera. The information or statements given in this documentation concerning the suitability, capacity, or performance of the mentioned hardware or software products cannot be considered binding but shall be defined in the agreement made between Nera and the customer. However, Nera has made all reasonable efforts to ensure that the instructions contained in the documentation are adequate and free of material errors and omissions. Nera will, if necessary, explain issues that may not be covered by the documentation. Nera's liability for any errors in the documentation is limited to the documentary correction of errors. NERA WILL NOT BE RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS DOCUMENTATION OR FOR ANY DAMAGES, INCIDENTAL OR CONSEQUENTIAL (INCLUDING MONETARY LOSSES), that might arise from the use of this documentation or the information in it. This documentation and the product it describes are considered protected by copyright according to the applicable laws. NERA logo is a registered trademark of Eltek ASA. Other product names mentioned in this documentation may be trademarks of their respective companies, and they are mentioned for identification purposes only.

Copyright © Nera Networks AS 2009. All rights reserved.

Page 4: Evolution Series Technical Description E

2 Evolution Series NGP\00330 Rev. E 2009-04-03

Document history Revision Date Summary of changes

Rev A 04 May 2007 First Release. Technical Description for all Evolution Series configuration modes merged to one document.

Rev B 16 July 2007 Low Capacity ODU included. Output power and thresholds corrected.

Rev C 12 Feb. 2008 Long Haul Figures updated

Rev D 30 July 2008 4 GHz, STM-1 Interface XPAND

Rev E 03 Apr. 2009 SW Release R9A. SU version D with 4xFE ports

Page 5: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

3

Contents Page

1. INTRODUCTION..............................................................................................................................................13 1.1 FEATURES..................................................................................................................................................15 1.2 NETWORK APPLICATIONS..........................................................................................................................16

2. SYSTEM DESCRIPTION GENERAL ...........................................................................................................19 2.1 ODU BASED SYSTEMS...............................................................................................................................19 2.2 OPTIMISED LONG HAUL SYSTEMS 4-11 GHZ............................................................................................20

3. METRO SYSTEM DESCRIPTION – ACCESS & LONG HAUL ...............................................................22 3.1 LINK CONFIGURATIONS .............................................................................................................................23 3.2 NODE CONFIGURATIONS ...........................................................................................................................23 3.3 RADIO FRAME.............................................................................................................................................23 3.4 USER INTERFACES.....................................................................................................................................24

3.4.1 64 kb/s auxiliary channels and EOW ...............................................................................................24 3.4.2 E1 and T1 Wayside channel..............................................................................................................24 3.4.3 External Alarm and Controls..............................................................................................................24

3.5 SDH/SONET FEATURES AND DXC FUNCTIONALITY ..............................................................................25 3.5.1 Mapping and multiplexing DXC Unit & DXC Frame .......................................................................25 3.5.2 Mapping and multiplexing STM-4/OC-12.........................................................................................26 3.5.3 Cross-connect support .......................................................................................................................26 3.5.4 Synchronisation ...................................................................................................................................27 3.5.5 Section Termination ............................................................................................................................27 3.5.6 Scrambling / descrambling functions................................................................................................27 3.5.7 Section/Transport Overhead (SOH/TOH) .......................................................................................28 3.5.8 SOH/TOH Frameword and bytes......................................................................................................28

3.6 METRO TERMINAL AND NODE CONFIGURATIONS WITH DXC ................................................................29 3.7 METRO STM-4/OC-12 TERMINALS........................................................................................................32 3.8 ETHERNET FEATURES................................................................................................................................33

3.8.1 Ethernet over SDH/SONET Mapping ...............................................................................................33 3.8.2 VCAT and LCAS support ...................................................................................................................33 3.8.3 Ethernet services ................................................................................................................................34 3.8.4 QoS features........................................................................................................................................36 3.8.5 Ingress rate limiting.............................................................................................................................36 3.8.6 Frame delay – Ethernet Interfaces ...................................................................................................36 3.8.7 MAC learning .......................................................................................................................................37 3.8.8 Maximum Packet Size ........................................................................................................................37 3.8.9 Ethernet Statistics ...............................................................................................................................37 3.8.10 Typical Ethernet Throughput.........................................................................................................37 3.8.11 Link-Loss Failure pass through on the Ethernet port.................................................................37

4. XPAND SYSTEM DESCRIPTION.................................................................................................................38 4.1 USER INTERFACES.....................................................................................................................................38 4.2 ARCHITECTURE AND TDM FEATURES ......................................................................................................39

4.2.1 SDH/SONET connection....................................................................................................................40 4.3 ETHERNET FUNCTIONALITY .......................................................................................................................41

4.3.1 General .................................................................................................................................................41 4.3.2 Ethernet Traffic Mapping....................................................................................................................41 4.3.3 MAC (IEEE 802-1D) and VLAN (IEEE 802.1-Q) switching ...........................................................41 4.3.4 MAC learning .......................................................................................................................................41 4.3.5 QoS features........................................................................................................................................42 4.3.6 Ingress rate limiting.............................................................................................................................42 4.3.7 Flow Control.........................................................................................................................................42 4.3.8 Frame delay – Ethernet Interfaces ...................................................................................................43 4.3.9 Ethernet Statistics ...............................................................................................................................43

Page 6: Evolution Series Technical Description E

4 Evolution Series NGP\00330 Rev. E 2009-04-03

4.3.10 Typical Ethernet Throughput.........................................................................................................43 4.3.11 Link-Loss Failure pass through on the Ethernet port ................................................................44

4.4 XPAND TERMINAL AND NODE CONFIGURATIONS ...................................................................................44 5. LINK CONFIGURATIONS..............................................................................................................................47

5.1 LEGEND......................................................................................................................................................47 5.2 1+0 SYSTEM ..............................................................................................................................................48 5.3 1+1 HSB / 1+1 FD SYSTEM......................................................................................................................48 5.4 2+0 / 1+1 HSB DUAL BASEBAND SYSTEM ...............................................................................................49 5.5 SPACE DIVERSITY/DUAL ANTENNA SYSTEM.............................................................................................49 5.6 CO-CHANNEL DUAL POLARISED (CCDP) SYSTEM ...................................................................................50 5.7 3+1/4+0 SYSTEM ......................................................................................................................................50 5.8 7+1/8+0 SYSTEM ......................................................................................................................................51 5.9 7+1/8+0 SYSTEM LONG HAUL OPTIMIZED ...............................................................................................52 5.10 LONG HAUL BRANCHING SYSTEMS...........................................................................................................53

6. GENERAL EQUIPMENT CHARACTERISTRICS ......................................................................................54 6.1 TRANSMISSION CAPACITIES AND CHANNEL BANDWIDTH.........................................................................54 6.2 FREQUENCY BANDS...................................................................................................................................55 6.3 EQUIPMENT REFERENCE POINTS .............................................................................................................57 6.4 INTERNATIONAL AND NATIONAL STANDARDS ...........................................................................................58 6.5 ETSI EQUIPMENT CLASS ..........................................................................................................................58 6.6 EQUIPMENT BACKGROUND BER (RESIDUAL BER) ..................................................................................58 6.7 ERROR CORRECTION ................................................................................................................................58 6.8 SYSTEM DELAY ..........................................................................................................................................59 6.9 SW FEATURES...........................................................................................................................................59

6.9.1 Licences ...............................................................................................................................................59 6.9.2 Firmware and configuration files .......................................................................................................59 6.9.3 Link frequency setting ........................................................................................................................59 6.9.4 Configuration report ............................................................................................................................59

6.10 SYSTEM LOOP BACK POSSIBILITIES...........................................................................................................60 6.11 SYSTEM RELIABILITY .................................................................................................................................61

7. GENERAL RADIO CHARACTERISTICS ....................................................................................................62 7.1 TRANSMITTER CHARACTERISTICS ............................................................................................................62

7.1.1 Automatic/Manual Power Control (ATPC/MTPC)...........................................................................62 7.1.2 TX oscillator frequency tolerance .....................................................................................................62

7.2 RECEIVER CHARACTERISTICS...................................................................................................................63 7.2.1 Maximum input level ...........................................................................................................................63 7.2.2 RX oscillator frequency tolerance .....................................................................................................63 7.2.3 Noise Figure ........................................................................................................................................63

7.3 SYSTEM SIGNATURE..................................................................................................................................64 7.4 INTERFERENCE SENSITIVITY......................................................................................................................66

7.4.1 Co-channel interference sensitivity ..................................................................................................66 7.4.2 Adjacent channel interference sensitivity ........................................................................................67

7.5 XPIC PERFORMANCE ................................................................................................................................68 7.6 RECEIVER IMAGE REJECTION ....................................................................................................................68 7.7 SPURIOUS EMISSIONS ...............................................................................................................................68

7.7.1 Transmitter spurious emissions - external.......................................................................................68 7.7.2 Transmitter spurious emissions - internal........................................................................................68 7.7.3 Receiver spurious emissions - external ...........................................................................................68 7.7.4 Receiver spurious emissions - internal ............................................................................................68

8. RADIO CHARACTERISTICS METRO – ODU ............................................................................................69 8.1 GENERAL ...................................................................................................................................................69 8.2 OUTPUT POWER STANDARD POWER ODU..............................................................................................69 8.3 OUTPUT POWER HIGH POWER ODU .......................................................................................................69

Page 7: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

5

8.4 RECEIVER THRESHOLD 155 MBIT/S@28 MHZ ........................................................................................70 8.5 RECEIVER THRESHOLD 155 MBIT/S@40 MHZ ........................................................................................70 8.6 RECEIVER THRESHOLD 155 MBIT/S@50-56 MHZ ..................................................................................70 8.7 RECEIVER THRESHOLD 311 MBIT/S@56 MHZ ETSI ..............................................................................71 8.8 RECEIVER THRESHOLD 311 MBIT/S@50 MHZ ANSI ..............................................................................71 8.9 SYSTEM GAIN STANDARD POWER ............................................................................................................72 8.10 SYSTEM GAIN HIGH POWER .....................................................................................................................72

9. RADIO CHARACTERISTICS METRO – LONG HAUL .............................................................................73 9.1 GENERAL ...................................................................................................................................................73 9.2 OUTPUT POWER HIGH POWER XCVR .....................................................................................................73 9.3 RECEIVER THRESHOLDS – 155 MBIT/S@28 MHZ- ACAP ......................................................................73 9.4 RECEIVER THRESHOLDS – 155 MBIT/S@28 MHZ-ACCP.......................................................................73 9.5 RECEIVER THRESHOLDS 155 MBIT/S@40 MHZ ACCP & ACAP ...........................................................74 9.6 SYSTEM GAIN LONG HAUL SYSTEM..........................................................................................................74 9.7 SYSTEM CHARACTERISTICS FOR SPACE DIVERSITY (SD) .......................................................................74

9.7.1 General .................................................................................................................................................74 9.7.2 Combining principles and performance ...........................................................................................74

10. RADIO CHARACTERISTICS XPAND - ODU SYSTEM - ETSI DATA RATES .................................75 10.1 GENERAL ...................................................................................................................................................75 10.2 OUTPUT POWER STANDARD POWER ODU..............................................................................................75 10.3 OUTPUT POWER HIGH POWER ODU .......................................................................................................75 10.4 RECEIVER THRESHOLD 155 MBIT/S (75XE1) MBIT/S ..............................................................................76 10.5 RECEIVER THRESHOLD 100 MBIT/S (50XE1) - 28 MHZ BW ...................................................................76 10.6 RECEIVER THRESHOLD 80 MBIT/S (40XE1) - 28 MHZ BW .....................................................................76 10.7 RECEIVER THRESHOLD 56 MBIT/S (28XE1) - 14 MHZ BW .....................................................................76 10.8 RECEIVER THRESHOLD 40 MBIT/S (20XE1) - 14 MHZ BW .....................................................................76 10.9 RECEIVER THRESHOLD 32 MBIT/S (16XE1) - 28 MHZ BW .....................................................................77 10.10 RECEIVER THRESHOLD 32 MBIT/S (16XE1) - 14 MHZ BW ................................................................77 10.11 RECEIVER THRESHOLD 32 MBIT/S (16XE1) - 7 MHZ BW ...................................................................77 10.12 RECEIVER THRESHOLD 16 MBIT/S (8XE1) - 14 MHZ BW ...................................................................77 10.13 RECEIVER THRESHOLD 16 MBIT/S (8XE1) - 7 MHZ BW .....................................................................78 10.14 RECEIVER THRESHOLD 8 MBIT/S (4XE1) - 7 MHZ BW .......................................................................78 10.15 SYSTEM GAIN STANDARD POWER - ETSI (E1 BASED) SYSTEMS........................................................79 10.16 SYSTEM GAIN HIGH POWER - ETSI (E1 BASED) SYSTEMS .................................................................80

11. RADIO CHARACTERISTICS XPAND - ODU SYSTEM - ANSI DATA RATES.................................81 11.1 GENERAL ...................................................................................................................................................81 11.2 OUTPUT POWER STANDARD POWER ODU..............................................................................................81 11.3 OUTPUT POWER HIGH POWER ODU .......................................................................................................82 11.4 RECEIVER THRESHOLD 155 MBIT/S (96XT1)...........................................................................................83 11.5 RECEIVER THRESHOLD 125 MBIT/S (80XT1)...........................................................................................83 11.6 RECEIVER THRESHOLD 100 MBIT/S (64XT1)...........................................................................................83 11.7 RECEIVER THRESHOLD 50 MBIT/S (32XT1) .............................................................................................83 11.8 RECEIVER THRESHOLD 25 MBIT/S (16XT1) .............................................................................................84 11.9 RECEIVER THRESHOLD 22 MBIT/S (14XT1) – 5 MHZ BW ......................................................................84 11.10 RECEIVER THRESHOLD 12 MBIT/S (8XT1) ...........................................................................................84 11.11 RECEIVER THRESHOLD 6 MBIT/S (4XT1) - 5 MHZ BW .......................................................................84 11.12 SYSTEM GAIN STANDARD POWER - ANSI (T1 BASED) SYSTEMS .......................................................85 11.13 SYSTEM GAIN HIGH POWER - ANSI (T1 BASED) SYSTEMS ................................................................86

12. UNIT DESCRIPTIONS................................................................................................................................87 12.1 TRANSCEIVER (XCVR) AND OUTDOOR UNIT (ODU) ..............................................................................87 12.2 UNIVERSAL INTERFACE UNIT (IFU)...........................................................................................................88 12.3 ACCESS IFUS ............................................................................................................................................89 12.4 SUPERVISORY UNIT...................................................................................................................................89

Page 8: Evolution Series Technical Description E

6 Evolution Series NGP\00330 Rev. E 2009-04-03

12.5 RADIO INTERFACE UNIT – RIU..................................................................................................................89 12.6 LINE INTERFACE UNIT – LIU .....................................................................................................................90

12.6.1 STM-1/OC-3 Line Interface Units .................................................................................................90 12.6.2 E1/T1 Interface Units .....................................................................................................................90 12.6.3 3xE3/DS3 Interface Unit ................................................................................................................90 12.6.4 STM-4/OC-12 Line Interface Units...............................................................................................90 12.6.5 Ethernet Interface Unit ...................................................................................................................90

12.7 DIGITAL X-CONNECT UNIT ........................................................................................................................91 12.8 DIGITAL X-CONNECT FRAME ....................................................................................................................91 12.9 WAYSIDE UNIT...........................................................................................................................................91 12.10 EOW UNIT (SERVICE CHANNEL) ..........................................................................................................91 12.11 64 KB/S SERIAL CHANNEL UNIT............................................................................................................91 12.12 ALARM AND CONTROL UNIT ..................................................................................................................92 12.13 FAN UNIT ...............................................................................................................................................92 12.14 POWER SUPPLY AND SYNC UNIT .........................................................................................................92 12.15 POWER SUPPLY UNIT ...........................................................................................................................92 12.16 24 V POWER INTERFACE ADAPTER......................................................................................................92 12.17 LEDS .....................................................................................................................................................92

13. DIPLEXER, BRANCHING AND ANTENNA INTERFACE ....................................................................93 13.1 DIPLEXER DESCRIPTION ............................................................................................................................93 13.2 RF-COUPLER.............................................................................................................................................93

13.2.1 RF-input return loss ODU..............................................................................................................93 13.3 LOW LOSS BRANCHING DESCRIPTION.......................................................................................................94

13.3.1 Branching loss long haul system..................................................................................................94 13.3.2 RF-filter characteristics ..................................................................................................................95 13.3.3 RF-input return loss........................................................................................................................95

13.4 ANTENNA INTERFACE - SPLIT MOUNT SYSTEM WITH DIPLEXER..............................................................96 13.5 ANTENNA INTERFACE – LONG HAUL RF-FILTER BRANCHING SYSTEM ...................................................96

14. IFU-ODU INTERFACE ...............................................................................................................................97 14.1 CABLE INTERFACE CHARACTERISTICS ......................................................................................................97 14.2 CABLE CHARACTERISTICS .........................................................................................................................97

15. RADIO PROTECTION SWITCHING (RPS) ............................................................................................98 15.1 GENERAL ...................................................................................................................................................98 15.2 LOW PRIORITY TRAFFIC ............................................................................................................................98 15.3 BASE BAND SWITCHING OPERATIONS .......................................................................................................98 15.4 SWITCHING CAPABILITY .............................................................................................................................98 15.5 PRIORITY OF PROTECTION SWITCHING .....................................................................................................98 15.6 ALIGNMENT SPECIFICATION.......................................................................................................................98 15.7 SWITCHING CRITERIA, RX..........................................................................................................................98

15.7.1 Continuity criteria ............................................................................................................................98 15.7.2 Quality criteria .................................................................................................................................99

15.8 SWITCHING OPERATION TIME, RX .............................................................................................................99 15.9 SWITCHING CRITERIA AND SWITCHING OPERATION TIME, TX...................................................................99

16. MANAGEMENT SYSTEM CHARACTERISTICS.................................................................................100 16.1 GENERAL .................................................................................................................................................100 16.2 EVENT LOGGING ......................................................................................................................................100 16.3 MONITORING OF SYSTEM PERFORMANCE...............................................................................................101

16.3.1 System performance calculations ..............................................................................................101 16.3.2 Performance record logging........................................................................................................101

16.4 SECURITY MANAGEMENT.........................................................................................................................101 16.4.1 Security event logging..................................................................................................................101

16.5 MANAGEMENT SYSTEM COMMUNICATION ...............................................................................................102 16.5.1 Management LAN interface ........................................................................................................102

Page 9: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

7

16.5.2 USB interface ................................................................................................................................102 16.6 IP ROUTING ..............................................................................................................................................102

16.6.1 Data Communication Channel DCC ..........................................................................................103 16.6.2 64 kb/s point to point channels ...................................................................................................103 16.6.3 DCN network .................................................................................................................................103

16.7 INBAND MANAGEMENT.............................................................................................................................104 16.8 EMBEDDED SNMP AGENT.......................................................................................................................104

16.8.1 Standard MIBs Supported ...........................................................................................................104 16.9 SSL ..........................................................................................................................................................104

17. PHYSICAL INTERFACES........................................................................................................................105 17.1 INTERFACE CHARACTERISTICS 155 MBIT/S ELECTRICAL .......................................................................105 17.2 INTERFACE CHARACTERISTICS 155 MBIT/S OPTICAL - INTERMEDIATE REACH......................................105 17.3 INTERFACE CHARACTERISTICS 155 MBIT/S OPTICAL - LONG REACH 1300NM......................................105 17.4 INTERFACE CHARACTERISTICS 155 MBIT/S OPTICAL - LONG REACH 1500NM......................................105 17.5 INTERFACE CHARACTERISTICS 155 MBIT/S OPTICAL – MULTI MODE ....................................................106 17.6 INTERFACE CHARACTERISTICS 622 MBIT/S OPTICAL - INTERMEDIATE REACH......................................106 17.7 JITTER AND WANDER STM-N/OC-N TRAFFIC INTERFACES ..................................................................106 17.8 INTERFACE CHARACTERISTICS 1.5 MBIT/S .............................................................................................106 17.9 INTERFACE CHARACTERISTICS 2 MBIT/S ................................................................................................106 17.10 INTERFACE CHARACTERISTICS 34 MBIT/S ..........................................................................................107 17.11 INTERFACE CHARACTERISTICS 45 MBIT/S ..........................................................................................107 17.12 2.048 MHZ SYNCHRONISATION INPUT/OUTPUT CHARACTERISTICS ..................................................107 17.13 ETHERNET INTERFACES ......................................................................................................................108

17.13.1 10/100 BASE-TX...........................................................................................................................108 17.13.2 1000 BASE-T ................................................................................................................................108 17.13.3 1000 BASE-LX ..............................................................................................................................108 17.13.4 1000 BASE-SX..............................................................................................................................108

17.14 AUXILIARY INTERFACES.......................................................................................................................109 17.14.1 64 kb/s channel characteristics ..................................................................................................109 17.14.2 Service telephone/Orderwire interfaces ....................................................................................109 17.14.3 Alarm and Control Interfaces ......................................................................................................110

18. ENVIRONMENTAL ...................................................................................................................................111 18.1 ELECTROMAGNETIC COMPATIBILITY CONDITIONS (EMC) .....................................................................111 18.2 SAFETY CONDITIONS ...............................................................................................................................111 18.3 ROHS AND WEEE COMPLIANCE ............................................................................................................111 18.4 ENVIRONMENTAL CONDITIONS ................................................................................................................111

18.4.1 Outdoor Enclosure Protection.....................................................................................................111 19. MECHANICAL CHARACTERISTICS.....................................................................................................112

19.1 INSTALLATION ..........................................................................................................................................112 19.2 DIMENSIONS.............................................................................................................................................112 19.3 WEIGHTS .................................................................................................................................................112

20. POWER SUPPLY AND CONSUMPTION .............................................................................................113 20.1 OVERVOLTAGE PROTECTION...................................................................................................................113 20.2 24 VOLT DC ADAPTER ............................................................................................................................113 20.3 POWER CONSUMPTION ...........................................................................................................................113

21. INTEGRATED ANTENNAS .....................................................................................................................114 21.1 BASELINE SERIES ....................................................................................................................................114 21.2 LOW PROFILE SERIES..............................................................................................................................115

22. REFERENCES...........................................................................................................................................117

23. TERMINOLOGY ........................................................................................................................................119

Page 10: Evolution Series Technical Description E

8 Evolution Series NGP\00330 Rev. E 2009-04-03

APPENDIX 1 – ODU/DIPLEXER SUB-BAND RANGE ....................................................................................121

Page 11: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

9

List of figures Page Figure 2-1 ODU based system..............................................................................................................19 Figure 2-2 Long Haul Indoor Mounted system, 10+0........................................................................20 Figure 2-3 Long Haul Split Mount outdoor part , 3+1/4+0 ................................................................21 Figure 3-1 SDH/SONET Ring Network................................................................................................22 Figure 3-2 Evolution Series METRO block diagram ...........................................................................22 Figure 3-3 SDH Mapping and Multiplexing..........................................................................................25 Figure 3-4 SONET Mapping and Multiplexing ....................................................................................25 Figure 3-5 SDH and SONET STM-4/OC-12 Mapping.......................................................................26 Figure 3-6 DXC Unit Figure 3-7 DXC Frame..............................................................................26 Figure 3-8 1+0 and HSB Terminals with Multiplexer .........................................................................29 Figure 3-9 Two Directions 1+0 ..............................................................................................................29 Figure 3-10 Two Directions HSB and 2+0...........................................................................................30 Figure 3-11 Four Directions 1+0 and HSB ..........................................................................................30 Figure 3-12 n+1 or n+0 Terminal with DXC – 2x155 Mbit/s .............................................................31 Figure 3-13 n+1 or n+0 Terminal with DXC – 3x155 Mbit/s .............................................................31 Figure 3-14 n+1 or n+0 Terminal with DXC – 4x155 Mbit/s .............................................................31 Figure 3-15 Point to point links, STM-4/OC-12 ..................................................................................32 Figure 3-16 Two directions STM-4/OC-12 to STM-1/OC-3 ...............................................................32 Figure 3-17 Four directions STM-4/OC-12 to STM-1/OC-3 ..............................................................32 Figure 3-18 600 Mbit/s Ethernet Link ....................................................................................................33 Figure 3-19 Port to Link Mapping - Multiple E-Line ...........................................................................34 Figure 3-20 VLAN Switch mode............................................................................................................35 Figure 4-1 Scalable frame .....................................................................................................................38 Figure 4-2 XPAND Node Site with Spur Links....................................................................................38 Figure 4-3 Network topology example .................................................................................................40 Figure 4-4 XPAND Terminal, TDM.......................................................................................................44 Figure 4-5 XPAND Terminal, Ethernet only or Ethernet & TDM .....................................................44 Figure 4-6 XPAND Node two directions, unprotected .......................................................................45 Figure 4-7 XPAND Nodes, Two directions-protected, Four directions-unprotected.....................45 Figure 4-8 XPAND Nodes with STM-1/OC-3 interface .....................................................................46 Figure 5-1 System Block Diagram 1+0 Terminal ...............................................................................48 Figure 5-2 System Block Diagram 1+1 HSB/FD Terminal ...............................................................48 Figure 5-3 System Block Diagram 2+0 Terminal ...............................................................................49 Figure 5-4 System Block Diagram Space Diversity Terminal ..........................................................49 Figure 5-5 System Block Diagram CCDP Terminal...........................................................................50 Figure 5-6 System Block Diagram 3+1/4+0 Terminal .......................................................................50 Figure 5-7 System Block Diagram 7+1/8+0 Terminal .......................................................................51 Figure 5-8 System Block Diagram Long Haul 7+1/8+0 Terminal....................................................52 Figure 5-9 Branching Diagrams 1+1/2+0 and 3+1/4+0 Dual Polarized .........................................53 Figure 5-10 Branching diagrams 7+1/8+0 and 3+1 Space Diversity ..............................................53 Figure 6-1 Principle block diagram for a split mount radio system with Diplexer .........................57 Figure 6-2 Principle block diagram for a radio system with RF Branching ....................................57 Figure 6-3 System loop backs...............................................................................................................60 Figure 12-1 XCVR and ODU .................................................................................................................87 Figure 12-2 IFU, 1+0 system.................................................................................................................88 Figure 12-3 Slot Matrix Universal IFU ...................................................................................................88 Figure 12-4 Access IFU, 1+0 terminal .................................................................................................89 Figure 16-1 IP Router Overview...........................................................................................................102 Figure 16-2 Data Communication Network ........................................................................................103 Figure 16-3 Inband Management XPAND and METRO ..................................................................104

Page 12: Evolution Series Technical Description E

10 Evolution Series NGP\00330 Rev. E 2009-04-03

List of tables Page Table 3-1 Synchronisation quality levels.............................................................................................. 27 Table 3-2 Utilisation of SOH bytes ........................................................................................................ 28 Table 3-3 Ethernet Packet frame delay – VC-4 mapping ................................................................. 36 Table 3-4 Ethernet Throughput METRO.............................................................................................. 37 Table 4-1 PXC Connections................................................................................................................... 39 Table 4-2 IFU Configurations, XPAND................................................................................................. 39 Table 4-3 SU Versions and features .................................................................................................... 41 Table 4-4 Ethernet Packet Frame delay XPAND ............................................................................... 43 Table 4-5 Ethernet Throughput XPAND .............................................................................................. 43 Table 6-1 Transmission Capacity Overview ETSI Data rates .......................................................... 54 Table 6-2 Transmission Capacity Overview ANSI Data rates .......................................................... 54 Table 6-3 Frequency bands ETSI ......................................................................................................... 56 Table 6-4 Frequency bands ANSI......................................................................................................... 56 Table 6-5 ETSI Equipment Class.......................................................................................................... 58 Table 6-6 System delay .......................................................................................................................... 59 Table 6-7 MTBF Figures......................................................................................................................... 61 Table 7-1 Maximum input signal level .................................................................................................. 63 Table 7-2 System signature 155 Mbit/s Long Haul Systems ............................................................ 64 Table 7-3 System signature 155 Mbit/s and 311 Mbit/s - ODU........................................................ 64 Table 7-4 System signature 100-8 Mbit/s ETSI .................................................................................. 64 Table 7-5 System signature values 125-6 Mbit/s ANSI ..................................................................... 65 Table 7-6 Co-Channel Interference Sensitivity 155 and 311 Mbit/s ................................................ 66 Table 7-7 Co-Channel Interference Sensitivity ETSI rates ............................................................... 66 Table 7-8 Co-Channel Interference Sensitivity ANSI rates............................................................... 66 Table 7-9 Adjacent Interference Sensitivity 155 and 311 Mbit/s ...................................................... 67 Table 7-10 Adjacent Channel Interference Sensitivity – ETSI rates ............................................... 67 Table 7-11 Adjacent Channel Interference Sensitivity ANSI rates .................................................. 67 Table 8-1 Nominal output power Standard Power ODU ................................................................... 69 Table 8-2 Nominal output power High Power ODU ........................................................................... 69 Table 8-3 Receiver threshold, 155 Mbit/s in ~28 MHz channel........................................................ 70 Table 8-4 Receiver threshold, 155 Mbit/s in 40 MHz channel .......................................................... 70 Table 8-5 Receiver threshold, 155 Mbit/s in ~56 MHz channel........................................................ 70 Table 8-6 Receiver threshold, 311 Mbit/s in ~56 MHz channel........................................................ 71 Table 8-7 Receiver threshold, 311 Mbit/s in ~50 MHz channel........................................................ 71 Table 8-8 System gain standard power ............................................................................................... 72 Table 8-9 System gain high power ....................................................................................................... 72 Table 9-1 Nominal output power Long Haul System, 155 Mbit/s..................................................... 73 Table 9-2 Receiver threshold, 155 Mbit/s ............................................................................................ 73 Table 9-3 Receiver threshold, 155 Mbit/s ............................................................................................ 73 Table 9-4 Receiver threshold, 155 Mbit/s ............................................................................................ 74 Table 9-5 System gain high power ....................................................................................................... 74 Table 10-1 Nominal output power Standard Power ODU ................................................................. 75 Table 10-2 Nominal output power High Power ODU ......................................................................... 75 Table 10-3 Receiver threshold 50xE1 in 28 MHz channel ................................................................ 76 Table 10-4 Receiver threshold 40xE1 in 28 MHz channel ................................................................ 76 Table 10-5 Receiver threshold 28xE1 in 14 MHz channel ................................................................ 76 Table 10-6 Receiver threshold 20xE1 in 14 MHz channel ................................................................ 76 Table 10-7 Receiver threshold 16xE1 in 28 MHz channel ................................................................ 77 Table 10-8 Receiver threshold 16xE1 in 14 MHz channel ................................................................ 77 Table 10-9 Receiver threshold 16xE1 in 14 MHz channel ................................................................ 77

Page 13: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

11

Table 10-10 Receiver threshold 8xE1 in 14 MHz channel.................................................................77 Table 10-11 Receiver threshold 8xE1 in 7 MHz channel ...................................................................78 Table 10-12 Receiver threshold 4xE1 in 7 MHz channel ...................................................................78 Table 10-13 System gain Standard Power - ETSI ..............................................................................79 Table 10-14 System gain high power – ETSI ......................................................................................80 Table 11-1 Nominal output power Standard Power ODU ..................................................................81 Table 11-2 Nominal output power High Power ODU ..........................................................................82 Table 11-3 Receiver thresholds 80xT1 .................................................................................................83 Table 11-4 Receiver thresholds 64xT1 .................................................................................................83 Table 11-5 Receiver threshold 32xT1 ...................................................................................................83 Table 11-6 Receiver threshold 16xT1 ...................................................................................................84 Table 11-7 Receiver threshold 32xT1 ...................................................................................................84 Table 11-8 Receiver threshold 8xT1 in 10 MHz channel ...................................................................84 Table 11-9 Receiver threshold 4xT1 in 5 MHz channel .....................................................................84 Table 11-10 System gain Standard Power - ANSI..............................................................................85 Table 11-11 System gain High Power - ANSI......................................................................................86 Table 12-1 Access IFUs, XPAND ..........................................................................................................89 Table 13-1 RF-Coupler loss....................................................................................................................93 Table 13-2 Branching loss ......................................................................................................................94 Table 13-3 HSB Splitter loss ..................................................................................................................94 Table 13-4 RF-Filter characteristics ......................................................................................................95 Table 13-5 ODU flanges and waveguide..............................................................................................96 Table 13-6 Long Haul Branching flanges and waveguide ................................................................96 Table 14-1 Recommended Cable lengths, IFU-ODU cable ..............................................................97 Table 15-1 Switching operation time .....................................................................................................99 Table 20-1 Power consumption terminal ............................................................................................113 Table 20-2 Maximum power consumption units ................................................................................113

Page 14: Evolution Series Technical Description E

12 Evolution Series NGP\00330 Rev. E 2009-04-03

This page is intentionally left blank

Page 15: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

13

1. INTRODUCTION

The Nera Evolution Series microwave radio dramatically changes the operations for wireless transmission network owners. With the ability of a common platform architecture, which is fully software configurable; transmission capacity, system configurations and transmission interfaces can be changed to adapt to future needs. Evolution Series dramatically reduces the cost of ownership. With significantly reduced number of parts and high MTBF Evolution Series ensures maximum uptime and low maintenance. The Evolution Series microwave radio system is designed to transmit data rates from about 6 Mbit/s to 1550 Mbit/s, in the frequency bands from 4 GHz to 40 GHz. The configuration of capacity and modulation is software configurable, giving an optimal balance between system gain and spectral efficiency. Network operators can with the Universal IFU system easily future proof the network as the microwave radio can easily adapt to the evolution of the transmission network. Growing traffic and the convergence of network technologies causes changing requirements, such as capacity upgrades, change of transmission systems between PDH, SDH/SONET and pure Ethernet; all this is simply implemented by software configuration change and change of interface units. The available interfaces range from E1, T1, E3, DS3, STM-1/OC-3 and STM-4/OC-12 to 10/100BASE-TX and Gigabit Ethernet. The Evolution Series product can be configured to work in two different modes, METRO (SDH based) and XPAND (Hybrid Ethernet/PDH based). In both modes it is possible to either have a split mounted system with IFU and ODU or an optimized long haul system with low loss RF-branching providing the best system gain for high capacity systems. Payload capacity on each RF channel is configurable and is enabled by SW licences. With the Universal IFU changes and upgrades can be done by the user without HW changes to the basic IFU platform. The Universal IFU is used in METRO and in XPAND when more than 16 E1/T1 interfaces and/or more directions are needed. In addition the Access IFUs with fixed interfaces and one antenna direction are available. In the following the main features for each configuration mode is described METRO features (ETSI and ANSI)

• 155 Mbit/s and 311Mbit/s transmission capacity per XCVR/ODU • Configurations from 1+0 and HSB up to 7+1 and 10+0 • CCDP configuration with XPIC • 28, 40, 50 and 56 MHz BW • Options for embedded ADM mux / X-connect • TDM traffic : 63xE1, 3xE3/DS3, 64xT1 • STM-1/OC-3 and STM-4/OC-12 • Advanced Ethernet : 4xFE and 1xGbE with QoS, nxVC12(VT1.5), nxVC-3(STS-1) or nxVC-

4(STS-3-3c) mapping with LCAS, up to 600 Mbit/s link capacity • Wayside traffic of E1, T1 or 2Mbit/s Ethernet traffic with VLAN and QoS support • Traffic Node with 4 radio directions, SNCP with Ring, Chain, Star or Mesh topology • Low loss multi channel Long Haul system, including combiner Space Diversity XCVR • Outdoor option for low loss multi channel Long Haul system

Page 16: Evolution Series Technical Description E

14 Evolution Series NGP\00330 Rev. E 2009-04-03

XPAND features, Universal IFU (ETSI) • Scalable 8, 16, 32, 40, 56, 80, 100, 150 Mbit/s transmission capacity (4, 8, 16, 20, 28 40, 50,

75xE1) • 7, 14, 28 and 40 MHz BW • 1+0 and HSB/1+1 Configuration with Space Diversity option • Mix of Ethernet and E1s • Ethernet 2 or 4xFE, scalable with 2 Mbit/s granularity up to 100Mbit/s, VLAN and QoS support • Embedded E1 cross-connect • Ring protection for E1s,, based on SNCP • STM-1 interface for direct connection to a SDH based network • Low loss Long Haul system available

XPAND features, Access IFU (ETSI)

• Scalable 8, 16, 32, 40, 56, 80 and 100 Mbit/s transmission capacity • 1+0 and HSB/1+1 Configuration with Space Diversity option • 7, 14 and 28 MHz BW • Mix of Ethernet and E1s, scalable with 2 Mbit/s granularity • IFU1: 4E1 • IFU2: 16E1 + 2 x Fast Ethernet + 64kb/s

XPAND features Universal IFU (ANSI)

• Scalable 6, 12, 22, 24, 50, 100, 125 and 150 Mbit/s transmission capacity (4, 8, 14, 16, 32, 64, 80, 96xT1)

• 5, 10, 20 and 30 MHz BW • 1+0 and HSB/1+1 Configuration with Space Diversity option • Mix of Ethernet and T1s • Ethernet 2 or 4xFE, scalable with 1.5 Mbit/s granularity up to 100Mbit/s.VLAN and QoS support • Embedded T1 cross-connect • Ring protection for T1s (also T1’s carrying Ethernet traffic), based on SNCP • OC-3/STS-3 interface for direct connection to a SONET based network • Low loss Long Haul system available

XPAND features, Access IFU (ANSI)

• Scalable 6, 12, 22, 24, 50 or 100 Mbit/s transmission capacity • 1+0 and HSB/1+1 Configuration with Space Diversity option • 5, 10 and 20 MHz BW • Mix of Ethernet and T1s scalable with 1.5 Mbit/s granularity • IFU1: 4T1 + 2 x Fast Ethernet • IFU2: 16E1 + 2 x Fast Ethernet + 64kb/s

The Evolution Series is an integrated part of Nera’s wide product portfolio, from the leading microwave specialist. The product portfolio covers products for all type of professional wireless carrier systems. Nera’s microwave experience dates back more than 50 years, with a leading position in this field. The Evolution Series radio is integrated in Nera’s EM/NMS system, NetMaster.

Page 17: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

15

1.1 Features The Evolution Series microwave radio utilises the latest advanced technology, a high degree of RF circuit integration, using Monolithic Microwave Integrated Circuits (MMIC), combined with advanced direct RF modulation, enabling a broadband, revolutionary compact design for a high power microwave module. The patented technology enables a revolutionary low power consumption and high reliability due to fewer parts in the radio unit. The modem contains multidimensional coded modulation, combined with a powerful block code. The resulting two-stage error correction improves system margin over traditional single FEC systems such as QAM, TCM or MLCM. The modem is extremely flexible, enabling an optimum configuration for all capacities and channel plans. The XVCR can be used for all transmission capacities and covers the whole band, both high and low part. The same XCVR is used in both Split Mount Access Systems and Long Haul Systems. For Long Haul Combiner Space Diversity XCVR is also available. Split Mount Access Systems are using an ODU Unit which consists of the XVCR and a Diplexer Unit. Most frequency bands can be covered by four ODU variants for the whole band. The frequency setting is easy and is performed locally or remotely by the LCT function. The ODU can for most frequency bands be mounted directly on the antenna, both in unprotected and protected configurations. The ODU can also be mounted on the antenna pole, using a short flexible waveguide to the antenna. The InterFace Unit (IFU) is an extremely modular system, catering for the various system configurations and traffic interfaces by plug-in units. The IFU can easily be expanded from a single channel system up to a traffic node handling up to 8 ODU/XCVRs. The IFU contains the user interfaces, baseband processing and multiplexing, management and radio interface. The demodulator contains an integrated digital interference canceller, which can be used to provide the XPIC function, enabling two carriers to be transmitted over the same frequency, using dual polarised antennas. The optional embedded ADM/DXC function provides multiplexing for user traffic into the STM-1/OC-3 signal. In traffic node systems, the digital cross connect (DXC) routes the user traffic between the various link directions without the need for cabling or external multiplexers. Chain, ring, star and mesh topologies are supported, with individual choice of unprotected or protected (SNCP) traffic circuits. The multiplexer supports a mix of traffic types, such as E1, T1, E3, DS3 and Ethernet. In XPAND mode an embedded PDH cross-connect allows flexible routing of Ethernet traffic and X-connect of E1/T1-traffic between the radio interfaces and the user interfaces. The equipment configuration and licences can be stored in an external file. When a new Supervisory Unit is inserted, the equipment configuration can then easily be restored to the radio equipment. The configuration can also be copied to other terminals.

Page 18: Evolution Series Technical Description E

16 Evolution Series NGP\00330 Rev. E 2009-04-03

1.2 Network Applications The Evolution Series microwave radio is ideally suited for a wide range of applications. Due to the flexibility in configurations, the choice of traffic interfaces and the capacity scalability, it can easily adapt to the specific requirements of a given network application. The flexibility and ease- of upgrade, future proof the investment, as the equipment can grow with the increasing traffic demand as well as easily adapt to other transmission technologies.

Mobile (BTS) Backhaul

- The Evolution Series microwave radio is ideal for demanding and critical application such as backhaul of BTS traffic. Where loss of traffic directly results in loss of revenue, reliability and maximum uptime are critical parameters for the network operator. The Evolution Series reliable and flexible architecture as well as high system gain, ensures increased availability of the offered services, and a secured revenue stream. The optional embedded ADM multiplexer and cross-connect enables routing of traffic without the need for external cabling. Further, the traffic circuits can be individually protected via ring or mesh topologies, and various traffic types can be mixed, sharing the transmission capacity of the radio. The radio can be configured for a wide range of capacities, ensuring an optimal utilization of the available spectrum as well as capabilities for upgrading when traffic demand increases or new services are introduced.

- With the introduction of HSPA in the networks, as an overlay network or a Greenfield installation, the aggregate capacity demand typically raise above 30 Mbit/s. High density Ethernet/PDH and/or SDH radios are needed, and a common platform system, represent large savings in the network operation, compared to more traditional network designs.

!"

#$%&$'

!(" )

* " )

(+ *,+"'

Page 19: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

17

Long Haul Trunk Systems

- For long haul applications where high capacity and high availability is crucial the low loss optimized RF-branching system is the best choice. These systems are the choice when the need is multiple STM-1/OC-3, STM-4/OC-12 or Gigabit Ethernet connections. Integrated ADM is also available, enabling access to TDM tributaries without the need for external multiplexer. Applications can be pure backbone radio transmission networks and also back-up links for fibre connections or closing of rings where fibre can not be used.

LMDS/FWA Backhaul

- LMDS/FWA backhaul. The Evolution Series radio is well suited for backhaul of traffic from Point-to-MultiPoint radio access systems like WiMax. With a selectable capacity, ranging from about 20 Mbit/s to 600Mbit/s, the Evolution Series radio can easily be deployed in small network as well as in larger constellations and networks with several sites linked together. The choice of pure Ethernet/Gigabit Ethernet, 155Mbit/s SDH/SONET, or a combination of TDM (E1/T1/E3/DS3) with Ethernet/Gigabit Ethernet, makes the Evolution Series suitable for any FWA network installation.

- DSLAM backhaul. The introduction of xDSL services can in some cases uncover a new challenge. The local transmission network may only be dimensioned for the POTS traffic and is not suited for high speed data. Upgrading the local network to fibre might not be feasible due to time and/or cost of such upgrade. The Evolution Series microwave radio offers an easy and flexible solution to this challenge. The Evolution Series microwave radio can offer backhaul of the DSLAM to the optical backbone network, whether the network interfaces are PDH, ATM/SDH/SONET or Ethernet/Gigabit Ethernet. With the Evolution Series radio, the various traffic types are catered for merely by change of interface units.

',

%'-')

./'

/

"

)

,

'

0/

)

!!

*"!1

'

Page 20: Evolution Series Technical Description E

18 Evolution Series NGP\00330 Rev. E 2009-04-03

Private Networks Operators

- Corporate/Campus Networks. The Evolution Series radio is a good alternative to more common unlicensed microwave solutions. With higher capacity, choice of pure Ethernet/Gigabit Ethernet, 155Mbit/s SDH/SONET, or a combination of TDM (E1/T1/E3/DS3) with Ethernet/Gigabit Ethernet, makes the Evolution Series suitable for most private networks, whether they are carrying legacy services or data only. Flexibility and simplicity, combined with a predictable reliability, proves for many network owners to be an unbeatable combination.

',

%' "

"

)

!

)

'

("

'"

'1

Page 21: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

19

2. SYSTEM DESCRIPTION GENERAL

The Evolution Series microwave radio system has the option of an ODU based system or a Long Haul RF-branching based system. The same basic units like XCVR, IFU and interface cards are used in both systems. Further the system has two configuration modes; METRO (SDH/SONET) and XPAND (Hybrid PDH/Ethernet). The embedded SW can handle both modes and the choice of mode is done during terminal configuration.

2.1 ODU based systems These systems comprise indoor part (IFU), outdoor part (ODU) and antenna. The IFU and each ODU is interconnected with coaxial cable which carries transmit and receive user traffic, management communication between the IFU and ODU, and the power supply to the ODU. The ODU can be mounted directly to the antenna or to a pole when this is needed.

Figure 2-1 ODU based system

Page 22: Evolution Series Technical Description E

20 Evolution Series NGP\00330 Rev. E 2009-04-03

2.2 Optimised Long haul systems 4-11 GHz These systems are most commonly indoor mounted but a split mounted version is also available. The system comprises one to five IFUs with interface units and power supply connection to the system, up to ten XCVRs and the RF branching system. Connection to the antenna is by elliptical WG. The indoor system is mounted in a 19” rack. Configurations

• n+1, n = 1 to 7, • n+0, n = 1 to 10 • Asymmetrical HSB

Features

• Combiner Space Diversity • Co-channel operation with XPIC • Adjacent channel operation • Integrated ADM/DXC option • Low Power Consumption • Transceiver units covers complete frequency band

Figure 2-2 Long Haul Indoor Mounted system, 10+0

Page 23: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

21

The split mount version has an outdoor branching housing with capacity of four XCVRs, also with the options of Combiner Space Diversity and Co-channel operation. Two housing can be used with dual polarised antennas giving a total capacity of eight channels. In this configuration the connection between indoor and outdoor part is by coaxial cable like in the other ODU based systems. The system is available in frequency bands 5-11 GHz.

Figure 2-3 Long Haul Split Mount outdoor part , 3+1/4+0

Page 24: Evolution Series Technical Description E

22 Evolution Series NGP\00330 Rev. E 2009-04-03

3. METRO SYSTEM DESCRIPTION – ACCESS & LONG HAUL

Evolution Series METRO is a high capacity system configuration with transmission capacity of 155 or 311 Mbit/s per XCVR/ODU and up to 10x155 Mbit/s per link. CCDP configuration with XPIC is available in all frequency bands for all modulation schemes. The transmission protocols are SDH or SONET. Ethernet traffic is transported using the Ethernet over SDH standards; GFP, VCAT and LCAS. The equipment can be configured for a wide range of network configurations including terminal and traffic node with two, three or four antenna directions with Add/Drop and digital x-connect of traffic between the directions.

Figure 3-1 SDH/SONET Ring Network

Evolution Series provides a lot of freedom for configuring a terminal to fit with the user needs. The main building blocks are the Line Interfaces (LIU), the Radio Interfaces (RIU), the optional DXC and the Main Data Switch (MDS). The MDS makes connections between LIUs, DXC and RIUs. See Figure 3-2 below. STM-1/OC-3, Gigabit and STM-4/OC-12 interfaces can be connected directly to a RIU. The PDH interfaces (E1/T1/E3 and DS3) have to be connected through the DXC. In a repeater site RIUs from two directions can be interconnected. In addition the terminal can be equipped with Auxiliary Interfaces.

Figure 3-2 Evolution Series METRO block diagram

Page 25: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

23

3.1 Link Configurations The following link configurations are available for XCVR/ODU configured with 155 Mbit/s capacity and ODU configured with 311 Mbit/s capacity.

• 1+0 • 1+1 HSB/FD 1 • 1+1 HSB/FD - Space Diversity • 2+0 (DF-SP) Adjacent channels supported.1 • 2+0 (SF-DP) with XPIC

Additional link configurations are available for XCVR/ODUs configured with 155 Mbit/s capacity

• 1+1 HSB - Dual Baseband • n+1 (1+1 to 7+1) • n+0 (1+0 to 10+0)

Space Diversity with IF combiner is available for all long haul configurations with branching, both indoor and with ODU branching housing. The Link Configurations are detailed in chapter 5

3.2 Node Configurations Node configurations with two traffic directions are available for all configurations and traffic can be dropped from three channels, E1 Tributaries per site are 200 and T1 tributaries are 128. Nodes with three or four directions are available for links with 1+0/1+1/HSB configurations, number of tributaries is 100 E1s or 64T1s. Node configuration examples are included in chapter 3.6

Configuration XCVR/ODU capacity

Node Directions

1+0/1+1/HSB 155 Mbit/s 4

2+0 to 8+0 155 Mbit/s 2

n+1, n=1 to 7 155 Mbit/s 2

1+0/1+1/HSB 311 Mbit/s 2

3.3 Radio frame In METRO mode main traffic is transported in the STM-1/OC-3 frame. One or two STM-1/OC-3 signals can be mapped into one radio frame. In addition the radio frame contains a 192 kb/s DCC channel, two 64 kb/s user channels, RPS communication channel and ODU-ODU communication channel. The DCC channels in the SOH/TOH are not used by the radio equipment.

1 2+0/1+1 systems with Coupler must have the same diplexer on both ODUs

Page 26: Evolution Series Technical Description E

24 Evolution Series NGP\00330 Rev. E 2009-04-03

3.4 User Interfaces The system can handle a mix of both TDM traffic and Ethernet traffic, available interface units are:

• STM-1/OC-3 electrical or optical. • STM-4/OC-12 optical • 12xE1 and 25xE1 • 8xT1 and 16xT1 • 3xE3/DS3 • Ethernet (4x10/100BASE-TX, 1000BASE-T and 1000BASE-X (SFP))

E1, T1, E3 and DS3 interfaces requires DXC. STM-4/OC-12 links with distribution to STM-1/OC-3 requires DXC. Available auxiliary interfaces are: E1/T1 Wayside, Ethernet Wayside, 64 kb/s, EOW and External Alarm and Controls.

3.4.1 64 kb/s auxiliary channels and EOW Interfaces for 64 kb/s Auxiliary channels are available at the EOW Unit and the separate 64 kb/s Unit. The 64 Kb/s channels can be transported in available channels in the SOH/TOH or in two channels in the NERA Frame. Maximum five channels for EOW and 64 kb/s can be allocated per main channel. The units can also be used to set up a management 64 kb/s point to point connection over radio, line or external 64 kb/s line. For more details see the unit descriptions 12.10 and 12.11.

3.4.2 E1 and T1 Wayside channel An E1 or T1 Wayside channel is available by using bytes in the SOH/TOH. The E1/T1 Wayside Unit is required for. G.703 interface. The unit handles one channel.

3.4.2.1 Ethernet Wayside The 2 Mbit/s wayside capacity can be used to carry Ethernet traffic. Ethernet port(s) at the SU is used as interface. The Ethernet packets are mapped into the SOH/TOH. See chapter 3.5.7 for more details about use of SOH/TOH.

3.4.3 External Alarm and Controls See unit description. Chapter 12.12

Page 27: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

25

3.5 SDH/SONET Features and DXC Functionality

3.5.1 Mapping and multiplexing DXC Unit & DXC Frame The equipment supports both SDH and SONET mapping. For Ethernet traffic, GFP mapping is used. See chapter 4.3.2 for more details. The DXC supports SDH and SONET Mapping and multiplexing of E1, E3 and DS3 according to Figure 3-3 and Figure 3-4.

Figure 3-3 SDH Mapping and Multiplexing

!

Figure 3-4 SONET Mapping and Multiplexing

Page 28: Evolution Series Technical Description E

26 Evolution Series NGP\00330 Rev. E 2009-04-03

3.5.2 Mapping and multiplexing STM-4/OC-12 A terminal with STM-4/OC-12 interface supports Mapping and multiplexing according to Figure 3-5. If the payload contains four individual STM-1/OC-3 signals the payload may be partially populated. This allows the use of the STM-4/OC-12 interface on a link with lower capacity. If the payload is a concatenated signal a link capacity of 622 Mbit/s is mandatory.

Figure 3-5 SDH and SONET STM-4/OC-12 Mapping

3.5.3 Cross-connect support The DXC Unit or the larger DXC Frame provides the SDH/SONET multiplexer functionality. It can be configured as terminal, ADM with two transmission directions or as X-connect with up to four transmission directions. It can also be used without ODU as a DXC terminal. The node has a non-blocking cross-connect capability at VT1.5, VC-12, VC-3/STS-1 and VC-4/STS-3 levels with a total cross-connect capacity of 4×VC-4/STS-3 (DXC Unit) and 8×VC-4/STS-3 (DXC Frame). The data traffic can be a mix of TDM and Ethernet.

"#$%&#'&#%&#'&#

%&#'&#

%&#'&#

"( )

%&#'&#

%&#'&#

Figure 3-6 DXC Unit Figure 3-7 DXC Frame

3.5.3.1 Sub Network Connection Protection In a ring or mesh topology the traffic signals can be protected by SNCP. This is done by transmitting the relevant VC/SPE in both directions in the ring. At the receive direction, the available or better-quality signal is selected. Manual switching is also possible. The following switching criteria are used:

• AU/TU AIS and AU/TU LOP alarms • Path error performance • Unequipped Signal and Trace Identifier at VC level • User Command from the LCT or from EM/NMS.

The protected VC-n/SPEs circuits can be selected from any STM-1/STS-3 signal connected to the DXC.

Page 29: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

27

3.5.4 Synchronisation The terminal contains an optional SETS function included in the DXC. In RST mode the SETS function is not required and the incoming 155 Mbit/s signal is transmitted without re-timing. Transmit and receive directions are independent from each other and can have different timing sources. In MST mode the SETS function is providing the equipment clock. The SETS function can be synchronised to one of the following sources:

• 155 Mbit/s signal from line or radio direction • 2 MHz clock input • One selectable 2 or 1.5 Mbit/s tributary input signal • Internal oscillator (free running)

The user sets the available synchronisation references sources in priority order. The highest quality source is used to synchronise the equipment clock, but if there are several sources available with equally high quality, the source with higher priority is used. If a timing source is not available (loss of signal) or its timing signal is outside tolerances, the SETS function will select the next available source with the highest quality.

3.5.4.1 Synchronisation status messaging Synchronisation status messaging can be used to ensure that the best available timing source will be used. The messaging is also used to prevent timing loops in SDH ring and mesh networks. The status messaging is transferred in the S1 byte in the Section Overhead. The synchronisation status quality levels are shown in the table below.

Abbr. ETSI Ref. Quality G.811 QL_PRC Primary Reference Clock (PRC) defined in ITU-T rec. G.811

G.812T QL_SSU T Transit node clock defined in ITU-T rec. G.812 G.812L QL_SSU L Local node clock defined in ITU-T rec. G.812 SETS QL_SEC Synchronous Equipment Timing Source (internal oscillator)

Do Not Use QL_DNU Do not use for synchronisation (to prevent timing loops)

Table 3-1 Synchronisation quality levels

In case the synchronisation status message is not contained in the synchronisation input signal, for example in the external 2 MHz or in 2/1.5 Mbit/s tributary input signal, the quality level can be defined manually by the operator.

3.5.5 Section Termination The radio channel can be configured with RS- or MS-termination according to ITU-T Rec.G.783. When the radio is configured with DXC or tributary units, the radio will always be configured for MS-termination. When the equipment is not equipped with DXC or tributary units it will be configured with RS-termination and the radio link is a regeneration section.

3.5.6 Scrambling / descrambling functions The system contains both a STM-1/STS-3 scrambler/descrambler according to ITU-T Rec. G.707 and a radio specific scrambler/descrambler, which randomises the transmitted digital signal in order to make the RF power spectrum as uniform as possible, irrespective of the transmitted data.

Page 30: Evolution Series Technical Description E

28 Evolution Series NGP\00330 Rev. E 2009-04-03

3.5.7 Section/Transport Overhead (SOH/TOH) Use of TOH/SOH is according to ITU-T Rec. G.707. Access to bytes in MSOH at a regenerator is according to ITU-R Rec.750. A description is given in Table 3-2: Shaded bytes can be used for 2Mbit/s, 1.5 Mbit/s or Ethernet wayside channel. These bytes and the E1, E2, F1, MS#1-3, Z1#1-2, or Z2#2 bytes can be used as 64 kb/s user channels. Maximum three 64 kb/s channels can be allocated per SOH/TOH. In addition there are two user channels in the NERA Frame overhead.

A1 A1 A1 A2 A2 A2 J0 N N

B1 MS#1 MS#2 E1 X X F1 N N RSOH:

D1 MS#3 X D2 X X D3 X X

H1 H1 H1 H2 H2 H2 H3 H3 H3

B2 B2 B2 K1 X X K2 X X

D4 X X D5 X X D6 X X

D7 X X D8 X X D9 X X

D10 X X D11 X X D12 X X

MSOH:

S1 Z1#1 Z1#2 Z2#1 Z2#2 M1 E2 N N

Table 3-2 Utilisation of SOH bytes

3.5.8 SOH/TOH Frameword and bytes The first nine bytes in the frame (row 1 in SOH/TOH) are unscrambled according to ITU-T Rec. G.707. A1: Frameword (11110110) A2: Frameword (00101000) N: Bytes reserved for national use. Used for wayside or user channel J0: Regenerator Section Trace B1: BIP-8 (Bit Interleaved Parity-8) (RST) B2: BIP-24 (Bit Interleaved Parity-24) (MST) MS#1-3: Media specific bytes. User channel E1-byte: User channel F1-byte: User channel H1-H3: AU/SPE-pointers. K1/K2-byte: Bytes for APS signalling. MSP function is not implemented K2 (b6-b8) MS-Remote Defect Indication D1-D3 bytes: Embedded control channel - Regenerator, ECCr (Not Used) D4-D12 bytes: Embedded Control Channel - Multiplexer -ECC-M (Not Used) S1-byte: Synchronisation Status Message Z1/Z2-byte: User channel M1-byte: Remote Error Identifier (MS-REI) E2-byte: User channel

Page 31: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

29

3.6 METRO Terminal and Node Configurations with DXC

Figure 3-8 1+0 and HSB Terminals with Multiplexer

Figure 3-9 Two Directions 1+0

Page 32: Evolution Series Technical Description E

30 Evolution Series NGP\00330 Rev. E 2009-04-03

Figure 3-10 Two Directions HSB and 2+0

'*

"( )

'&#

%&#

%&#"

%&#

%&#

'&#

'&#

#

'&#

&(#

&(#

"( )

%&#

Figure 3-11 Four Directions 1+0 and HSB

Page 33: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

31

! !

"

+ !

,,

-

-

Figure 3-12 n+1 or n+0 Terminal with DXC – 2x155 Mbit/s

Figure 3-13 n+1 or n+0 Terminal with DXC – 3x155 Mbit/s

Figure 3-14 n+1 or n+0 Terminal with DXC – 4x155 Mbit/s

Page 34: Evolution Series Technical Description E

32 Evolution Series NGP\00330 Rev. E 2009-04-03

3.7 METRO STM-4/OC-12 Terminals Terminals with STM-4/OC-12 interface can be used in point to point links with either STM-4/OC-12 at both ends or with STM-1/OC-3 interface at one end. See Figure 3-15. It is also possible to split the STM-4/OC-12 signal into STM-1/OC-3 signals and transmit them in different directions. See Figure 3-16 and Figure 3-17.

' '

-++ !

+ +

'

-++ !

+

"

'

"

Figure 3-15 Point to point links, STM-4/OC-12

Figure 3-16 Two directions STM-4/OC-12 to STM-1/OC-3

!

!

!

!

Figure 3-17 Four directions STM-4/OC-12 to STM-1/OC-3

Page 35: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

33

3.8 Ethernet features

3.8.1 Ethernet over SDH/SONET Mapping Ethernet traffic is in METRO mode transported over the radio link by mapping Ethernet traffic into SDH/SONET containers. Standardised GFP-F mapping with Null Extension Header according to ITU-T G.7041/Y.1303 is applied. Payload Frame Check Sequence is not used (PFI=0). Mapping into VC-12, VT1.5, VC-3 and VC-4 containers are supported. The transmission capacity is scalable from one VT1.5/VC-12 to four VC-4 (600 Mbit/s). The VC containers can be mapped toward both radio or line interfaces. This can be very useful if existing SDH/SONET network is available for some of the capacity. For high capacities the LCAS feature is superior to Link Aggregation as the link even if consisting of several ODUs or external STM-1 connections, is seen as one channel from the Ethernet layer. The LACS protocol automatically scales the capacity with available connections (channels).

Figure 3-18 600 Mbit/s Ethernet Link

3.8.2 VCAT and LCAS support Evolution Series METRO supports virtual concatenation and LCAS according to (ITU-T G.7042/Y.1305). Four VC-groups are supported. The members of the VC-group must be of the same type. The following groups are available:

• VC-12 x n, where n=1..64 • VT1.5 x n, where n=1..64 • VC-3 x n, where n=1..12 • VC-4 x n, where n=1..4

The LCAS protocol implemented covers the following functions:

• Automatically temporary removal of a faulty VCAT member. • Automatically insertion of a temporary removed VCAT member when the fault is repaired.

Page 36: Evolution Series Technical Description E

34 Evolution Series NGP\00330 Rev. E 2009-04-03

3.8.3 Ethernet services The Ethernet Unit provides two types of E-line services. Either a port to ODU/XCVR tunnelling mode providing multiple E-Lines or a Switch mode with one WAN port and four LAN ports.

3.8.3.1 Multiple E-Line With port mapping each individual Ethernet port forms a separate channel through the link. Port mapping is achieved by using inserting a VLAN-tag on incoming traffic. This VLAN-tag is removed at the output-port.

• Each LAN port will be mapped to a given WAN (Virtual Container Group – VCG) • Traffic may be untagged or customer tagged – VLAN transparent • Up to four WAN port/links can be used. WAN capacity per port is scalable as described in

chapter 3.8.2. Aggregated WAN capacity is maximum 600 Mbit/s • QoS is supported on the aggregated traffic on the WAN port.

Figure 3-19 Port to Link Mapping - Multiple E-Line

Page 37: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

35

3.8.3.2 E-Line with VLAN/MAC switching In switch mode the unit has one WAN port and four LAN ports. Each port can be defined to be member of a VLAN or a VLAN range. LAN ports will only accept packets with specified VLAN and packets will be forwarded to all port members of VLAN until MAC destination address is learned. The traffic can be untagged or customer tagged, in case of untagged the GbE switch can add defined tag value.

• WAN capacity is scalable from 2Mbit/s (1.5Mbit/s ANSI) to 600 Mbit/s. • The switch can be set to add/strip a user defined VLAN tag on the traffic on LAN ports • QoS is supported on WAN port.

Figure 3-20 VLAN Switch mode

Page 38: Evolution Series Technical Description E

36 Evolution Series NGP\00330 Rev. E 2009-04-03

3.8.4 QoS features. The QoS characteristics of the system will naturally be governed by the queuing and buffering strategies of the subsystems. To allow for a wide array of applications for this product these strategies are made user selectable.

3.8.4.1 QoS priority scheme Four traffic queues representing four priority levels are available. Traffic can be prioritised based on VLAN 802.1p, type of service or port.

1. VLAN (802.1p user priority) Priority level can be assigned based on VLAN user priority represented by 8 decimal values (0-7).

2. DSCP/TOS (IPv4/IPv6) Priority level can be assigned based on DSCP/TOS represented by 64 decimal values (0-63).

3. Port (Ethernet input ports) Priority level can be assigned to each port individually.

4. QoS priority OFF (Maximum throughput) All traffic has equal priority.

3.8.4.2 QoS scheduling mode The queues can be set up with either fair or strict queuing Fair queueing Fair queuing tries to distribute forwarding capacity between the different priority levels to prevent high priority data streams from completely blocking lower priority streams. Scheduling is done according to a fair weighting (8, 4, 2, 1) applied to the four priority queues. Strict queueing All top priority frames egress until that priority's queue is empty. Then the next lower priority queue's frames egress, etc. This ensures that all high priority frames egress as soon as possible.

3.8.5 Ingress rate limiting Per port ingress rate limiting with optional flow control is available and can be set independently of other settings. Drop mode can be configured to either continuous drop or burst drop. Flow Control uses pause frames.

3.8.6 Frame delay – Ethernet Interfaces Frame delay specified below is according to ITU-T Y.1563, Network Section and RFC 1242 store-and-forward definition: "The time interval starting when the last bit of the input frame reaches the input port and ending when the first bit of the output frame is seen on the output port." Numbers in the table below are given for a link with no queuing-delay and all link capacity allocated to Ethernet-traffic. Propagation delay excluded.

Packet Size Frame delay 100 BaseTX interface

Frame delay 1000BaseT interface

64 bytes < 250µs < 240µs 700 bytes < 290µs < 290µs

1518 bytes < 350µs < 355µs Table 3-3 Ethernet Packet frame delay – VC-4 mapping

Page 39: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

37

3.8.7 MAC learning MAC-learning can be enabled/disabled. MAC-table aging is configurable. MAC address table size is 8000.

3.8.8 Maximum Packet Size With port-mapping enabled, the equipment is transparent to packet-sizes up to 1628 bytes. With port-mapping disabled, the equipment is transparent to packet-sizes up to 1632 bytes.

3.8.9 Ethernet Statistics RMON statistics is implemented and counters can be read via the WEB interface or SNMP Manager

3.8.10 Typical Ethernet Throughput Ethernet throughput is measured according to RFC 2544. Throughput higher than channel bit-rate is achieved by removing Inter-Packet-Gap over the air. The Inter-Packet-Gap is then restored before the packets leave the IFU.

Packet size Data- rate 64 bytes 1518 bytes

# VC4s Mbit/s Mbit/s 1 156 146 4 626 582

Table 3-4 Ethernet Throughput METRO

3.8.11 Link-Loss Failure pass through on the Ethernet port Evolution Series supports a Link-Loss Failure pass through, LLF. This is useful for routers or switches to detect that the Ethernet connection has failed or there is no pass through connection through the radio link side. The LLF function is based on the principle that the interface on the opposite side will be disconnected when the link on the Ethernet port or the radio link has failed. Hence, a failure situation will be communicated to either ends in the link configuration. When there is a radio link failure, the LLF function will control the Ethernet link on the opposite side of the radio link by the link status on each side. I.e. if the incoming Ethernet signal on one side is disconnected, the output on the Ethernet port on the opposite side will be turned off. LLF is not supported in Switch Mode.

Page 40: Evolution Series Technical Description E

38 Evolution Series NGP\00330 Rev. E 2009-04-03

4. XPAND SYSTEM DESCRIPTION

Evolution Series XPAND is a scalable hybrid Ethernet and PDH radio. Transmission capacity ranges from 6 Mbit/s to 150 Mbit/s. The transmission can be either E1&Ethernet based (ETSI) or T1&Ethernet based (ANSI). Option for STM-1/OC-3 user interface is available. Link Configurations are 1+0, 1+1/HSB and 1+1/HSD SD, see chapter 5 for details. The E1/T1 signals and the Ethernet traffic are mapped in to a scalable frame for radio transport. The frame has in addition to the main traffic a NERA overhead (NOH) with two 64 kb/s channels used for EOW or 64 kb/s user channel and a 192 kb/s out of band management channel (DCN).

Figure 4-1 Scalable frame

4.1 User Interfaces The Universal IFU can have following interfaces and plug-in units.

• Two or four 10/100 BASE-TX • 12xE1 and 25xE1 Units, 8xT1 and 16xT1 Units • 4x64 kb/s Unit • EOW and 2x64 kb/s Unit • Alarm and Control Unit • 155 Mbit/s electrical or optical interface Unit with DXC Unit including Sync interface.

Access IFUs with fixed interfaces and no PXC function are also available. See chapter 12.3 for more details. Access IFU can be mixed with Universal IFU both for TDM and Ethernet traffic.

#$. /&(#0&(# #$. /&(#

0&(#

- ,+, Figure 4-2 XPAND Node Site with Spur Links

Page 41: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

39

4.2 Architecture and TDM Features The system with Universal IFU features an embedded PDH X-Connect (PXC). Two IFUs can be combined to a traffic node with 4 ODUs connected. (2 x HSB or 4 x Non Protected) Each of the PXC ports can be assigned to an E1/T1 Interface Unit, to an STM-1/OC-3 Interface, towards an ODU or to the IFU-rear-interface for connection to a second IFU. If Ethernet traffic from the SU is transported through the X-connect it will occupy one port.1 The capacity through the 4 PXC-ports is limited by the unit each port is connected to as shown in the table below:

PXC connected to: Maximum Capacity per port

E1 Line Interface 25E1 T1 Line Interface 16T1 Radio Interface 75E1 or 96T1 IFU rear Interface (IFU expansion) 75E1 or 96T1 STM-1/OC-3 Interface 63E1 or 84T1 Ethernet port (on SU Unit) 1 100 Mbit/s

Table 4-1 PXC Connections

Each of the E1/T1 carried through the 4 PXC-ports can be X-connected (any to any, non-blocking). Each E1/T1-output from the PXC can be configured to be sourced from any E1/T1-input. All E1/T1-outputs may have the same source (one-to-many principle). Four of the PXC-ports can be configured to go to Radio Interfaces. SNCP is available for each E1/T1. When configuring the PXC, each individual E1/T1 may be set up with SNCP activated or not activated.

One IFU has four ports available, maximum two for RIU and two or three for LIUs. When two IFUs are used together there are six ports available. RIUs working in HSB mode occupy only one port in the PXC.

Link Directions

ODU config # of RIUs # of LIUs # of IFUs

1 Unprotected 1 1-3 1 1 Unprotected 1 4-5 2 1 Protected 2 1-2 1 1 Protected 2 3-5 2 2 Unprotected 2 1-2 1 2 Unprotected 2 3-4 2 2 Protected 4 1-4 2

3 Unprotected or one protected 3 or 4 1-3 2

4 Unprotected 4 1-2 2

Table 4-2 IFU Configurations, XPAND

1 A mode where Ethernet is not routed via PXC is available

Page 42: Evolution Series Technical Description E

40 Evolution Series NGP\00330 Rev. E 2009-04-03

4.2.1 SDH/SONET connection E1 or T1 signals can be mapped into a STM-1/OC-3 frame also in XPAND mode. This can be very useful if many E1/T1s needs to be brought to a central point for connection to a SDH/SONET network or simply used as an interface to other equipment with STM-1/OC-3 interface. A DXC unit is needed which also features the SETS function.

-

+,-

,

1*

Figure 4-3 Network topology example

Page 43: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

41

4.3 Ethernet functionality

4.3.1 General The Supervisory Unit on the Universal IFU and the Access IFUs has Fast Ethernet interfaces for management and user traffic. For the universal IFU there are two main types of SU with either two or four FE ports. On the Universal IFU the ports(s) can be separated for management and user traffic or the management traffic can go inband with the user traffic. The unit with four ports (SU-D) has support for a separate management VLAN, VLAN switching and QoS. The Access IFU has separate ports for management and traffic.

Feature SU-B SU-C SU-D Access IFU

10/100Base-Tx ports 2 2 4 2+2

Scalable Mapping Yes Yes Yes Yes

MAC (IEEE 802-1D) Switching Yes Yes Yes Yes

VLAN (IEEE 802.1-Q) Switching No1 No1 Yes No1

QoS support No No Yes No

MTU (Ethernet packet size) 1536 2048 1632 1632

Ingress rate limiting No No Yes No

Table 4-3 SU Versions and features

4.3.2 Ethernet Traffic Mapping Ethernet traffic is mapped directly into the radio frame using a proprietary method. As the frame can also transport E1 or T1 channels the capacity is scalable in steps of E1 or T1s.

4.3.3 MAC (IEEE 802-1D) and VLAN (IEEE 802.1-Q) switching In switch mode the unit has one WAN port and two or four LAN ports depending on unit. The Access IFU has separate switches for user traffic and management traffic.

4.3.4 MAC learning MAC-learning can be enabled/disabled. MAC-table aging is configurable. MAC address table size is 2000.

4.3.4.1 VLAN functions A port can be defined to be member of a VLAN or a VLAN range. Both LAN ports and the WAN port can be defined as untagged or tagged, in case of untagged the switch will add a VLAN tag with the defined value on ingress and remove the VLAN tag from egress traffic. In case the port is defined as tagged, the port will only accept packets with the specified VLAN id and packets will be forwarded to all port members of that VLAN until MAC destination address is learned.

• WAN capacity is scalable from 2Mbit/s (1.5Mbit/s ANSI) to 100 Mbit/s. • QoS with selectable criteria is supported on the WAN port.

1 VLAN transparent

Page 44: Evolution Series Technical Description E

42 Evolution Series NGP\00330 Rev. E 2009-04-03

4.3.5 QoS features. The QoS characteristics of the system will naturally be governed by the queuing and buffering strategies of the subsystems. To allow for a wide array of applications for this product these strategies are made user selectable.

4.3.5.1 QoS priority scheme Four traffic queues representing four priority levels are available. Traffic can be prioritised based on the list below. The user can configure which queue the various service types (values) shall be mapped to.

1. VLAN PCP (802.1p user priority) Priority level can be assigned based on VLAN user priority represented by 8 decimal values (0-7).

2. DSCP/TOS (IPv4/IPv6) Priority level can be assigned based on DSCP/TOS represented by 64 decimal values (0-63).

3. Port (Ethernet input ports) Priority level can be assigned to each port individually.

4. QoS priority OFF (Maximum throughput) All traffic has equal priority.

4.3.5.2 QoS scheduling mode The queues can be set up with either fair or strict queuing. Fair queueing Fair queuing tries to distribute forwarding capacity between the different priority levels to prevent high priority data streams from completely blocking lower priority streams. Scheduling is done according to a fair weighting (8, 4, 2, 1) applied to the four priority queues. Strict queueing All top priority frames egress until that priority's queue is empty. Then the next lower priority queue's frames egress, etc. This ensures that all high priority frames egress as soon as possible.

4.3.6 Ingress rate limiting Per port ingress rate limiting with optional flow control is available and can be set independently of other settings. Drop mode can be configured to either continuous drop or burst drop.

4.3.7 Flow Control Ethernet Flow Control can be enabled. Pause frames are used.

Page 45: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

43

4.3.8 Frame delay – Ethernet Interfaces Frame delay specified below is according to ITU-T Y.1563, Network Section and RFC 1242 store-and-forward definition: "The time interval starting when the last bit of the input frame reaches the input port and ending when the first bit of the output frame is seen on the output port." Numbers in the table below are given for a link with no queuing-delay and all link capacity allocated to Ethernet-traffic. Propagation delay is excluded.

Packet size Typical throughput 64 bytes 700 bytes 1518 bytes

[Mbit/s] [µs] [µs] [µs] 2.0 610 3280 6710 20 300 660 1120 50 280 470 740

100 270 430 620

Table 4-4 Ethernet Packet Frame delay XPAND

4.3.9 Ethernet Statistics RMON statistics is implemented and counters can be read using the WEB browser or an SNMP Manager.

4.3.10 Typical Ethernet Throughput Ethernet throughput is measured according to RFC 2544. The packet throughput is optimised by removing Inter-Packet-Gap over the air. The Inter-Packet-Gap is then restored before the packets leave the IFU.

Packet size Packet size Data- rate 64 bytes 1518 bytes

Data- rate 64 bytes 1518 bytes

# E1s Mbit/s Mbit/s # T1s Mbit/s Mbit/s 4 9 8 4 6 6 8 17 16 8 13 12

16 32 30 16 26 24 20 43 40 32 52 48 30 64 60 40 65 60 40 86 80 50 81 75 50 100 100 60 97 90

67 100 100

Table 4-5 Ethernet Throughput XPAND

Page 46: Evolution Series Technical Description E

44 Evolution Series NGP\00330 Rev. E 2009-04-03

4.3.11 Link-Loss Failure pass through on the Ethernet port Evolution Series supports a Link-Loss Failure pass through, LLF. This is useful for routers or switches to detect that the Ethernet connection has failed or there is no pass through connection through the radio link side. The LLF function is based on the principle that the interface on the opposite side will be disconnected when the link on the Ethernet port or the radio link has failed. Hence, a failure situation will be communicated to either ends in the link configuration. When there is a radio link failure, the LLF function will control the Ethernet link on the opposite side of the radio link by the link status on each side. I.e. if the incoming Ethernet signal on one side is disconnected, the output on the Ethernet port on the opposite side will be turned off. LLF is not supported in switch mode

4.4 XPAND Terminal and Node Configurations

Figure 4-4 XPAND Terminal, TDM

Figure 4-5 XPAND Terminal, Ethernet only or Ethernet & TDM

Page 47: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

45

Figure 4-6 XPAND Node two directions, unprotected

Figure 4-7 XPAND Nodes, Two directions-protected, Four directions-unprotected

Page 48: Evolution Series Technical Description E

46 Evolution Series NGP\00330 Rev. E 2009-04-03

2

"0**

'&#

'&#

#

"

&(#

&(#

"

'&#

'&#

"

Figure is shown with STM-1 and E1 interface. OC-3 and T1 interface for ANSI is also available

Figure 4-8 XPAND Nodes with STM-1/OC-3 interface

Page 49: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

47

5. LINK CONFIGURATIONS

The following link configurations are available.

Configuration METRO

Long Haul

METRO

155Mbit/s ODU

METRO

300Mbit/s ODU XPAND

1+0 Yes Yes Yes Yes

1+1 HSB/FD 1, 2 Yes Yes Yes Yes

1+1 HSB/FD - Space Diversity Yes Yes Yes Yes

1+1 HSB - Dual Baseband Yes Yes No No

2+0 ACAP & ACCP 2 Yes Yes Yes No

2+0 CCDP with XPIC Yes Yes Yes No

n+1, (n=1 to 7) 3 Yes Yes No No

n+0, (n=1 to 10) 3 Yes Yes No No

5.1 Legend ALM External alarm input/output AUX Auxiliary functions DXC Digital Cross Connect EMF Embedded Management Functions EOW Engineering Order Wire LAN Local Area Network port (10/100BASE-TX Ethernet) LIU Line Interface Unit MDS Main Data Switch RIU Radio Interface Unit PWR Power Supply SERV Service functions SU Supervisory Unit USB Universal Serial Bus XCVR Transmitter/Receiver In the following a number of link configurations are described. They examples are based on METRO terminals with STM-1/OC-3 interface but the main architecture is valid for both XPAND and METRO modes. The IFU part will be different depending on number of interfaces and directions. Most configurations are described for a split mount system with ODU, but can also be implemented with long haul optimized RF-branching and XCVR. The ODU is then replaced by a branching and XCVR(s). A system with RF-branching is described in chapter 5.9

1 The same hardware is used for HSB and FD configuration with the exceptions for asymmetrical RF coupler 2 In 1+1 FD and 2+0 configurations with channels on common polarisation the ODUs must be in the same subband. 3 Split Mount Configurations max eight channels.

Page 50: Evolution Series Technical Description E

48 Evolution Series NGP\00330 Rev. E 2009-04-03

5.2 1+0 system The 1+0 configuration consists of an IFU basic frame, a Line Interface Unit, a Radio Interface Unit, a single coaxial cable to the ODU and an ODU mounted directly on the antenna or near the antenna. When the ODU is not mounted directly on the antenna, a short flexible waveguide is used to connect the ODU to the antenna port.

Figure 5-1 System Block Diagram 1+0 Terminal

5.3 1+1 HSB / 1+1 FD system The 1+1 HSB or 1+1 Frequency Diversity configuration, consist of an IFU basic frame, a Line Interface Unit, two Radio Interface Units, two coaxial cables to the ODUs and two ODUs mounted on an RF-Coupler Unit. The RF-Coupler can be asymmetrical or symmetrical, and the RF-Coupler/ODU assembly can be mounted directly on the antenna or near the antenna. When the RF-Coupler is not directly mounted, a short flexible waveguide is used to connect the RF-Coupler to the antenna port. In a 1+1 FD configuration both ODUs must be in the same subband.

!

" #

$

"

!

%& ' ( ( $ ' ( ( ) *

+,- $ . /+01 ,+0+/

Figure 5-2 System Block Diagram 1+1 HSB/FD Terminal

Page 51: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

49

5.4 2+0 / 1+1 HSB Dual Baseband system A 2+0 system or 1+1 HSB Dual Baseband is identical to the 1+1 HSB or 1+1 Frequency Diversity configuration except for the use of two Interface units. The two LIUs provide interface protection in HSB configuration. HSB Dual Baseband is applicable for STM-1/OC-3 Line Interfaces only. In a 2+0 configuration both ODUs must be in the same subband.

%

Figure 5-3 System Block Diagram 2+0 Terminal

5.5 Space Diversity/Dual Antenna system The 1+1 HSB or 1+1 Frequency Diversity configuration can be configured for Space Diversity or Dual Antenna. This configuration uses two antennas, and the two ODUs are mounted one on each antenna without using an RF-Coupler. The use of Space Diversity/Dual Antenna reduces the RF loss and provides path diversity, which can improve system performance (subject to frequency band and path type and length).

!

" #

$

"

!

+

+,- $ . /

1 ,+0+/

Figure 5-4 System Block Diagram Space Diversity Terminal

Page 52: Evolution Series Technical Description E

50 Evolution Series NGP\00330 Rev. E 2009-04-03

5.6 Co-channel Dual Polarised (CCDP) system In two channel systems the two ODUs can be arranged with dual polarisation (Horizontal and Vertical), utilising a single RF frequency. The RIU contains a XPIC function in this configuration, and the XPIC will handle the interference between the two received signals. See also paragraph 7.5 for further description of the XPIC function.

Figure 5-5 System Block Diagram CCDP Terminal

5.7 3+1/4+0 System A 4+0 or 3+1 system, consist of two IFU basic frames, three or four Line Interface Units, four Radio Interface Units, four coaxial cables to the ODUs and four ODUs mounted on two RF-Coupler Units. RF-Coupler/ODU assembly is mounted on a pole arrangement and connected to a dual polarised antenna with a short flexible waveguide.

Figure 5-6 System Block Diagram 3+1/4+0 Terminal

Page 53: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

51

5.8 7+1/8+0 System A 8+0 or 7+1 system, consist of four IFU basic frames, seven or eight Line Interface Units, eight Radio Interface Units, eight coaxial cables to the ODUs and eight ODUs mounted on four RF-Coupler Units. RF-Coupler/ODU assembly is mounted on a pole arrangement and connected to two dual polarised antennas with a short flexible waveguide.

'&#

3'

%&#

45

$! 6

#

(

'&#

3'

%&#

4+5

$! 6

%&#

45 (7(

(7(1

'&#

3'

'&#

3'

%&#

45

2!

'&#

3'

%&#

45

$! 6

'&#

3'

%&#

4-5

$! 6

%&#

45 (7(+

(7(+1

'&#

3'

'&#

3'

%&#

45

2!

2!

Figure 5-7 System Block Diagram 7+1/8+0 Terminal

Page 54: Evolution Series Technical Description E

52 Evolution Series NGP\00330 Rev. E 2009-04-03

5.9 7+1/8+0 System Long Haul Optimized The Long Haul Optimized system uses a low loss RF-branching system combining up to 10 channels to one antenna port. The Branching system contains narrow band RF-filters for each channel, connecting the channels together. The branching system can also be split for transmission on both polarisations. In Space Diversity configuration, two receive branchings are used in parallel connecting the two antennas to two receivers inputs for each channel. The received signals are combined in-phase in the transceiver unit. See also Figure 6-2.

%&#

45

$! 6

%&#

45

"'

0***0

8

8

'&#

3'

'&#

3'

2!

%&#

4-5

$! 6

%&#

45

8

8

'&#

3'

'&#

3'

2!

%&#

4+5

$! 6

%&#

45

8

8

'&#

3'

'&#

3'

2!

%&#

45

$! 6

%&#

45

8

8

'&#

3'

'&#

3'

"'

"'

"'

"'

"'

"'

"'

9 $)

#

( (8415

Figure 5-8 System Block Diagram Long Haul 7+1/8+0 Terminal

Page 55: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

53

5.10 Long Haul Branching Systems The branching system is very flexible and supports adjacent and co-channel operation in all frequency bands for both ~28 and 40 MHz channel spacing.

"'

+

"'

Figure 5-9 Branching Diagrams 1+1/2+0 and 3+1/4+0 Dual Polarized

"'

"'

"'

+

"'

$

Figure 5-10 Branching diagrams 7+1/8+0 and 3+1 Space Diversity

Page 56: Evolution Series Technical Description E

54 Evolution Series NGP\00330 Rev. E 2009-04-03

6. GENERAL EQUIPMENT CHARACTERISTRICS

6.1 Transmission Capacities and Channel Bandwidth The tables below show capacities vs. channel bandwidth and used modulation. The modulation is a multi level coded QAM modulation (MLCM) or only QAM. A scalable proprietary NERA frame is used for transport. In METRO mode this frame contains one or two 155 Mbit/s signals. In XPAND mode the frame can be set up to any of the below listed capacities up to 155 Mbit/s. In both modes the frame also contains a DCC channel and two 64 kb/s user channels.

Channel Spacing Link capacity

7 MHz 14 MHz 30 MHz 40 MHz 56 MHz 2xSTM-1 (311 Mbit/s) 256MLCM

155 Mbit/s (75 x E1) 128 MLCM 64 MLCM 32MLCM

100 Mbit/s (50 x E1) 32 MLCM

80 Mbit/s (40 x E1) 16 MLCM

56 Mbit/s (28 x E1) 64 MLCM

40 Mbit/s (20 x E1) 16 QAM

32 Mbit/s (16 x E1) 128 MLCM 16 MLCM 4 QAM

16 Mbit/s (8 x E1) 16 MLCM 4 QAM

8 Mbit/s (4 x E1) 4 QAM

Emission Designator 7M00D7W 14M0D7W 28M0D7W 40M0D7W 56M0D7W

Table 6-1 Transmission Capacity Overview ETSI Data rates

Channel Spacing Link

capacity 5 MHz 10 MHz 20 MHz 25 MHz 30 MHz 40 MHz 50 MHz 2xOC-3 (311 Mbit/s) 256MLCM 155 Mbit/s (96 x T1) 128MLCM 64MLCM 32MLCM 125 Mbit/s (80 x T1) 128MLCM 64MLCM 32MLCM 16MLCM 100 Mbit/s (64 x T1) 128MLCM 32MLCM 16QAM 50 Mbit/s (32 x T1) 128MLCM 16MLCM 25 Mbit/s (16 x T1) 16MLCM 4QAM 22 Mbit/s (14 x T1) 128MLCM 12 Mbit/s (8 x T1) 16QAM 4QAM 6 Mbit/s (4 x T1) 4QAM

Emission Designator

5M00D7W 10M0D7W 20M0D7W 25M0D7W 30M0D7W 40M0D7W 50M0D7W

Table 6-2 Transmission Capacity Overview ANSI Data rates

Page 57: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

55

6.2 Frequency bands Evolution Series is available in ITU-R, CEPT, FCC and national frequency bands according to the following tables. The BW given in the last column is for information only and indicates which BWs the plan includes. Details about ODU/Diplexer tuning range is found in Appendix 1.

Frequency Band

Frequency [GHz]

Channel Plan Duplex spacing [MHz]

BW [MHz]

4 GHz 3,6-4.2 ITU-R F. 635-6 CEPT 12-08 320 30/40

4 GHz 3,8-4.2 ITU-R F. 382-8 CEPT 12-08 213 29

5 GHz 4.4-5.0 ITU-R F. 746-5 312 28 5 GHz 4.4-5.0 ITU-R F. 1099-3 Annex 1,1 300 40 5 GHz 4.4-5.0 98 MHz Duplex 98 28 5 GHz 4.4-5.0 100 MHz Duplex 100 28

L6 GHz 5.9-6.4 ITU-R F. 383-7 CEPT 14-01E 252.04 29.65/56

U6 GHz 6.4-7.1 ITU-R F.384-8 CEPT 14-02 E 340 20/30/40

7 GHz 7.1-7.4 ITU-R F.385-7 Annex 3 196 28/56 7 GHz 7.1-7.4 CEPT 02-06 Annex 1 154 7/14/28/56 7 GHz 7.1-7.4 ITU-R F.385-8 Rec. 1-4 161 7/14/28/56 7 GHz 7.1-7.4 ACA Rali FX3 270 30 7 GHz 7.2-7.5 ITU-R F.385-8 Rec. 1-4 161 7/14/28/56 7 GHz 7.4-7.7 ITU-R F.385-8 Annex 3 168 28/56 7 GHz 7.4-7.7 ITU-R F.385-8 Annex 1,4 154 28/56

7 GHz 7.4-7.7 ITU-R F.385-8 Annex 1, 1 CEPT 02-06 Annex 1 154 7/14/28/56

7 GHz 7.4-7.7 ITU-R F.385-8 Rec 1-4 161 7/14/28/56 7 GHz 7.4-7.9 ITU-R F.385-8 Annex 4 245 7/14/28/56 7 GHz 7.1-7.7 “Korea” 300 30 8 GHz 7.7-8.3 ITU-R F.386-6 Annex 1 311.32 29.65/56 8 GHz 7.7-8.3 7.7-8.3 GHz, 40 MHz CS 310 40 8 GHz 7.9-8.4 ITU-R F.386-6 Annex 4 266 7/14/28/56 8 GHz 7.9-8.5 CEPT 02-06 310 7/14/28/56 8 GHz 8.2-8.5 ITU-R F.386-6 Annex 3 119,126 7/14 8 GHz 8.2-8.5 ITU-R F.386-6 Rec. 1 151.614 7

10 GHz 10.0-10.68 CEPT 12-05 350 7/14/28 10 GHz 10.15-10.65 CFT Mexico 350 7/14/28

11 GHz 10.7-11.7 ITU-R F. 387-9 CEPT 12-06 Rec. 1 530 30/40

11 GHz 10.7-11.7 ITU-R F. 387-9 Annex 2 CEPT 12-06 Rec. 3 490 30/40

13 GHz 12.7-13.3 ITU-R F. 497-6 CEPT 12-02 266 7/14/28

15 GHz 14.4-15.35 ITU-R F.636-3 490 7/14/28

Page 58: Evolution Series Technical Description E

56 Evolution Series NGP\00330 Rev. E 2009-04-03

Frequency Band

Frequency [GHz]

Channel Plan Duplex spacing [MHz]

BW [MHz]

15 GHz 14.5-15.35 ITU-R F.636-3 420 7/14/28

15 GHz 14.6-15.2 CFT Mexico 315 14/28

15 GHz 14.5-15.35 CEPT 12-07E 728 7/14/28

15 GHz 14.5-15.35 ACA RALI FX3 644 14/28

18 GHz 17.7-19.7 ITU-R F.595-8 CEPT 12-03E 1010 7/13.75/27.5/55

18 GHz 17.7-19.7 ITU-R F.595-8

Norma No 15/96 1560 13.75/27.5/55

18 GHz 17.7-19.7 China 1092.5 27.5

18 GHz 17.7-19.7 China 1120 55

23 GHz 21.2-23.6 ITU-R F.637-3 Annex 3

CEPT 13-02E 1008 7/14/28/56

23 GHz 22.0-23.6 RA 352 1008 56

23 GHz 21.2-23.6 ITU-R F.637-3 Annex 4 1200 50

23 GHz 21.2-23.6 ITU-R F.637-3 Annex 1 1232 7/14/28/56

26 GHz 24.25-26.5 ITU-R F.748-4 Annex 1

CEPT 13-02E 1008 7/14/28/56

28 GHz 27.5-29.5 ITU-R F.748-4 Annex 2

CEPT 13-02E 1008 7/14/28/56

32 GHz 31.8-33.4 ITU-R F.1520-2

CEPT (01)02 812 7/14/28/56

38 GHz 37.0-39.5 ITU-R F.749-2 Annex 1

CEPT 12-01E 1260 7/14/28/56

38 GHz 38.6-40.0 ITU-R F.749-2 Annex 3, 1 700 25/50

Table 6-3 Frequency bands ETSI

Freq. Band Frequency

[GHz] Channel Plan

Duplex spacing [MHz]

BW [MHz]

L6 GHz 5.9 - 6.4 CFR47 101.147 Table i SRSP –305.9 252.04 4.94/9.88/29.65

29.65

U6 GHz 6.4 - 7.1 SRSP –306.4 CFR47 101.147 Table l

100/340 160/170

10/30 5/10

7 GHz 7.1 - 7.4 SRSP –307.1 175 5/10/30 7 GHz 7.4 - 7.7 SRSP –307.1 150 5/10/20/30 8 GHz 7.7 - 8.3 SRSP –307.7 300 10/20/30

10 GHz 10.5-10.65 CFR47 101.147 Table m 65 5

11 GHz 10.7 - 11.7 CFR47 101.147 Table o SRSP –310.7 490 5/10/30/40

18 GHz 18.7-19.7 CFR47 101.147 Table r 1560 10/20/40

23 GHz 21.2-23.6 CFR47 101.147 Table s 1200 5/10/20/30/40/50

24 GHz 24,25-25,35 CFR47 101.147 Table r 800 30/40

38 GHz 38.6-40.0 CFR47 101.147 Table v 700 7.25/12.5/25/50

Table 6-4 Frequency bands ANSI

Page 59: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

57

6.3 Equipment Reference Points A principle block diagram for a digital radio relay system, including the main blocks, is shown in Figure 6-1. The block diagram includes marked interface points, which serve as reference points for several technical parameters used in this document.

* The RF-Coupler is used in HSB and 1+1/2+0 single polarised configurations

Figure 6-1 Principle block diagram for a split mount radio system with Diplexer

9 $

9 $

Figure 6-2 Principle block diagram for a radio system with RF Branching

Page 60: Evolution Series Technical Description E

58 Evolution Series NGP\00330 Rev. E 2009-04-03

6.4 International and National Standards Evolution Series is compliant with relevant international and national standards. The equipment is type approved and labelled according to EU Directive 1999/5/EC (R&TTE).

6.5 ETSI Equipment Class The equipment is compliant to the relevant specifications in EN 302 217 for the following classes.

Co –polar (ACCP)

Cross- polar

(ACAP)

Co-polar (ACCP/ CCDP)

Cross- polar

(ACAP)

Co-polar (ACCP/ CCDP)

Data rate 4xE1 8xE1 16xE1

20xE1 28xE1 40xE1 50xE1 75xE1 STM-1 2xSTM-1

Class 2 7 MHz

~14 MHz

~28 MHz - - - - - - -

Class 3 - - - - - - - - - -

Class 4 - 7 MHz

~14 MHz - ~28

MHz ~28

MHz - 56 MHz - -

Class 5A - - - - - - ~28 MHz - 56 MHz -

Class 5B - - 7 MHz ~14 MHz - - - ~28 MHz 40 MHz - 56 MHz

Table 6-5 ETSI Equipment Class

6.6 Equipment background BER (Residual BER)

Date Rates Typical Residual BER

Guaranteed Residual BER

155 Mbit/s and 311 Mbit/s ≤ 10-14 ≤ 10-13

125 Mbit/s to 80 Mbit/s ≤ 3x10-14 ≤ 3x10-13

56 Mbit/s to 32 Mbit/s ≤ 10-13 ≤ 10-12

25 Mbit/s and lower ≤ 10-12 ≤ 10-11

6.7 Error Correction Evolution Series features forward error correction for enhanced receiver error performance. Dual error correction is used in case of high capacity modes. The digital signal is block coded and multi level coded modulation is used in selected modes.

Page 61: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

59

6.8 System delay The transmission delay through a system (From "Line interface in" on TX-side to "Line interface out" on RX-side) excluding propagation-time between antennas is given in table. Frame delay for Ethernet traffic is not included see chapter 3.8.6 and 4.3.8.

METRO XPAND ETSI

Data rate[Mbit/s] 155 and 311 155 100-40 32 16 8

System delay [s] 200 310 270 320 420 600

XPAND ANSI

Data rate [Mbit/s] 155 125-50 25-22 12 6

System delay [s] 350 375 425 500 800

Table 6-6 System delay

6.9 SW features Evolution Series is a SoftWare defined radio. One common SW platform supports both METRO and XPAND mode.

6.9.1 Licences Transmission capacity and features are controlled by licenses. Features can be added and capacity can be upgraded remotely after installation.

6.9.2 Firmware and configuration files The equipment has two firmware “banks”, one running and one for backup. Configuration can also be stored externally and used for backup or downloaded to other terminals.

6.9.3 Link frequency setting Operating channel frequency can be set simultaneously for both sides of a link.

6.9.4 Configuration report Configuration and status report can be generated by the element.

Page 62: Evolution Series Technical Description E

60 Evolution Series NGP\00330 Rev. E 2009-04-03

6.10 System loop back possibilities The following looping possibilities are built into the equipment and can be activated from the WEB interface.

&(#%&#

0#"

#

"' +

8

#

: ,

'&#

-

1 Near end LIU loop 6 Near-end ODU Loop 2 Far end LIU loop 7 Near end 64 kb/s or E1/T1 Wayside loop 3 Near end Main board loop 8 Far end 64 kb/s or E1/T1 Wayside loop 4 Far end Main board loop 9 Near end Ethernet loop at SU 5 Near-end RIU loop 10 Far end Ethernet loop at SU

Figure 6-3 System loop backs

At the LIU and AUX unit with multiple channels/interfaces each channel can be looped. At the Gigabit Ethernet Unit output signal to port 1 will be swapped with port 2 and vice versa, in order to prevent the test signal to be sent back to the transmitting port. The same applies to port 3 and port 4 (port 5).

Page 63: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

61

6.11 System Reliability The MTBF figures are predicted and calculated according to methods in MIL-HDBK-217E including adjustment for experienced field data. MTBF for 1+0 Terminal with Line Interface Unit is about 40 years. Unit name: MTBF,

25 °°°°C ambient temp: [[[[Hours]]]]

Transceiver Unit (XCVR/ODU) 600 000 Universal IFU 1 800 000 Access IFU 800 000 RIU 3 200 000 Supervisory Unit 5 000 000 Optical Interface units 1 500 000 Electrical STM-1/OC-3 5 000 000 E1/T1 and E3/DS3 Interface Units 5 000 000 Gigabit Ethernet Interface Unit 2 500 000 Wayside Interface Unit 5 000 000 EOW and 64 kb/s Units 5 000 000 Alarm and Control Unit 1 800 000 Power Supply Unit 5 000 000 Power & Sync Unit 5 000 000 DXC Unit 5 000 000 DXC Frame 1 800 000 The Fan unit is a replaceable unit. The unit has three fans, and it is recommended to change the unit when one of the fans fails.

Fan in operation MTBF Typical ambient temperature

Continuous 36 700 50 °C/ 122 °F

50 % of time 73 400 25 °C/ 77 °F

20 % of time 183 500 15 °C/ 59 °F

Table 6-7 MTBF Figures

Page 64: Evolution Series Technical Description E

62 Evolution Series NGP\00330 Rev. E 2009-04-03

7. GENERAL RADIO CHARACTERISTICS

7.1 Transmitter Characteristics

7.1.1 Automatic/Manual Power Control (ATPC/MTPC) ATPC is an optional feature, which is aimed to drive the TX power amplifier output level from a proper minimum, which is calculated to facilitate the radio network planning and is used in the case of normal propagation, up to a maximum value, which is given in Chapter 3.3.1. When ATPC is disabled (i.e. MTPC mode), the output power can be set by the user. ATPC-figures: Transmitter power output regulation speed > 50 dB/s Typical ATPC-range 20-25 dB Guaranteed ATPC-range 20 dB Configurable “Coordinated/Default” Output Power and 5 min alarm for exceeded level supported. Nominal input level is adjustable by the user. Adjustment range: -30 dBm to -60 dBm In Hot Standby configuration it is recommended to use simultaneous switching of TX and Rx side within a terminal, when ATPC is enabled. MTPC figures: Typical MTPC range 20-25 dB Range with ETSI mask compliance 1 5-11 GHz HP Long Haul Systems : 15 dB 5-11 GHz SP ODU : 15 dB 5-11 GHz HP ODU : 10 dB 13-23 GHz : 15 dB 26-38 GHz : 10 dB Step size: 0.1 dB Accuracy: Ref Corresponding Output Power Tolerance

7.1.2 TX oscillator frequency tolerance Frequency tolerance: ≤ ± 5 ppm.

1 For compliance to optional ETSI mask requirement of -60 dBc in frequency bands from 5-8GHz, the MTPC range is 10 dB.

Page 65: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

63

7.2 Receiver Characteristics

7.2.1 Maximum input level Maximum input signal levels in point C (measured with PRBS of 223-1). These limits apply without interference:

Long Haul System Ref point B

Split Mount System Ref point C

Frequency band: [GHz] 4-11 5-18 23-38

BER ≤ 10-6 [dBm] -18 -17 -20

BER ≤ 10-8 [dBm] -20 -19 -22

BER ≤ 10-10 [dBm] -22 -21 -24

Table 7-1 Maximum input signal level

7.2.2 RX oscillator frequency tolerance Frequency tolerance: ≤ ±5 ppm

7.2.3 Noise Figure Ref. Point A. Guaranteed Values.

Frequency band: [GHz]

4-8 10/11 13/15 18/23 26 28 31/32 38

Noise figure F [dB]

≤ 3.9 ≤ 4.4 ≤ 4.8 ≤ 5.8 ≤ 6.3 ≤ 7.3 ≤ 7.4 ≤ 7.9

Page 66: Evolution Series Technical Description E

64 Evolution Series NGP\00330 Rev. E 2009-04-03

7.3 System Signature The equipment includes an Adaptive Time Domain Equaliser (ATDE). The system signature is specified in Table 7-3 to Table 7-5. Delay 6.3 ns. BER: 10-6. The limits are valid for both minimum and non-minimum phase.

Guaranteed limits Typical values Capacity and Channel BW

Width [MHz] Depth [dB] SF DFM [dB]

155 Mbit/s@28MHz (128 MLCM) ACAP ±14.0 17.0 1.6 50 155 Mbit/s@28MHz (128 MLCM) ACCP ±15.0 17.0 2.0 48

155 Mbit/s@40MHz (64 MLCM) ±17.0 17.0 1.3 51

Table 7-2 System signature 155 Mbit/s Long Haul Systems

Guaranteed limits Typical values Capacity and Channel BW

Width [MHz] Depth [dB] SF DFM [dB]

155 Mbit/s@28MHz (128 MLCM) ACAP ±14.0 17.0 1.3 51 155 Mbit/s@28MHz (128 MLCM) ACCP ±14.0 17.0 1.5 50

155 Mbit/s@40MHz (64 MLCM) ±17.0 17.0 1.3 52 155 Mbit/s@50-56MHz (32 MLCM) ±19.5 17.0 1.4 52 311 Mbit/s@56MHz (256 MLCM) ±28 13.0 4 43 311 Mbit/s@50MHz (256 MLCM) ±30 11.0 5.6 41

Table 7-3 System signature 155 Mbit/s and 311 Mbit/s - ODU

Guaranteed limits Typical values Capacity and Channel BW Width [MHz] Depth [dB] SF DFM [dB]

100 Mbit/s@28MHz (32 MLCM) ±14.0 23.0 0.7 57 80 Mbit/s@28MHz (16 MLCM) ±13.0 22.0 0.6 58 40 Mbit/s@14MHz (16 QAM) ±7.0 27.0 0.1 68

32 Mbit/s@14MHz (16 MLCM) ±7.0 27.0 0.1 68 32 Mbit/s@28MHz (4 QAM) ±12.0 37.0 0.01 80

16 Mbit/s@7MHz (16 MLCM) ±4.0 34.0 0.1 74

16 Mbit/s@14MHz (4 QAM) ±6.0 37.0 0.01 80 8 Mbit/s@7MHz (4 QAM) ±3.0 35.0 0.02 79

Table 7-4 System signature 100-8 Mbit/s ETSI

Page 67: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

65

Guaranteed limits Typical values Capacity and Channel BW Width [MHz] Depth [dB] SF DFM [dB]

125 Mbit/s@25MHz (128 MLCM) ±13.0 20.0 0.8 55 125 Mbit/s@30MHz (64 MLCM) ±14.0 21.0 0.9 55 125 Mbit/s@40MHz (32 MLCM) ±17.0 22.0 1.1 54 125 Mbit/s@50MHz (16 MLCM) ±20.0 23.0 1.1 55

100 Mbit/s@20MHz (128 MLCM) ±12.0 22.0 0.6 57 100 Mbit/s@30MHz (32 MLCM) ±15.0 23.0 0.6 58 50 Mbit/s@10MHz (128 MLCM) ±9.0 20.0 0.4 59 50 Mbit/s@20MHz (16 MLCM) ±10.0 30.0 0.2 66 25 Mbit/s@10MHz (16 MLCM) ±6.0 32.0 0.1 71

25 Mbit/s@20MHz (4 QAM) ±8.0 37.0 0.01 80 12 Mbit/s@5MHz (16 QAM) ±5.0 34.0 0.05 77 12 Mbit/s@10MHz (4 QAM) ±4.0 37.0 0.01 80

6 Mbit/s@5MHz (4 QAM) ±3.0 35.0 0.02 79

Table 7-5 System signature values 125-6 Mbit/s ANSI

Page 68: Evolution Series Technical Description E

66 Evolution Series NGP\00330 Rev. E 2009-04-03

7.4 Interference sensitivity

7.4.1 Co-channel interference sensitivity The tables are giving maximum C/I values for 1 dB and 3 dB increase of the 10-6 BER threshold.

Guaranteed C/I at BER = 10-6 @ RSL Degradation [dB] System

1 dB 3 dB 155 Mbit/s@28MHz (128 MLCM) ACAP 31.5 27.5 155 Mbit/s@28MHz (128 MLCM) ACCP 32.5 28.5

155 Mbit/s@40MHz (64 MLCM) 28 24 155 Mbit/s@50-56MHz (32 MLCM) 24.5 20.5 311 Mbit/s@56MHz (256 MLCM) 34 30 311 Mbit/s@50MHz (256 MLCM) 35.5 31.5

Table 7-6 Co-Channel Interference Sensitivity 155 and 311 Mbit/s

Guaranteed C/I at BER = 10-6 @ RSL Degradation System

ETSI Rates 1 dB 3 dB

100 Mbit/s@28MHz (32 MLCM) 25.5 21.5 80 Mbit/s@28MHz (16 MLCM) 24 20 40 Mbit/s@14MHz (16 MLCM) 25 21 32 Mbit/s@14MHz (16 MLCM) 22 18

32 Mbit/s@28MHz (4 QAM) 17 13 16 Mbit/s@7MHz (16 QAM) 22.5 18.5 16 Mbit/s@14MHz (4 QAM) 17 13

8 Mbit/s@7MHz (4 QAM) 17.5 13.5

Table 7-7 Co-Channel Interference Sensitivity ETSI rates

Guaranteed C/I at BER = 10-6 @ RSL Degradation System

ANSI Rates 1 dB 3 dB

125 Mbit/s@25MHz (128 MLCM) 31.5 27.5 125 Mbit/s@30MHz (64 MLCM) 28 24 125 Mbit/s@40MHz (32 MLCM) 24.5 20.5 125 Mbit/s@50MHz (16 MLCM) 21.5 17.5

100 Mbit/s@20MHz (128 MLCM) 31.5 27.5 100 Mbit/s@30MHz (32 MLCM) 24.5 20.5 50 Mbit/s@10MHz (128 MLCM) 33 29 50 Mbit/s@20MHz (16 MLCM) 22 18 25 Mbit/s@10MHz (16 MLCM) 22.5 18.5

25 Mbit/s@20MHz (4 QAM) 17 13 12 Mbit/s@5MHz (16 QAM) 26 22 12 Mbit/s@10MHz (4 QAM) 17.5 13.5

6 Mbit/s@5MHz (4 QAM) 19.5 15.5

Table 7-8 Co-Channel Interference Sensitivity ANSI rates

Page 69: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

67

7.4.2 Adjacent channel interference sensitivity The tables are giving maximum C/I values for 1 dB and 3 dB increase of the 10-6 BER threshold.

System

Guaranteed C/I at BER = 10-6

@ RSL Degradation [dB]

ETSI Requirement C/I at BER = 10-6

@ RSL Degradation [dB]

Capacity and Channel BW 1 dB degr.

3 dB degr. 1 dB degr. 3 dB degr.

311 Mbit/s@56MHz (256 MLCM) -3.5 -7.5 -3.5 -7.5 311 Mbit/s@50MHz (256 MLCM) -2 -4.5

155 Mbit/s@28MHz (128 MLCM) ACAP -5 -7 3 -1 155 Mbit/s@28MHz (128 MLCM) ACCP -6 -9 -5 -8

155 Mbit/s@40MHz (64 MLCM) -6 -9 -4 -8 155 Mbit/s@50-56MHz (32 MLCM) -5 -9 -5 -9

Table 7-9 Adjacent Interference Sensitivity 155 and 311 Mbit/s

System Guaranteed C/I at BER = 10-6 @ RSL Degradation [dB]

ETSI Requirement C/I at BER = 10-6

@ RSL Degradation [dB] Capacity and Channel BW 1 dB degr. 3 dB degr. 1 dB degr. 3 dB degr. 100 Mbit/s@28MHz (32 MLCM) -6 -9.5 -2 -5.5 80 Mbit/s@28MHz (16 MLCM) -6 -10 -3 -7 40 Mbit/s@14MHz (16 MLCM) -6 -10 0 -4 32 Mbit/s@14MHz (16 MLCM) -6 -9 0 -4

32 Mbit/s@28MHz (4 QAM) -6 -10 0 -4 16 Mbit/s@7MHz (16 QAM) -3 -7 -3 -7 16 Mbit/s@14MHz (4 QAM) -3 -6 0 -4

8 Mbit/s@7MHz (4 QAM) -3 -6 0 -4

Table 7-10 Adjacent Channel Interference Sensitivity – ETSI rates

Guaranteed C/I at BER = 10-6 @ RSL Degradation [dB] Capacity and Channel BW

1 dB degr. 3 dB degr. 125 Mbit/s@25MHz (128 MLCM) -5 -8 125 Mbit/s@30MHz (64 MLCM) -6 -10 125 Mbit/s@40MHz (32 MLCM) -10 -13 125 Mbit/s@50MHz (16 MLCM) -10 -13

100 Mbit/s@20MHz (128 MLCM) -3 -6 100 Mbit/s@30MHz (32 MLCM) -6 -9.5

50 Mbit/s@10MHz (128 MLCM) -3 -5 50 Mbit/s@20MHz (16 MLCM) -3 -6

25 Mbit/s@10MHz (16 MLCM) -3 -5 25 Mbit/s@20MHz (4 QAM) -6 -9 12 Mbit/s@5MHz (16 QAM) -3 -5 12 Mbit/s@10MHz (4 QAM) -3 -6

6 Mbit/s@5MHz (4 QAM) -3 -5

Table 7-11 Adjacent Channel Interference Sensitivity ANSI rates

Page 70: Evolution Series Technical Description E

68 Evolution Series NGP\00330 Rev. E 2009-04-03

7.5 XPIC performance The Cross Polarisation Interference Canceller filter (XPIC) is used in CCDP configurations for XCVR/ODU with 155 Mb/s and 311 Mb/s capacity in ~28 MHz, 40 MHz, or ~56 MHz bandwidth. The XPIC filter has a typical XIF of 20 dB.

7.6 Receiver image rejection The image rejection is >= 120 dB if image(s) frequency falls within transmit half band. The image rejection is >= 100 dB if image(s) frequency falls within receive half band.

7.7 Spurious emissions

7.7.1 Transmitter spurious emissions - external ETSI: The equipment complies with EN 302 217-2-2. This implies to meet the limits given in EN 301 390. FCC/ANSI: The equipment complies with FCC 47 CFR 101.111.

7.7.2 Transmitter spurious emissions - internal For spurious signals within the receiver half band, the level of all spurious signals, both discrete CW and noise-like, evaluated as total signal level shall be less than -90 dBm.

7.7.3 Receiver spurious emissions - external ETSI: The equipment complies with EN 302 217-2-2. This implies to meet the limits given in EN 301 390. FCC/ANSI: The power of the emission in a reference bandwidth of 1 MHz shall be less than -13 dBm.

7.7.4 Receiver spurious emissions - internal Applicable to interference on the same local branching system. For spurious signals within the same receive half band, the level of all spurious signals, both discrete CW and noise-like, evaluated as total signal level is less than -110 dBm.

Page 71: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

69

8. RADIO CHARACTERISTICS METRO – ODU

8.1 General Typical values in dB measured with modulation (PRBS-data). Ref. Point C’. Tx tolerance is ± 1.5 dB for 5-11 GHz and ± 2 dB for 13-38 GHz Rx tolerance is ± 1.5 dB for 5-11 GHz and ± 2 dB for 13-38 GHz For RF-Coupler loss see chapter 13.2

8.2 Output Power Standard Power ODU

Freq. band: [GHz] L6/U6 7/8 11 13/15 18/23 ETSI

18/23 ANSI 26/28 32 38

155 Mbit/s@28MHz 128MLCM +25.5 +24 +22 +19 +17 +17 +16.5 +16 +15.5

155 Mbit/s@40MHz 64MLCM +25.5 +24 +22 - +17 +19 - - -

155 Mbit/s@56MHz 32MLCM - - - - +18 +17.5 +17 +16.5

155 Mbit/s@50MHz 32MLCM - - - - +20 +16.5

311 Mbit/s@56MHz 256MLCM +25.5 +24 +22 +19 +17 +16.5 +16 +15.5

311 Mbit/s@50MHz 256MLCM +16 +14.5

Table 8-1 Nominal output power Standard Power ODU

8.3 Output Power High Power ODU

Frequency band: [GHz] 5 L6 U6 7 8 10 11

155 Mbit/s@28MHz 128MLCM +30 +30.5 +30.5 +29 +29 +27.5 +27

155 Mbit/s@40MHz 64MLCM +30 - +30.5 - +29 +27.5 +27

311 Mbit/s@56MHz 256MLCM +29 +29.5 +29.5 +28 +28 +26.5 +26

Table 8-2 Nominal output power High Power ODU

Page 72: Evolution Series Technical Description E

70 Evolution Series NGP\00330 Rev. E 2009-04-03

8.4 Receiver Threshold 155 Mbit/s@28 MHz

Frequency band: [GHz] 5 L6 U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -71 -71 -71 -71 -70.5 -70 -69 -68.5 -67 -67 -66.5

BER ≤ 10-8 [dBm] -69.5 -69.5 -69.5 -69.5 -69 -68.5 -67.5 -67 -65.5 -65.5 -65

BER ≤ 10-10 [dBm] -68 -68 -68 -68 -67.5 -67 -66 -65.5 -64.5 -64.5 -64

Table 8-3 Receiver threshold, 155 Mbit/s in ~28 MHz channel

The listed values are for ACAP configuration, if filtering for ACCP is required a setting for this is available. The threshold will be 1 dB higher for BER ≤ 10-6 and 1.5 dB higher for BER ≤ 10-8 and BER ≤ 10-10.

8.5 Receiver Threshold 155 Mbit/s@40 MHz

Frequency band: [GHz] 5 U6 8 11 18

BER ≤ 10-6 [dBm] -73.5 -74 -73.5 -73 -72

BER ≤ 10-8 [dBm] -72.5 -73 -72.5 -72 -71

BER ≤ 10-10 [dBm] -71.5 -72 -71.5 -71 -70

Table 8-4 Receiver threshold, 155 Mbit/s in 40 MHz channel

8.6 Receiver Threshold 155 Mbit/s@50-56 MHz

Frequency band: [GHz] 18 23 26 32 38

BER ≤ 10-6 [dBm] -74.5 -74.5 -73.5 -72.5 -72

BER ≤ 10-8 [dBm] -73.5 -73.5 -72.5 -71.5 -71

BER ≤ 10-10 [dBm] -72.5 -72.5 -72 -70.5 -70

Table 8-5 Receiver threshold, 155 Mbit/s in ~56 MHz channel

Page 73: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

71

8.7 Receiver Threshold 311 Mbit/s@56 MHz ETSI

Frequency band: [GHz] 5 L6/U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -65.5 -66 -65.5 -65 -64.5 -64 -63 -62 -62 -61.5

BER ≤ 10-8 [dBm] -64.5 -64.5 -64 -64 -63.5 -62.5 -62 -60.5 -60.5 -60

BER ≤ 10-10 [dBm] -63 -63 -63 -62.5 -62 -61 -60.5 -59 -59 -58.5

Table 8-6 Receiver threshold, 311 Mbit/s in ~56 MHz channel

8.8 Receiver Threshold 311 Mbit/s@50 MHz ANSI

Frequency band: [GHz] 18 23 38

BER ≤ 10-6 [dBm] -62.5 -62.5 -59

BER ≤ 10-8 [dBm] -60.5 -60.5 -57

BER ≤ 10-10 [dBm] -58.5 -58.5 -55

Table 8-7 Receiver threshold, 311 Mbit/s in ~50 MHz channel

Page 74: Evolution Series Technical Description E

72 Evolution Series NGP\00330 Rev. E 2009-04-03

8.9 System Gain Standard Power Typical values @ BER 10-6 - ref point C’C [dB]

System Capacity / Frequency band: [GHz] L6 U6 7/8 11 13/15 18/23

ETSI 18/23 ANSI 26 28 32 38

155 Mbit/s@28MHz 128MLCM 96.5 96.5 95 92.5 89 86 86 85 83.5 83 82

155 Mbit/s@40MHz 64MLCM - 99.5 97.5 95 - 89 91 - - - -

155 Mbit/s@56MHz 32MLCM - - - - - 92.5 - 91 90 89.5 88.5

155 Mbit/s@50MHz 32MLCM - - - - - - 94 - - - 88.5

311 Mbit/s@56MHz 256MLCM 91.5 91.5 89.5 87 83.5 81 - 79.5 78.5 78 77

311 Mbit/s@50MHz 256MLCM - - - - - - -78 - - . 74.5

Table 8-8 System gain standard power

8.10 System Gain High Power Typical values @ BER 10-6 - ref point C’C [dB]

System Capacity / Frequency band: [GHz] 5 L6 U6 7 8 10 11

155 Mbit/s@28MHz 128MLCM 101 101.5 101.5 100 100 98 97.5

155 Mbit/s@40MHz 64MLCM 103.5 - 104.5 - 102.5 - 100

311 Mbit/s@56MHz 256MLCM 94.5 95.5 95.5 93.5 93.5 92 91

Table 8-9 System gain high power

Page 75: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

73

9. RADIO CHARACTERISTICS METRO – LONG HAUL

9.1 General Typical values in dB measured with modulation (PRBS-data). Ref. Point B’ and B. Tx and Rx tolerance is ± 1.5 dB. For RF-Branching loss see chapter 13.3.1

9.2 Output Power High Power XCVR

Frequency band: [GHz] 4 5 L6 U6 7 8 10 11

155 Mbit/s@28MHz 128 MLCM - ACAP +29 +29.5 +29.5 +29 +28 +27.5 +25 +25

155 Mbit/s@28MHz 128MLCM – ACCP +29 +29.5 +29.5 +29 +27.5 +27.5 +25 +25

155 Mbit/s@40MHz 64MLCM +29 +30 - +29 - +28 - +25

Table 9-1 Nominal output power Long Haul System, 155 Mbit/s

9.3 Receiver Thresholds – 155 Mbit/s@28 MHz- ACAP

Frequency band: [GHz] 4 5 L6 U6 7 8 10/11

BER ≤ 10-6 [dBm] -70.5 -70.5 -70 -70 -69.5 -69.5 -68

BER ≤ 10-8 [dBm] -69 -69 -68.5 -68.5 -68 -68 -66.5

BER ≤ 10-10 [dBm] -67.5 -67.5 -67.5 -67 -67 -66.5 -65.5

Table 9-2 Receiver threshold, 155 Mbit/s

9.4 Receiver Thresholds – 155 Mbit/s@28 MHz-ACCP

Frequency band: [GHz] 4 5 L6 U6 7 8 10/11

BER ≤ 10-6 [dBm] -69 -69 -69 -69 -68.5 -68 -67

BER ≤ 10-8 [dBm] -67 -67 -67.5 -67 -66.5 -66.5 -65

BER ≤ 10-10 [dBm] -65.5 -65.5 -65.5 -65.5 -65 -64.5 -63.5

Table 9-3 Receiver threshold, 155 Mbit/s

Page 76: Evolution Series Technical Description E

74 Evolution Series NGP\00330 Rev. E 2009-04-03

9.5 Receiver Thresholds 155 Mbit/s@40 MHz ACCP & ACAP

Frequency band: [GHz] 4 5 U6 8 11

BER ≤ 10-6 [dBm] -73.5 -73.5 -72.5 -72 -71

BER ≤ 10-8 [dBm] -72.5 -72.5 -71.5 -71 -70

BER ≤ 10-10 [dBm] -71.5 -71.5 -70.5 -70 -69

Table 9-4 Receiver threshold, 155 Mbit/s

9.6 System Gain Long Haul System Typical values @ BER 10-6 - ref point B’-B [dB]

System Capacity / Frequency band: [GHz] 4 5 L6 U6 7 8 10 11

155 Mbit/s@28MHz 128MLCM – ACAP 99.5 100 99.5 99 97.5 97 93 93

155 Mbit/s@28MHz 128MLCM – ACCP 98 98.5 98.5 98 96 95.5 92 92

155 Mbit/s@40MHz 64MLCM 102.5 103.5 - 101.5 - 100 - 96

Table 9-5 System gain high power

9.7 System characteristics for Space Diversity (SD)

9.7.1 General A Space Diversity system includes a Space Diversity transceiver unit, which contains one transmitter and two receivers. The control functions are included in the transceiver unit.

9.7.2 Combining principles and performance The combining method is in-phase IF-combining. The effect of this combining is an improvement of the receiver threshold in fading situations when input levels are low. The improvement is at least 2.5 dB for signals of the same level at an arbitrary phase difference Maximum difference of wave-guide lengths between main and diversity antennas is 30 meters for a standard space transceiver. An additional 30 meters is offered as an option. The static delay compensation is automatically adjusted during system installation via the Web interface. External delay compensation or external instruments are not needed.

Page 77: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

75

10. RADIO CHARACTERISTICS XPAND - ODU SYSTEM - ETSI DATA RATES

10.1 General Typical values in dB measured with modulation (PRBS-data). Ref. Point C’ and C. Tx and Rx tolerance is ± 1.5 dB for 5-11 GHz and ± 2 dB for 13-38 GHz For RF-Coupler loss see chapter 13.2

10.2 Output Power Standard Power ODU

Frequency band: [GHz] L6 U6 7/8 11 13/15 18/23 26 28 32 38

155 Mbit/s (75xE1) 28MHz - 128MLCM +25.5 +25.5 +24 +22 +19 +17 +16.5 +16.5 +16 +15.5

155 Mbit/s (75xE1) 40MHz -64MLCM - +25.5 +24 +22 - - - - - -

155 Mbit/s (75xE1) 56MHz -32MLCM - - - - - +18 +17.5 +17.5 +17 +16.5

100 Mbit/s (50xE1) 28MHz -32MLCM +27.5 +27.5 +26 +24 +21 +19 +18.5 +18.5 +18 +17.5

80 Mbit/s (40xE1) 28MHz -16QAM +28.5 +28.5 +27 +25 +22 +20 +19.5 +19.5 +19 +18.5

56 Mbit/s (28xE1) 14MHz -64MLCM +25.5 +25.5 +24 +22 +19 +17 +16.5 +16.5 +16 +15.5

40 Mbit/s (20xE1) 14MHz -16MLCM +28.5 +28.5 +27 +25 +22 +20 +19.5 +19.5 +19 +18.5

32 Mbit/s (16xE1) 28MHz -4QAM +28.5 +28.5 +27 +25 +22 +20 +19.5 +19.5 +19 +18.5

32 Mbit/s (16xE1) 14MHz -16QAM +28.5 +28.5 +27 +25 +22 +20 +19.5 +19.5 +19 +18.5

32 Mbit/s (16xE1) 7MHz -64MLCM +25.5 +25.5 +24 +22 +19 +17 +16.5 +16.5 +16 +15.5

16 Mbit/s (8xE1) 14MHz -4QAM +28.5 +28.5 +27 +25 +22 +20 +19.5 +19.5 +19 +18.5

16 Mbit/s (8xE1) 7MHz -16MLCM +28.5 +28.5 +27 +25 +22 +20 +19.5 +19.5 +19 +18.5

8 Mbit/s (4xE1) 7MHz -4QAM +28.5 +28.5 +27 +25 +22 +20 +19.5 +19.5 +19 +18.5

Table 10-1 Nominal output power Standard Power ODU

10.3 Output Power High Power ODU

Frequency band: [GHz] 5 L6 U6 7 8 10 11

155 Mbit/s (75xE1) 28MHz - 128MLCM 40 MHz – 64MLCM

+30 +30.5 +30.5 +29 +29 +27.5 +27

100Mbit/s – 8 Mbit/s +29 +29.5 +29.5 +28 +28 +26.5 +26

Table 10-2 Nominal output power High Power ODU

Page 78: Evolution Series Technical Description E

76 Evolution Series NGP\00330 Rev. E 2009-04-03

10.4 Receiver Threshold 155 Mbit/s (75xE1) Mbit/s These thresholds are equal to 155 Mbit/s thresholds for METRO. Please refer to values in chapter 8.4 to 8.6.

10.5 Receiver Threshold 100 Mbit/s (50xE1) - 28 MHz BW

Frequency band: [GHz] 5 L6 U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -77.5 -78 -78 -77.5 -77 -76.5 -75.5 -75 -74 -73.5 -73.5

BER ≤ 10-8 [dBm] -77 -77 -77 -76.5 -76.5 -75.5 -75 -74 -73 -73 -72.5

BER ≤ 10-10 [dBm] -76 -76 -76 -75.5 -75.5 -75 -74 -73.5 -72 -72 -71.5

Table 10-3 Receiver threshold 50xE1 in 28 MHz channel

10.6 Receiver Threshold 80 Mbit/s (40xE1) - 28 MHz BW

Frequency band: [GHz] 5 L6 U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -79 -79.5 -79.5 -79 -78.5 -78 -77 -76.5 -75.5 -75 -75

BER ≤ 10-8 [dBm] -77.5 -78 -78 -77.5 -77 -76.5 -75.5 -75 -74 -73.5 -73.5

BER ≤ 10-10 [dBm] -76 -76.5 -76.5 -76 -75.5 -75 -74 -73.5 -72.5 -72 -72

Table 10-4 Receiver threshold 40xE1 in 28 MHz channel

10.7 Receiver Threshold 56 Mbit/s (28xE1) - 14 MHz BW

Frequency band: [GHz] 5 L6 U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -77 -77.5 -77.5 -77 -76.5 -76 -75 -74.5 -73.5 -73 -73

BER ≤ 10-8 [dBm] -75.5 -76 -76 -75.5 -75 -74.5 -73.5 -73 -72 -71.5 -71.5

BER ≤ 10-10 [dBm] -74 -74.5 -74.5 -74 -73.5 -73 -72 -71.5 -70.5 70.5 -70

Table 10-5 Receiver threshold 28xE1 in 14 MHz channel

10.8 Receiver Threshold 40 Mbit/s (20xE1) - 14 MHz BW

Frequency band: [GHz] 5 L6 U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -81.5 -81.5 -81.5 -81 -81 -80 -79.5 -79 -77.5 -77.5 -77

BER ≤ 10-8 [dBm] -80 -80.5 -80.5 -80 -79.5 -79 -78.5 -77.5 -76.5 -76.5 -76

BER ≤ 10-10 [dBm] -79 -79 -79 -79 -78.5 -78 -77 -76.5 -75 -75 -74.5

Table 10-6 Receiver threshold 20xE1 in 14 MHz channel

Page 79: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

77

10.9 Receiver Threshold 32 Mbit/s (16xE1) - 28 MHz BW

Frequency band: [GHz] 5 L6/U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -86.5 -87 -86.5 -86 -85.5 -84.5 -84 -83 -82.5 -82.5

BER ≤ 10-8 [dBm] -85.5 -85.5 -85.5 -85 -84.5 -83.5 -83 -81.5 -81.5 -81

BER ≤ 10-10 [dBm] -84.5 -84.5 -84.5 -84 -83.5 -82.5 -82 -80.5 -80.5 -80

Table 10-7 Receiver threshold 16xE1 in 28 MHz channel

10.10 Receiver Threshold 32 Mbit/s (16xE1) - 14 MHz BW

Frequency band: [GHz] 5 L6 U6 7/8 10/11 13/15 18/23 26 28/32 38

BER ≤ 10-6 [dBm] -84.5 -84.5 -84.5 -84.5 -84 -83.5 -82.5 -82 -80.5 -80

BER ≤ 10-8 [dBm] -83.5 -84 -84 -83.5 -83 -82.5 -81.5 -81 -80 -79.5

BER ≤ 10-10 [dBm] -82.5 -83 -83 -82.5 -82 -81.5 80.5 -80 -79 -78.5

Table 10-8 Receiver threshold 16xE1 in 14 MHz channel

10.11 Receiver Threshold 32 Mbit/s (16xE1) - 7 MHz BW

Frequency band: [GHz] 5 L6 U6 7/8 10/11 13/15 18/23 26 28/32 38

BER ≤ 10-6 [dBm] -77 -77 -77 -77 -76.5 -76 -75 -74.5 -73 -72.5

BER ≤ 10-8 [dBm] -75.5 -76 -76 -75.5 -75 -74.5 -73.5 -73 -72 -71.5

BER ≤ 10-10 [dBm] -74 -74.5 -74.5 -74 -73.5 -73 -72 -71.5 -70.5 70

Table 10-9 Receiver threshold 16xE1 in 14 MHz channel

10.12 Receiver Threshold 16 Mbit/s (8xE1) - 14 MHz BW

Frequency band: [GHz] 5 L6/U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -89.5 -90 -89.5 -89 -88.5 -87.5 -87 -86 -85.5 -85.5

BER ≤ 10-8 [dBm] -88.5 -88.5 -88.5 -88 -87.5 -86.5 -86 -84.5 -84.5 -84

BER ≤ 10-10 [dBm] -87.5 -87.5 -87.5 -87 -86.5 -85.5 -85 -83.5 -83.5 -83

Table 10-10 Receiver threshold 8xE1 in 14 MHz channel

Page 80: Evolution Series Technical Description E

78 Evolution Series NGP\00330 Rev. E 2009-04-03

10.13 Receiver Threshold 16 Mbit/s (8xE1) - 7 MHz BW

Frequency band: [GHz] 5 L6/U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -86.5 -87 -86.5 -86.5 -85.5 -85 -84 -83 -83 -82.5

BER ≤ 10-8 [dBm] -85 -85.5 -85 -84.5 -84 -83.5 -82.5 -81.5 -81.5 -81

BER ≤ 10-10 [dBm] -84 -84 -84 -83.5 -83 -82 -81.5 -80 80 -79.5

Table 10-11 Receiver threshold 8xE1 in 7 MHz channel

10.14 Receiver Threshold 8 Mbit/s (4xE1) - 7 MHz BW

Frequency band: [GHz] 5 L6/U6 7/8 10/11 13/15 18/23 26 28 32 38

BER ≤ 10-6 [dBm] -92.5 -92.5 -92 -92 -91.5 -90.5 -90 -88.5 -88.5 -88

BER ≤ 10-8 [dBm] -91.5 -91.5 -91.5 -91 -90.5 -89.5 -89 -87.5 -87.5 -87

BER ≤ 10-10 [dBm] -90.5 -90.5 -90.5 -90 89.5 -88.5 -88 -86.5 -86.5 -86

Table 10-12 Receiver threshold 4xE1 in 7 MHz channel

Page 81: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

79

10.15 System Gain Standard power - ETSI (E1 based) systems Typical values @ BER 10-6 - ref point C’C [dB]

System Capacity / Frequency band: [GHz] L6 U6 7/8 11 13/15 18/23 26 28 32 38

155 Mbit/s (75xE1) 28MHz - 128MLCM 96.5 96.5 95 92.5 89 86 85 83.5 83 82

155 Mbit/s (75xE1) 40MHz -64MLCM - 99.5 97.5 95 - 89 - - - -

155 Mbit/s (75xE1) 56MHz -32MLCM - - - - - 92.5 91 90 89.5 88.5

100 Mbit/s (50xE1) 28MHz -32MLCM 105.5 105.5 103.5 101 97.5 94.5 93.5 92.5 91.5 91

80 Mbit/s (40xE1) 28MHz -16QAM 108 108 106 103.5 100 97 96 95 94 93.5

56 Mbit/s (28xE1) 14MHz -64MLCM 103 103 101 98.5 95 92 91 90 89 88.5

40 Mbit/s (20xE1) 14MHz -16MLCM 110 110 108 105.5 102 99.5 98.5 97 96.5 95.5

32 Mbit/s (16xE1) 28MHz -4QAM 115.5 115.5 113.5 111 107.5 104.5 103.5 102.5 101.5 100.5

32 Mbit/s (16xE1) 14MHz -16QAM 113 113 111.5 109 105.5 102.5 101.5 100 99.5 98.5

32 Mbit/s (16xE1) 14MHz -16QAM 102.5 102.5 101 98.5 95 92 91 89.5 89 88

16 Mbit/s (8xE1) 14MHz -4QAM 118.5 118.5 116.5 114 110.5 107.5 106.5 105.5 104.5 104

16 Mbit/s (8xE1) 7MHz -16MLCM 115.5 115.5 113.5 111.5 107.5 105 103.5 102.5 102 101

8 Mbit/s (4xE1) 7MHz -4QAM 121 121 119 117 113.5 110.5 109.5 108 107.5 106.5

Table 10-13 System gain Standard Power - ETSI

Page 82: Evolution Series Technical Description E

80 Evolution Series NGP\00330 Rev. E 2009-04-03

10.16 System Gain High power - ETSI (E1 based) systems Typical values @ BER 10-6 - ref point C’C [dB]

System Capacity / Frequency band: [GHz] 5 L6 U6 7 8 10 11

155 Mbit/s (75xE1) 28MHz - 128MLCM 101 101.5 101.5 100 100 98 97.5

155 Mbit/s (75xE1) 40MHz -64MLCM 103.5 - 104.5 - 102.5 - 100

100 Mbit/s (50xE1) 28MHz -32MLCM 106.5 107.5 107.5 105.5 105.5 104 103

80 Mbit/s (40xE1) 28MHz -16QAM 108 109 109 107 107 105.5 104.5

56 Mbit/s (28xE1) 14MHz -64MLCM 106 107 107 105 105 103.5 102.5

40 Mbit/s (20xE1) 14MHz -16MLCM 110.5 111 111 109 109 107.5 106.5

32 Mbit/s (16xE1) 28MHz -4QAM 115.5 116.5 116.5 114.5 114.5 113 112

32 Mbit/s (16xE1) 14MHz -16QAM 113.5 114 114 112.5 112.5 110.5 110

32 Mbit/s (16xE1) 7MHz -64MLCM 104 104.5 104.5 103 103 101 100.5

16 Mbit/s (8xE1) 14MHz -4QAM 118.5 119.5 119.5 117.5 117.5 116 115

16 Mbit/s (8xE1) 7MHz -16MLCM 115.5 116.5 116.5 114.5 114.5 113 112.5

8 Mbit/s (4xE1) 7MHz -4QAM 121.5 122 122 120 120 118.5 118

Table 10-14 System gain high power – ETSI

Page 83: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

81

11. RADIO CHARACTERISTICS XPAND - ODU SYSTEM - ANSI DATA RATES

11.1 General Typical values in dB measured with modulation (PRBS-data). Ref. Point C’ and C. Tx and Rx tolerance is ± 1.5 dB for 5-11 GHz and ± 2 dB for 13-38 GHz For RF-Coupler loss see chapter 13.2

11.2 Output Power Standard Power ODU

Frequency band: [GHz] L6 U6 7/8 11 18 23 26 38

155 Mbit/s (96xT1) 30MHz - 128 MLCM +25.5 +25.5 +24 +22 +17 +17 -

155 Mbit/s (96xT1) 40MHz – 64 MLCM - - - +22 +19 +19 +16.5 -

155 Mbit/s (96xT1) 50MHz - 32 MLCM - - - - +20 +20 +16.5

125 Mbit/s (80xT1) 25MHz - 128 MLCM - - - - - - +15.5

125 Mbit/s (80xT1) 30MHz - 64 MLCM +26.5 - - +23 +18 +18 -

125 Mbit/s (80xT1) 40MHz - 32 MLCM - - - - +20 +20 +18.5 -

125 Mbit/s (80xT1) 50MHz - 16 MLCM - - - - +20 +20 +18.5

100 Mbit/s (64xT1) 20MHz – 128 MLCM - +25.5 +24 - +17 +17 +15.5

100 Mbit/s (64xT1) 30MHz – 32 MLCM +27.5 - - +24 +20 +20 -

100 Mbit/s (64xT1) 40MHz – 16 QAM - - - +25 +20 +20 +19.5 -

50 Mbit/s (32xT1) 10MHz – 128 MLCM +25.5 +25.5 +24 +22 +17 +17 -

50 Mbit/s (32xT1) 20MHz – 16 MLCM - - - - +20 +20 +18.5

25 Mbit/s (16xT1) 10MHz – 16 MLCM - - - - +20 +20 -

25 Mbit/s (16xT1) 20MHz – 4QAM - - - - +20 +20 +18.5

22 Mbit/s (14xT1) 5MHz – 128 MLCM +25.5 +25.5 +24 +22 - - -

12 Mbit/s (8xT1) 5MHz – 16QAM - - +26 - +20 +20 -

12 Mbit/s (8xT1) 10MHz – 4QAM - - - - +20 +20 -

6 Mbit/s (4xT1) 5MHz – 4QAM - - - - +20 +20 -

Table 11-1 Nominal output power Standard Power ODU

Page 84: Evolution Series Technical Description E

82 Evolution Series NGP\00330 Rev. E 2009-04-03

11.3 Output Power High Power ODU

Frequency band: [GHz] 5 L6 U6 7 8 10/11

155 Mbit/s (96xT1) 30MHz - 128 MLCM 30 30.5 30.5 29 29 27

155 Mbit/s (96xT1) 40MHz – 64 MLCM 30 - - - - 27

125 Mbit/s (80xT1) 30MHz - 64 MLCM 29 29.5 - - - 26

100 Mbit/s (64xT1) 20MHz – 128 MLCM - - 29.5 28 28 -

100 Mbit/s (64xT1) 30MHz – 32 MLCM 29 29.5 - - - 26

100 Mbit/s (64xT1) 40MHz – 64 MLCM - - - - - 26

50 Mbit/s (32xT1) 10MHz – 128 MLCM 27 27.5 27.5 26 26 24

25 Mbit/s (16xT1) 10MHz – 16 MLCM 27 - - - - -

22 Mbit/s (14xT1) 5MHz – 128 MLCM 27 27.5 27.5 26 26 24

12 Mbit/s (8xT1) 5MHz – 16QAM 27 - - - - -

12 Mbit/s (8xT1) 10MHz – 4QAM 29 - - - - -

6 Mbit/s (4xT1) 5MHz – 4QAM 27 - - - - -

Table 11-2 Nominal output power High Power ODU

Page 85: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

83

11.4 Receiver Threshold 155 Mbit/s (96xT1) These thresholds are equal to 155 Mbit/s thresholds for METRO. Please refer to values in chapter 8.4 to 8.6.

11.5 Receiver Threshold 125 Mbit/s (80xT1) Frequency band:

[GHz] 5 L6 10/11 18/23 26 38

BW [MHz] 30 30 30 30 40 50 40 25 50

BER ≤ 10-6 [dBm] -74.5 -75 -74 -72.5 -75.5 -77.5 -74.5 -67.5 -75

BER ≤ 10-8 [dBm] -73.5 -73.5 -73 -71.5 -74.5 -77 -74 -66.5 -74.5

BER ≤ 10-10 [dBm] -72 -72.5 -71.5 -70.5 -74 -76.5 -73 -65 -74

Table 11-3 Receiver thresholds 80xT1

11.6 Receiver Threshold 100 Mbit/s (64xT1) Frequency band:

[GHz] 5 L6 U6 7/8 10/11 18/23 26 38

BW [MHz] 30 30 20 20 30 20 30 40 40 25

BER ≤ 10-6 [dBm] -78 -78.5 -73 -72.5 -78 -71 -76.5 -78.5 -78 -68.5

BER ≤ 10-8 [dBm] -77.5 -78 -71.5 -71 -77 -69.5 -75.5 -78 -77 -67

BER ≤ 10-10 [dBm] -77 -77 -70.5 -70 -76.5 -68.5 -75 -77 -76.5 -66

Table 11-4 Receiver thresholds 64xT1

11.7 Receiver Threshold 50 Mbit/s (32xT1) Frequency band:

[GHz] 5 L6 U6 7/8 10/11 18/23 38

BW [MHz] 10 10 10 10 10 10 20 25

BER ≤ 10-6 [dBm] -74.5 -74.5 -74.5 -74.5 -74 -72.5 -81.5 -78

BER ≤ 10-8 [dBm] -72.5 -73 -73 -72.5 -72 -70.5 -80.5 -77

BER ≤ 10-10 [dBm] -71 -71 -70.5 -70.5 -70.5 -69 -80 -76.5

Table 11-5 Receiver threshold 32xT1

Page 86: Evolution Series Technical Description E

84 Evolution Series NGP\00330 Rev. E 2009-04-03

11.8 Receiver Threshold 25 Mbit/s (16xT1) Frequency band:

[GHz] 5 18/23 38

BW [MHz] 10 10 20 25

BER ≤ 10-6 [dBm] -85 -83 -86 -83

BER ≤ 10-8 [dBm] -84 -82 -85 -82

BER ≤ 10-10 [dBm] -82.5 -81 -84 -81

Table 11-6 Receiver threshold 16xT1

11.9 Receiver Threshold 22 Mbit/s (14xT1) – 5 MHz BW Frequency band:

[GHz] 5 L6 U6 7/8 10/11

BER ≤ 10-6 [dBm] -78.5 -78.5 -78.5 -78.5 -78

BER ≤ 10-8 [dBm] -76 -76.5 -76.5 -76 -76

BER ≤ 10-10 [dBm] -74 -74.5 -74.5 -74 -74

Table 11-7 Receiver threshold 32xT1

11.10 Receiver Threshold 12 Mbit/s (8xT1)

Frequency band: [GHz] 5 18/23

BW [MHz] 10 5 10 5

BER ≤ 10-6 [dBm] -90.5 -85 -89 -83.5

BER ≤ 10-8 [dBm] -90 -83.5 -88 -82

BER ≤ 10-10 [dBm] -89 -82.5 -87 -80.5

Table 11-8 Receiver threshold 8xT1 in 10 MHz channel

11.11 Receiver Threshold 6 Mbit/s (4xT1) - 5 MHz BW

Frequency band: [GHz] 5 18 23

BER ≤ 10-6 [dBm] -91.5 -90 -90

BER ≤ 10-8 [dBm] -90 -88.5 -88.5

BER ≤ 10-10 [dBm] -89 -87 -87

Table 11-9 Receiver threshold 4xT1 in 5 MHz channel

Page 87: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

85

11.12 System Gain Standard Power - ANSI (T1 based) systems Typical values @ BER 10-6 - ref point C’C [dB]

System Capacity / Frequency band: [GHz] L6 U6 7/8 11 18 23 26 38

155 Mbit/s (96xT1) 30MHz - 128 MLCM 96.5 96.5 95 92.5 86 86 - -

155 Mbit/s (96xT1) 40MHz – 64 MLCM - - - 95 91 91 87.5 -

155 Mbit/s (96xT1) 50MHz - 32 MLCM - - - - 94 94 - 88.5

125 Mbit/s (80xT1) 25MHz - 128 MLCM - - - - - - - 83

125 Mbit/s (80xT1) 30MHz - 64 MLCM 101.5 - - 97 91.5 91.5 91.5 -

125 Mbit/s (80xT1) 40MHz - 32 MLCM - - - - 95.5 95.5 93 -

125 Mbit/s (80xT1) 50MHz - 16 MLCM - - - - 97.5 97.5 - 93.5

100 Mbit/s (64xT1) 20MHz – 128 MLCM - 98 96.5 - 88 88 - 84

100 Mbit/s (64xT1) 30MHz – 32 MLCM 106 - - 101 96.5 96.5 - -

100 Mbit/s (64xT1) 40MHz – 16 QAM 98 98 97.5

50 Mbit/s (32xT1) 10MHz – 128 MLCM 100 100 98.5 96 89.5 89.5 - -

50 Mbit/s (32xT1) 20MHz – 16 MLCM - - - - 101.5 101.5 - 96.5

25 Mbit/s (16xT1) 10MHz – 16 MLCM - - - - 103 103 103 -

25 Mbit/s (16xT1) 20MHz – 4QAM - - - - 106 106 - 101.5

22 Mbit/s (14xT1) 5MHz – 128 MLCM 104 104 102.5 100 - - - -

12 Mbit/s (8xT1) 5MHz – 16QAM - - - - 103 103 - -

12 Mbit/s (8xT1) 10MHz – 4QAM - - - - 109 109 - -

6 Mbit/s (4xT1) 5MHz – 4QAM - - - - 110 110 - -

Table 11-10 System gain Standard Power - ANSI

Page 88: Evolution Series Technical Description E

86 Evolution Series NGP\00330 Rev. E 2009-04-03

11.13 System Gain High Power - ANSI (T1 based) systems Typical values @ BER 10-6 - ref point C’C [dB]

Frequency band: [GHz] 5 L6 U6 7 8 10/11

155 Mbit/s (96xT1) 30MHz - 128 MLCM 101 101.5 101.5 100 100 97.5

155 Mbit/s (96xT1) 40MHz – 64 MLCM 103.5 - - - - 100

125 Mbit/s (80xT1) 30MHz - 64 MLCM 103.5 104.5 - - - 100

100 Mbit/s (64xT1) 20MHz – 128 MLCM - - 102 100.5 100.5 -

100 Mbit/s (64xT1) 30MHz – 32 MLCM 107 108 - - - 103.5

100 Mbit/s (64xT1) 40MHz – 16QAM - - - - - 106

50 Mbit/s (32xT1) 10MHz – 128 MLCM 101 102 102 100.5 100.5 98

25 Mbit/s (16xT1) 10MHz – 16 MLCM 101.5 - - - - -

22 Mbit/s (14xT1) 5MHz – 128 MLCM 106 106 106 104.5 104.5 102

12 Mbit/s (8xT1) 5MHz – 16QAM 112 - - - - -

12 Mbit/s (8xT1) 10MHz – 4QAM 119.5 - - - - -

6 Mbit/s (4xT1) 5MHz – 4QAM 118.5 - - - - -

Table 11-11 System gain High Power - ANSI

Page 89: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

87

12. UNIT DESCRIPTIONS

12.1 Transceiver (XCVR) and OutDoor Unit (ODU) The XCVR and ODU hardware is capacity and modulation independent. The XCVR consists of the Transmitter and the Receiver and it is tuneable over the whole frequency band, both high and low part. Two XCVR variants are available Standard Power and High Power.

XCVR Type 4, 5 and 10 GHz L6, U6, 7, 8 and 11 GHz 13-38 GHz

Standard Power - x x High Power x x - High Power SD x x The high power XCVR Unit is used as a standalone unit in the long haul systems with RF branching. Standard power XCVR can also be used with RF branching. The ODU consists of a XCVR and a Diplexer, where the diplexer determines the sub-band coverage. The diplexer is a detachable unit which can be used with both high and low subband as transmitter subband. The change of high low is simply done by turning the diplexer 180 degrees. The ODU is normally mounted directly to the antenna for all configurations. In HSB and 1+1/2+0 configurations an RF-Coupler is used when connecting the ODU to the antenna interface. An optional pole mount kit is also available.

Figure 12-1 XCVR and ODU

Page 90: Evolution Series Technical Description E

88 Evolution Series NGP\00330 Rev. E 2009-04-03

12.2 Universal Interface Unit (IFU) The Evolution Series IFU is a 1RU high modular unit, containing 9 plug-in slots for various units. The modular architecture with plug-in slots enables a high degree of flexibility, ease of upgrading/changing configurations and easy maintenance.

Figure 12-2 IFU, 1+0 system

The basic IFU frame is common in all configurations and up to four basic IFU frames and one DXC frame (optional) be stacked together by a rear mounted IFU connection panel. - The lower left position (1) contains the Supervisory Unit. The Supervisory Unit is handling the

configuration of all system units as well as reporting system status to the EM/NMS system. The unit also has an Ethernet switch with interfaces both for user traffic and management.

- The rightmost position (6) houses the FAN Unit, handling the ventilation and temperature management of the IFU frame.

- Line Interface units can be placed in slots 1-5 depending on system configuration. The 25E1, 16T1 and Ethernet traffic interfaces are full height and covers the upper Aux/Serv. position as well. The Gigabit Ethernet Unit must be placed in slot 3 if mapping to more than one 155 Mb/s is required.

- The DXC Unit must be placed in slot 3. The DXC units contain the SETS function and external synchronisation interface.

- The Radio Interface units and Power Supply Unit must be placed in slot 4 or 5. The RIU provides connection to the ODU/XCVR and includes power supply to the IFU and the ODU/XCVR. The Power Supply Unit is used in IFUs without RIU.

- The upper Aux/Serv. slots (7, 8 and 9) house any Auxiliary or Service Channel units, such as Alarm and Control Unit, Wayside Unit, 64 kb Data Channels Unit and EOW Unit. Slot 8 and 9 can house 24 volt adapter

All units can be replaced in the field. Non traffic carrying units can be replaced without interrupting the service. See paragraph 12 for further description of the various plug-in units.

Slot #

MDS Bus Capacity SU LIU RIU/PWR DXC AUX 24 V FAN

1 155 Mb/s X X 2 155 Mb/s X 3 4x155 Mb/s X X 4 155 Mb/s X X 5 155 Mb/s X X 6 NA X 7 NA X 8 NA X X 9 NA X X

Figure 12-3 Slot Matrix Universal IFU

Page 91: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

89

12.3 Access IFUs The Access IFUs are 1RU units, containing supervisory unit and fixed interfaces for E1/T1, Ethernet, Management traffic and 64 kb/s. See Table 12-1 for versions. The IFUs can have one or two radio interface units, for 1+0 or 1+1/HSB configuration. The radio interface unit is the same used with the Universal IFU and Access IFUs are compatible over the hop with the Universal IFU in XPAND mode.

Figure 12-4 Access IFU, 1+0 terminal

TDM interfaces

Ethernet Traffic Interfaces

Management Ethernet Interfaces

64 kb/s channels

4 E1 - 2x10/100BASE-TX - 16 E1 2x10/100BASE-TX 2x10/100BASE-TX 1 4 T1 2x10/100BASE-TX 2x10/100BASE-TX - 16 T1 2x10/100BASE-TX 2x10/100BASE-TX 1

Table 12-1 Access IFUs, XPAND

12.4 Supervisory Unit The Supervisory Unit is handling the configuration of all the system units as well as reporting system status to the EM/NMS system. It has two or four 10/100 BASE-TX Ethernet ports for user and management traffic.

The first versions of the unit (A, B and C) have two Ethernet ports and two USB ports.

The latest version of the SU (D) has four Ethernet ports and no USB ports.

User Traffic

In XPAND the SU has the user Ethernet interface and the traffic is mapped directly in to the radio frame together with E1/T1s.

In METRO mode user traffic is either mapped into the 2 Mbit/s Wayside channel in the SOH or into a STM-1/OC-3 channel. See chapter 15.2 for an example. For METRO a Gigabit Ethernet Unit is also available. See 12.6.5

Management

The ports are connected to an internal switch and can both be used for connection to the EM/NMS system and/or for connecting terminals together in a Management LAN/DCN.

An internal OSFP/RIP router handles routing of out of band management traffic. See chapter 16.5

The USB host port serve as a LCT port.

12.5 Radio Interface Unit – RIU The RIU contains the interface for connecting the IFU to one ODU/XCVR with a single coaxial cable. It also contains the connector for power supply to the terminal. There are three RIUs available, one which supports datarates up to 155 Mbit/s and two for rates up to 311 Mbit/s.

Page 92: Evolution Series Technical Description E

90 Evolution Series NGP\00330 Rev. E 2009-04-03

12.6 Line Interface Unit – LIU The LIU contains the interface for connecting the user traffic to the IFU.

12.6.1 STM-1/OC-3 Line Interface Units There is one electrical and four optical STM-1/OC-3 interface units. The optical interface units are using SFP modules, but they are sold as complete units.

• Electrical (G.703) interface unit. • Optical single mode (S-1.1) interface unit. • Optical single mode (L-1.1) interface unit. • Optical single mode (L-1.2) interface unit. • Optical multi mode interface unit.

12.6.2 E1/T1 Interface Units Four E1/T1 interface units are available, 25xE1, 12xE1, 16xT1 and 8xT1. The number of interfaces on the unit does not need to correspond with the capacity of the link. The interface can be used in both METRO and XPAND mode. In METRO mode the DXC unit or DXC Frame is also required.

• 25xE1 interface unit. • 12xE1 interface unit. • 8xT1 interface unit. • 16xT1 interface unit.

12.6.3 3xE3/DS3 Interface Unit The 3xE3/D3 Unit is used in METRO mode. Both SONET and SDH mapping is supported and in SDH mode it is also possible to mix E3 and DS3.DXC Unit or DXC Frame is required

12.6.4 STM-4/OC-12 Line Interface Units The STM-4/OC-12 unit is used in METRO mode. It has an optical SFP interface.

12.6.5 Ethernet Interface Unit The Gigabit Ethernet Interface is used in METRO mode. It performs advanced Ethernet over SDH functions. The Gigabit Ethernet Interface unit has three 10/100 BASE-TX ports, one 10/100/1000 BASE-TX port and one SFP slot for 1000BASE-X. The SFP unit is a separate unit. See chapter 4.3 for more details about the features.

Page 93: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

91

12.7 Digital X-Connect Unit The optional DXC Unit handles SDH/SONET x-connect and SNCP function as well as SETS function. The multiplex structure is selectable between SDH and SONET. The SETS function handles node synchronisation and selection of synchronisation sources. The unit can be used together with ODU/XCVR and LIUs or with only LIUs as a standalone ADM/DXC. It has a non-blocking cross-connect capability at VT1.5, VC-12, VC-3/STS-1 and VC-4/STS-3 levels with a total cross-connect capacity of 4×VC-4/STS-3

12.8 Digital X-Connect Frame The optional DXC Frame handles SDH/SONET x-connect and SNCP function as well as the SETS function. The external 2 MHz synchronisation interface is included in the plug-in Power and Sync Unit. The multiplex structure is selectable between SDH and SONET. The unit can be used together with ODU/XCVR and LIUs or with only LIUs as a standalone ADM/DXC. It has a non-blocking cross-connect capability at VT1.5, VC-12, VC-3/STS-1 and VC-4/STS-3 levels with a total cross-connect capacity of 8×VC-4/STS-3.

12.9 Wayside Unit The SDH/SONET Wayside Unit supports one wayside channel, selectable to either E1 or T1 traffic. One RF-channel can carry one wayside channel. Only used in METRO mode.

12.10 EOW Unit (Service channel) The EOW Unit provides a party line service channel for voice communication to other terminals in the network and two 64kbit/s co-directional interfaces. The voice service channel provides the following functions: • Selective call with two digit telephone number. • Collective call by pressing *-button. • Built-in bridge for east/west connections. • 4-wire analogue interfaces for connection to other service channel equipment.

• One 4-wire Interface with level adjustment • Two Other Equipment (OE1 and OE2 ) interfaces • The two OE interfaces can be configured for daisy-chain operation

• The pinning configuration is adapted to standard Ethernet CAT-5 cable; this enables use of standard cables.

The IFU can be equipped with two service telephone plug-in units unit. A standard telephone handset connects to the unit. The 64 kb/s channels serves the same purposes as described in chapter 12.11.

12.11 64 kb/s Serial Channel Unit The unit contains four 64kbit/s channel interfaces. Two with co-directional interface, one with contra-directional interface and one V.11 interface (without byte timing). The channels are used for user traffic and can be routed towards line or radio. In addition the unit can set up a 64 kb/s connection from the Supervisory unit towards the physical interface or towards a 64 kb/s overhead channel.

Page 94: Evolution Series Technical Description E

92 Evolution Series NGP\00330 Rev. E 2009-04-03

12.12 Alarm and Control Unit The unit provides interfaces for collection of external alarms or analogue values, and relays for external alarm and control outputs. Each interface can be configured individually • Eight alarm inputs • Four relay outputs which can be configured to Latched, Pulsed or Alarm Output mode. • Seven analogue inputs

12.13 Fan Unit The Fan Unit handles temperature management of the IFU and consists of three fans. An alarm is generated if one of the fans should fail. The Fan Unit is field replaceable without interrupting the service.

12.14 Power Supply and Sync Unit This unit contains the power supply interface to the DXC frame and the 2 MHz External synchronization interface.

12.15 Power Supply Unit This unit is used in configurations where and IFU is not equipped with RIU.

12.16 24 V Power Interface Adapter Adapter for conversion from +24 to -48 Volt. The unit feeds one RIU. It can be used with the Universal IFU.

12.17 LEDs All IFU units have a LED indicating power on and alarm status.

• Continuous green Power on, normal operation • Slow blinking green Unit is initiating • Fast blinking green Units is receiving configuration • Continuous red Alarm on unit • Slow blinking red Unit is receiving configuration • Fast blinking red Units is not configured or is placed in a wrong IFU slot

Page 95: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

93

13. DIPLEXER, BRANCHING AND ANTENNA INTERFACE

13.1 Diplexer description The diplexer determines the ODU sub-band coverage and duplex spacing. The same diplexer is used both for high and low subband, and since the diplexer is a detachable unit it can be changed and turned in field. This simplifies planning and maintenance. Most frequency bands are divided into only two sub-bands. See APPENDIX 1 for details. ODU transmit and receive frequency can be set to any frequency within the given range.

13.2 RF-Coupler The additional loss for RF-Coupler is given in Table 13-1. The RF-Coupler is used in protected configurations and single polarised 2+0 systems.

Asymmetrical RF-Coupler Symmetrical RF-Coupler Main Protection

Nom Max Nom Max Nom Max

Transmission loss [dB] Tx or Rx 3.4 3.8 1.5 2 6.5 7

Table 13-1 RF-Coupler loss

13.2.1 RF-input return loss ODU RF-input return loss is 18 dB for 5-11 GHz and 16 dB for 13-38 GHz at point CC’

Page 96: Evolution Series Technical Description E

94 Evolution Series NGP\00330 Rev. E 2009-04-03

13.3 Low Loss branching description The branching system contains channel filters and circulators connecting from one to eight channels to one antenna. The branching can also be split when used with dual polarised antennas; one part connects to the horizontal and one to the vertical port antenna port. If system expansion is planned, the branching can be delivered for the final configuration.

13.3.1 Branching loss long haul system The figures (worst case) are given for B’- B:

Max loss [dB]

# of channels on common polarisation

Adj.ch on opposite polarization, or on same

polarization with >30 MHz distance

Adj.ch on same polarization with <30

MHz distance

1 and HSB 0.6 0.6 2 1.0 1.2 3 1.4 1.8 4 1.8 2.4 5 2.2 3.0 6 2.6 3.6 7 3.0 4.2 8 3.4 4.8

Table 13-2 Branching loss

The HSB splitter loss is additional.

Frequency band: [GHz] 4 5 L6 U6 7 8 10 11

HSB asymmetrical Splitter port A NA 2.0 2.0 2.0 2.3 2.3 2.8 2.8

HSB asymmetrical Splitter port B NA 7.5 7.5 7.5 7.5 7.5 8.2 8.2

Table 13-3 HSB Splitter loss

Page 97: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

95

13.3.2 RF-filter characteristics ACAP filters ACCP filters

Frequency Adj. ch.

Sep. [MHz]

Typical Loss [dB] A'-B'/ B-A

Guar. Loss [dB] A'-B'/ B-A

Typical Loss [dB] A'-B'/ B-A

Guar. Loss [dB] A'-B'/ B-A

4 GHz ~28 1.6 ≤ 1.8 1.7 ≤ 1.9 4 GHz 40 1.2 ≤ 1.4 1.2 ≤ 1.4 5 GHz ~28 1.6 ≤ 1.8 1.7 ≤ 1.9 5 GHz 40 1.2 ≤ 1.4 1.2 ≤ 1.4

L6 GHz ~28 1.5 ≤ 1.7 1.6 ≤ 1.8 U6 GHz ~28 1.8 2.0 1.9 ≤ 2.1 U6 GHz 40 1.9 ≤ 2.1 1.9 ≤ 2.1 7 GHz ~28 2.0 ≤ 2.2 2.3 ≤ 2.5 8 GHz ~28 2.3 ≤ 2.5 2.6 ≤ 2.8 8 GHz 40 2.1 ≤ 2.3 2.1 ≤ 2.3

10 GHz ~28 3.2 ≤ 3.4 3.2 ≤ 3.4 11 GHz ~28 3.2 ≤ 3.4 3.2 ≤ 3.4 11 GHz 40 3.0 ≤ 3.2 3.0 ≤ 3.2

• All versions, “worst case”

Table 13-4 RF-Filter characteristics

13.3.3 RF-input return loss RF-input return loss, within the RF-channel bandwidth, at point CC’: > 24 dB (measured at the subrack antenna interface).

Page 98: Evolution Series Technical Description E

96 Evolution Series NGP\00330 Rev. E 2009-04-03

13.4 Antenna Interface - Split Mount System with Diplexer The interface between the ODU or RF-coupler and the antenna feeder system is rectangular waveguide except 5 GHz which is using coaxial interface. (N-connector). The ODU and RF-Coupler aluminium flanges are protected by chromate coating.

Frequency band [GHz] L6/U6 7/8 10/11 13 15 18/23/26 32/38

Diplexer- and RF-Coupler PDR70 CBR84 CBR100 CBR120 CBR140 CBR220 CBR320

PDR CBR

Matching Flanges/Interface

PDR70 / CPR137G

UBR84 PBR84

UBR100 PBR100

UBR120 PBR120

UBR140 PBR140

UBR220 PBR220

UBR320 PBR320

Waveguide (remote mount)

R70 / WR137

R84 / WR112

R100 / WR90

R120 / WR75

R140 / WR62

R220 / WR42

R320 / WR28

Table 13-5 ODU flanges and waveguide

13.5 Antenna Interface – Long Haul RF-Filter Branching System Frequency band

[GHz] 4 5 L6/U6 7/8 10/11

RF Branching

Flange Types PDR40 PDR48 PDR70 PDR84 PDR100

Matching Flanges PDR40/ CPR229G

PDR48 / CPR187G

PDR70 / CPR137G

PDR84 / CPR112G

PDR100 / CPR90G

Matching Waveguide R40 / WR229

R48 / WR187

R70 / WR137

R84 / WR112

R100 / WR90

Table 13-6 Long Haul Branching flanges and waveguide

Page 99: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

97

14. IFU-ODU INTERFACE

14.1 Cable interface characteristics The following signals are transmitted via the cable:

• Transmit and Receive data signal. • Power to the ODU. • IFU - ODU Communication (IO-Com) for configuration and control of the ODU.

The cable interface has over-voltage, over-current and reverse polarity protection. The equipment compensates automatically for different cable lengths.

14.2 Cable characteristics The cable must be in accordance with the following requirements: Characteristic impedance: 50 ± 3 Ω Maximum attenuation at 47 MHz: 9 dB Maximum attenuation at 140 MHz: 18 dB Maximum attenuation at 373 MHz: 27 dB Maximum cable length: 300 m Connector: TNC, male

ODU Type and Minimum supply voltage Cable Type SP XCVR

40.5 volt HP XCVR 40.5 Volt

HP XCVR 42 Volt

Cinta CNT 400 (¼″) (Andrew) 200 150 200 Heliax LDF1-50. (¼″) (Andrew) 200 150 200 Cellflex LCF 14-50J(¼″) (RFS) 200 150 200 Heliax LDF2-50. (3/8″) (Andrew) 300 200 300 Cellflex LCF 38-50J (3/8″) (RFS) 300 200 300 RG223/U 50 40 50 RG214/U 150 150 150 RGC213-50J 150 100 150

Table 14-1 Recommended Cable lengths, IFU-ODU cable

Page 100: Evolution Series Technical Description E

98 Evolution Series NGP\00330 Rev. E 2009-04-03

15. RADIO PROTECTION SWITCHING (RPS)

15.1 General In order to facilitate switching without introducing bit-errors, a hitless switching system is provided. The Radio Protection Switching function is used in HSB and n+1 Frequency Diversity configurations. Automatic and manual switching is available. The manual switching can be hitless or forced and is performed from the WEB Interface. In Hot Standby configurations the TX- and RX- switching at a terminal normally operates independently, but they may be configured to operate together.

15.2 Low Priority Traffic In METRO mode the protection channel can be utilized with low priority traffic. It can be configured with STM-1/OC-4 LIU, Gigabit Ethernet Interface Unit or with 100 Mbit/s Ethernet using the Ethernet Mapper at the Supervisory Unit.

15.3 Base band switching operations The protection switching equipment automatically replaces a faulty channel by the standby channel at traffic disturbance. All channels can be enabled/disabled for different maintenance purposes.

15.4 Switching capability The Radio Protection Switching function is capable to handle system configurations up to 7+1.

15.5 Priority of protection switching The following is only relevant for N+1 systems where N>1: The protection switching equipment is provided with facilities for setting the priority of any radio channel by means of local or remote control through the built-in supervisory system. Indication of relevant status is provided, both for local control and remote supervision. Each radio channel can be set up with different priority.

15.6 Alignment specification Automatic synchronization of the incoming digital signals is performed before switching takes place. The alignment is based on bit-aligning of the datastream. • Dynamic range: ±50 bit

15.7 Switching criteria, Rx

15.7.1 Continuity criteria The continuity criteria are determined by the Out Of Frame (OOF) signal. • Detection time OOF 5 x 125 µs = 625 µs • Rx Alarm IFU (LOF, LOC)

Page 101: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

99

15.7.2 Quality criteria A quality criterion is determined by overrun of pre-set limits. For a quality criterion, three thresholds are considered as limits for switching operation. Each criterion can be set to different Bit Error Rate levels by the supervision system: • HBER - Bit Error Rate exceeds a value of approx. 10-3 (default) • LBER - Bit Error Rate exceeds a value of approx. 10-6 (default) • EW - Bit Error Rate exceeds a value of approx. 10-10 (default) • Low_RF - Receiver RF input level is below a set threshold. The BER quality criteria are based on signal to noise ratio.

15.8 Switching operation time, Rx The alarm detection time for BER will strongly depend on the severity of the channel disturbance. BER = 10-5 detection-time will be <1 ms if a degradation that will cause a bit-error rate of 10-4 or worse is detected. A table giving approximate detection times at different bit-error-rates is given below. The detection time will depend on the selected threshold for the different criteria:

Actual Switching Criteria Detection Time for Different Thresholds [ms] BER 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 1x10-3 1-2 0.4 -0.8 0.15 - 0.30 0.44 - 0.89 0.18 –

0.36 0.14 - 0.28 0.36 - 0.71 0.16 0.31 0.06 - 0.12 0.02 - 0.04

1x10-4 NA 1-2 0.37 - 0.73 1.11 - 2.22 0.44 – 0.89

0.36 - 0.71 0.89 - 1.78 0.39 0.78 0.16 - 0.31 0.04 - 0.09

1x10-5 NA NA 1-2 3.0 - 6.1 1.2. – 2.4 0.97 - 1.93 2.4 - 4.4 1.1 2.1 0.42 - 0.85 0.12 - 0.24 1x10-6 NA NA NA 8-16 3.2 – 6.4 2.6 - 5.1 6.4 - 12.8 2.8 5.6 1.1 - 2.2 0.32 - 0.64 1x10-7 NA NA NA NA 8-16 6.4 - 12.8 16 - 32 7 - 14 2.8 - 5.6 0.8 - 1.6 1x10-8 NA NA NA NA NA 16-32 40 - 80 17.5 - 35 7 - 14 2 - 4 1x10-9 NA NA NA NA NA NA 128-256 56 - 112 22 - 45 6.4 - 12.8 1x10-10 NA NA NA NA NA NA NA 128-256 51 -102 15 - 29 1x10-11 NA NA NA NA NA NA NA NA 128-256 37 - 73 1x10-12 NA NA NA NA NA NA NA NA NA 128-256

Table 15-1 Switching operation time NA - Not Available

The different BER criteria, HBER, LBER and Early Warning (EW), can be selected from the table above. The only restriction is: HBER > LBER > EW. A processing and communication time is added to the criteria detection time to get the total switching operation time. The Communication and Processing time depends on system type and is given below: • 1+1 Radio Protection Systems (without Low Priority Traffic): < 5 ms • N+1 Radio Protection Systems (including 1+1 with Low Priority Traffic): < 10 ms If switching is initiated in both directions at the same time, this can increase the total switching operation time slightly.

15.9 Switching criteria and switching operation time, Tx

Alarm Switch time

LIU TX Alarm 50 ms IFU Basic Frame TX Alarm 50 ms RIU TX Alarm 50 ms Radio TX Alarm 50 ms

Page 102: Evolution Series Technical Description E

100 Evolution Series NGP\00330 Rev. E 2009-04-03

16. MANAGEMENT SYSTEM CHARACTERISTICS

16.1 General The powerful integrated supervisory system of Evolution Series provides user-access to the NEs in a most dynamic manner. The management function in the NE can be accessed by the use of a web-browser, Command Line Interface (CLI) or by a SNMP manager such as the NERAs management system NetMaster. The management traffic is IP protocol based.

Note 1: Configuration from CLI is limited. A NE is controlling all the units connected to a specific node with a common supervisory unit. The NE software performs the following management tasks: Fault management: Collecting and logging of alarms and analogue measurements from the

management units connected to the Node. Performance management: Collecting and logging quality measurements according to standards

(G.784) Configuration management: Configuration of node (including configuration up/download) and

Software download Security management: Configuration of user id/password and the users privileges in the NE.

Includes logging in NE of user actions.

16.2 Event logging Evolution Series NEs can log events and faults in the local fault log. The log size is 10.000 events. The log can be set to wrap-around or halt when it is full. Alarm logging can be masked based on severity level. An operator (with administrator privileges) can also clear the log.

Page 103: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

101

16.3 Monitoring of system performance Transmission performance data is monitored continuously by the built-in supervision function. The supervision function performs measurements and calculations based on the parity bits in the SOH/TOH for METRO or parity bits in each E1/T1 for XPAND. Traffic bit error rate information from the modem is also available. At the Ethernet layer RMON statistics is used.

16.3.1 System performance calculations Performance data are based on the ITU-T Rec. G.826 system performance parameters. The following system quality calculations are included:

• Error Second Ratio (ESR) • Severely Error Second Ratio (SESR) • Background Block Error Ratio (BBER) • Unavailable state (UAS)

16.3.2 Performance record logging Performance logging can be activated for individual signals, one at a time. 15-min, 24-hour and month records are calculated. The log contains the current and last month, current and last 24-hour and current and the sixteen last 15-min records. Threshold values can be defined each of the performance records and a performance alarm will be raised if the threshold is exceeded for any of the periods. In addition cumulative error counters for parity pulses are available. The operator can read and reset the counters.

16.4 Security management The user must have a username and password defined in the NE in order to log in. Each user name is defined with access privileges. Four levels are defined; User level Privileges Passive Users Passive users are only able to monitor data. They are not able to change any

configuration. Active Users Same as Passive. In addition active users are able to reset counters. Master Users Master users have access to all commands, except those related to user account

administration and Configuration/SW download. Admin Users Admin users have access to all commands. The Admin user is the administrator and is

responsible for adding, deleting and managing user accounts and privileges. In addition the admin user is responsible for Configuration/SW download.

16.4.1 Security event logging The NE can log events related to security. The log size is 1000 events. When it is full it will wrap-around. The operator (with administrator privileges) can also clear the log.

Page 104: Evolution Series Technical Description E

102 Evolution Series NGP\00330 Rev. E 2009-04-03

16.5 Management system communication Access to the management is from the Ethernet port(s) at the SU. The SU can be set up with one or two dedicated ports for management access. The management traffic to other terminals is transmitted over the DCC channel in the NOH and the IP router handles the routing An alternative is to use the Ethernet switch in the SU and transport the management traffic inband with the user traffic. SU version D has VLAN support and a dedicated VLAN can be used for management traffic.

16.5.1 Management LAN interface Two 10/100BASE-TX interfaces, IEEE 802.3 Full Duplex. Connector type: RJ-45

16.5.2 USB interface The USB host port serves as LCT interface. Available at SU versions A, B and C.

16.6 IP routing The routing function enables routing of TCP/IP and UDP/IP traffic between the management module of the NE, the Management Ethernet interface, the DCC channels and the 64 kb/s PtP channels. The routing protocol used is OSPF/RIP2. Both Evolution Series management traffic as well as other telecom equipment IP based management protocols can be routed. There are both external and internal interfaces to the management module. The internal interfaces are used in a DCN to create communication links between NEs and/or the management centre/network operator.

& /

/ /

$;

.$#$

&'

)

<*

%0*

<*

%0*+

$

$+

$

$

1

9

&;

1

9

&;

<!

-

=!

-

=!

/$

' 6$%$=. 6

-=! /

$1> 6' 6$

%$

%$$

.$ <!#$

-=! /

/

)%

#9

Figure 16-1 IP Router Overview

Page 105: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

103

16.6.1 Data Communication Channel DCC Each radio frame contains a dedicated DCC channel for communication with the remote site. The capacity of the DCC channel is 192 kb/s. In an n+0 or n+1 configuration the DCC is transported on Ch 1 and Ch2/p

16.6.2 64 kb/s point to point channels 64 kb/s channels can be used to set up communication links between terminals without direct connection. They can also be used to make direct overhead connections to remote sites. This can be useful in a large network to avoid long routing paths. The feature requires 64 kb/s adapter. The following options are possible.

• 64 kb/s channel in overhead byte towards radio • 64 kb/s channel in overhead byte towards STM-1/OC-3 Line • 64 kb/s external channel

16.6.3 DCN network In this network the management traffic is logically and if needed also physically separated from the user traffic. Figure 16-2 illustrates use of the different communication channels is the network.

)0

)(

6

1*

19$

)

19$

)

-=!

/)9

-=!

/)*

)<

)1

(

-=!1< -=!1

) )

%0*

399>*

*

)%0*

6

?$)

Figure 16-2 Data Communication Network

Page 106: Evolution Series Technical Description E

104 Evolution Series NGP\00330 Rev. E 2009-04-03

16.7 Inband Management Access to management can be configured inband with main Ethernet traffic. In XPAND this is enabled by using the Ethernet Switch in the SU. The management traffic will then be transmitted inband with the user traffic. SU version D supports VLAN switching and management traffic can then be separated on a separate VLAN. For METRO the Ethernet Wayside channel can be used for management traffic in this mode or a connection between SU and GBE Unit is required.

Figure 16-3 Inband Management XPAND and METRO

16.8 Embedded SNMP agent The embedded SNMP agent supports the following management functions. • Basic monitoring of network and interface parameters • Fault Management

Supports enumeration of possible alarms, current alarm table and historic alarms (log). Trap support included.

• Analogue measurements Received signal level.

• Performance measurements SNMP version 2 and 3 is supported. SNMP version 3 requires license.

16.8.1 Standard MIBs Supported • rfc1213 – mib-2 • rfc2737 – entity-mib • rfc2819 - rmon mib

16.9 SSL Secure Socket Layer for encryption of management traffic between element (server) and computer (client) is supported. License is required.

Page 107: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

105

17. PHYSICAL INTERFACES

17.1 Interface characteristics 155 Mbit/s electrical Electrical interface according to ITU-T Rec. G.703: Bitrate: 155.520 Mbit/s ± 20 ppm Line code: CMI Impedance: 75 Ω unbalanced Maximum attenuation of input signal at 78 MHz: 12.7 dB Connector type: DIN47297, 1.0/2.3mm, dual (IEC 60169-29)

17.2 Interface characteristics 155 Mbit/s optical - Intermediate Reach Optical interface based on single mode fibre (G.652 – single mode). According to ITU-T Rec. G.957; S-1.1 and ANSI: T1.105.06; IR-1 Approximate reach: 15 km Bitrate: 155.520 Mbit/s ± 20 ppm Operating wavelength range: 1261 - 1360 nm Source type: MLM Mean launched power: - Maximum: -8 dBm - Minimum: -15 dBm Minimum receiver sensitivity (BER < 10-10): -28 dBm Minimum receiver overload: -8 dBm Connector type: LC Duplex

17.3 Interface characteristics 155 Mbit/s optical - Long Reach 1300nm Optical interface based on single mode fibre (G.652 – single mode). Approximate reach: 40 km According to ITU-T Rec. G.957; L-1.1 and ANSI: T1.105.06-1996; LR-1 Bitrate: 155.520 Mbit/s ± 20 ppm Operating wavelength range: 1263 - 1360 nm Source type: MLM Mean launched power: - Maximum: 0 dBm - Minimum: -5dBm Minimum receiver sensitivity (BER < 10-10): - 34 dBm Minimum receiver overload: -10 dBm Connector type: LC Duplex

17.4 Interface characteristics 155 Mbit/s optical - Long Reach 1500nm Optical interface based on single mode fibre (G.652 – single mode). Approximate reach: 80 km According to ITU-T Rec. G.957; L-1.2 and ANSI: T1.105.06-1996; LR-2 Bitrate: 155.520 Mbit/s ± 20 ppm Operating wavelength range: 1480 - 1580 nm Source type: SLM Mean launched power: - Maximum: 0 dBm - Minimum: -5dBm Minimum receiver sensitivity (BER < 10-10): -34 dBm Minimum receiver overload: -10 dBm Connector type: LC Duplex

Page 108: Evolution Series Technical Description E

106 Evolution Series NGP\00330 Rev. E 2009-04-03

17.5 Interface characteristics 155 Mbit/s optical – Multi Mode Optical interface based on 62.5/125 µm multi mode fibre (G.951). According to ANSI: T1.105.06 and T1.646; SR-0 Bitrate: 155.520 Mbit/s ± 20 ppm Operating wavelength range: 1270 - 1380 nm Source type: LED Mean launched power: - Maximum: -14 dBm - Minimum: -20 dBm Minimum receiver sensitivity (BER < 10-10): -30 dBm Minimum overload: -14 dBm Connector type: LC Duplex

17.6 Interface characteristics 622 Mbit/s optical - Intermediate Reach Optical interface based on single mode fibre (G.652 – single mode). According to ITU-T Rec. G.957; S-4.1 and ANSI T1.105.06; IR-1 Approximate reach: 15 km Bitrate: 622.080 Mbit/s ± 20 ppm Operating wavelength range: 1293 – 1334 / 1274 - 1356 nm Source type: MLM Mean launched power: - Maximum: -8 dBm - Minimum: -15 dBm Minimum receiver sensitivity (BER < 10-10): -28 dBm Minimum receiver overload: -8 dBm Connector type: LC Duplex

17.7 Jitter and Wander STM-N/OC-N traffic interfaces Jitter and wander specifications are according to ITU-T Rec. G.783.

17.8 Interface characteristics 1.5 Mbit/s Electrical interface according to ANSI T1.102-1993 and ITU-T Rec. G.703: Bitrate: 1.544 Mbit/s ± 32 ppm Line code: B8ZS or AMI (wayside) Impedance: 100 Ω balanced. Line Build Out [feet]: 0-133, 133-266, 266-399, 399-533, & 533-655 Connector type wayside: RJ-45/RJ48C Connector type tributaries: 50 pin multiconnector Jitter and wander specification ITU-T Rec. G.824 and Bellcore GR-499-CORE

17.9 Interface characteristics 2 Mbit/s Interface parameters according to ITU-T Rec. G.703: Bitrate: 2.048 Mbit/s ± 50 ppm Line code: HDB3 Impedance: 120 Ω balanced Maximum attenuation of input signal at 1.024 MHz: 6 dB Connector type wayside: RJ-45/RJ48C Connector type tributaries: 50 pin multiconnector Jitter and wander specifications are according to ITU-T Rec. G.823

Page 109: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

107

17.10 Interface characteristics 34 Mbit/s Interface parameters according to ITU-T Rec. G.703: Bitrate: 34.368 Mbit/s ± 20 ppm Line code: HDB3 Impedance: 75 Ω unbalanced Maximum attenuation of input signal at 17.184 MHz: 12 dB Connector type: DIN47297, 1.0/2.3mm, dual (IEC 60169-29) Jitter and wander specifications are according to ITU-T Rec. G.783.

17.11 Interface characteristics 45 Mbit/s Electrical interface according to ANSI Recommendation T1.102-1993 Bitrate: 44.736 Mbit/s ± 20 ppm Line code: B3ZS Impedance: 75 Ω unbalanced Power level: -4.7 to +3.6 dBm for AIS signal Connector type: DIN47297, 1.0/2.3mm, dual (IEC 60169-29) Jitter and wander specifications are according to ITU-T Rec. G.783.

17.12 2.048 MHz synchronisation input/output characteristics Electrical interface according to ITU-T Rec. G.703: Frequency: 2.048 MHz ± 4.6 ppm* Impedance: 120 Ω balanced. Return loss (2.048 MHz): ≥ 15 dB Pulse amplitude (2MHz output): Maximum 1.9 V Minimum 1.0 V Maximum attenuation of input signal at 1.024 MHz: 6 dB Connector type: RJ-45 Actual output frequency is depending on the synchronisation source accuracy.

Page 110: Evolution Series Technical Description E

108 Evolution Series NGP\00330 Rev. E 2009-04-03

17.13 Ethernet Interfaces

17.13.1 10/100 BASE-TX Connector type: RJ-45 Electrical interface: IEEE 802.3 Full Duplex The interfaces are configurable by management software. • Can be configured to Auto-Negotiation, 10BASE-T or 100BASE-TX, half or full duplex.

17.13.2 1000 BASE-T Connector type: RJ-45 Electrical interface: IEEE 802.3 Full Duplex The interfaces are configurable by management software. • The port is configurable to Auto-Negotiation, 10BASE-T, 100BASE-TX, or 1000 BASE-T.

17.13.3 1000 BASE-LX 1.25 Gigabit Ethernet Optical Transceiver (SFP Module) for Single Mode Fibre Specification: IEEE 802.3z/ab Operating wavelength range: 1310 nm Typical reach 10 km Connector type: LC Duplex

17.13.4 1000 BASE-SX 1.25 Gigabit Ethernet Optical Transceiver (SFP Module) for Multi Mode Fibre Specification: IEEE 802.3z/ab Operating wavelength range: 850 nm Typical reach 500 m Connector type: LC Duplex

Page 111: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

109

17.14 Auxiliary interfaces

17.14.1 64 kb/s channel characteristics Interface alternatives:

• 64kb/s according to ITU-T G.703, Co-directional timing • 64kb/s according to ITU-T G.703, Contra-directional timing • 64kb/s according to ITU-T V.11, Contra-directional timing without byte timing

Connector type: RJ-45

17.14.2 Service telephone/Orderwire interfaces The unit has four RJ-45 connectors, one for handset and three for analogue connections (east/west bridging). Telephone connector type: RJ-45 (IEC 60603-7) The performance of the service telephone complies in general with ITU-T Rec. G.712:

• Code: PCM • Signalling: DTMF according to ITU-T Rec. Q.23 • Frequency range: 0.3 – 3.4 kHz • Impedance 600 Ω

The unit has three 4-wire analogue interfaces for connection to other service channel equipment:

OE1 and OE2 Interfaces: • Not Galvanic Isolated. • Input/output level -6 dBm

4 Wire Interface:

• Galvanic Isolated • Input/output level: 4 dBm, 0 dBm -6 dBm (Nominal) and -10 dBm.

The EOW is transported in one of the two available 64 kb/s channels.

Page 112: Evolution Series Technical Description E

110 Evolution Series NGP\00330 Rev. E 2009-04-03

17.14.3 Alarm and Control Interfaces The unit has four RJ45 connectors. Transient protection: Amplitude: < 100 V Transient protection: Duration: < 10 ms, non-repetitive External alarm input interfaces: Number: Eight two-pin interfaces. Galvanic isolated. Interface: Current loop State on: > 3.0 mA State off: < 1.0 mA Relay output interfaces: Number: Four two-pin outputs. Contact Ratings Inductive Load: 0.5A at 24V DC

0.1A at 110V DC Resistive Load: 0.8A at 24V DC

0.1A at 110V DC Analogue Input Interfaces: Number Seven single ended inputs, common analogue ground. Not

galvanic isolated.

4 inputs: Voltage Range: 0-20V DC Impedance >100k ohm

2 inputs: Voltage Range: 18-65V DC

Impedance >100k ohm 1 input: Current Range: 0-50 mA

Impedance 50ohm

Page 113: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

111

18. ENVIRONMENTAL

18.1 Electromagnetic Compatibility Conditions (EMC) ETSI: The equipment conforms to the EMC standard as specified in EN 301 489 part 1 and 4. FCC: The equipment conforms to FCC Part 15 subpart B class A.

18.2 Safety conditions The equipment conforms to EN 60215, EN 60950 and UL/CSA 60950. The optical interfaces conform to EN 60825-1 and EN 60825-2.

18.3 RoHS and WEEE compliance The equipment is compliant to EU Directive 2002/95/EC (RoHS) and EU Directive 2002/96/EC (WEEE).

18.4 Environmental conditions • Transportation: ETSI-EN-300-019-1-2, class 2.3, public transportation. (temperature range: -40 °C to +70 °C).

• Storage: ETSI-EN-300-019-1-1, class 1.2, weather protected, not temperature-controlled storage locations. (temperature range: -40 °C to +70 °C).

• Use: Indoor mounted units: Temperature range: -5 °C to +50 °C. Compliant with ETSI-EN-300-019-1-3, class 3.2, partly temperature controlled locations.

Altitude 5000 m/16400 feet Outdoor mounted units: Operational temperature range: -45 °C to +55 °C. Guaranteed performance in the range: -33 °C to +50 °C. Humidity 100 % Altitude 5000 m/16400 feet

Compliant with ETSI-EN-300-019-1-4, class 4.1, non weather protected locations

For temperatures below 0°C the equipment must be switched on

for at least 10 minutes in order to operate according to the specifications.

18.4.1 Outdoor Enclosure Protection The ODU is waterproof and whether resistant according to IP65.

Page 114: Evolution Series Technical Description E

112 Evolution Series NGP\00330 Rev. E 2009-04-03

19. MECHANICAL CHARACTERISTICS

19.1 Installation The equipment is designed to enable easy and quick installation for stationary use in indoor or split mount installations. The indoor systems consisting of a RF channel branching system with XCVRs and IFU(s) are normally mounted in a 19” rack. Split Mount systems consist of IFU and ODU interconnected with coaxial cable. One cable for each ODU/XCVR is used. (i.e. Two cables needed for HSB, 1+1 FD and 2+0 systems). The IFU can be installed as a stand-alone unit, or it can be mounted in a standard 19“ rack (Ref. IEC 297-2 and IEC 297-3), or in an ETSI standard cabinet (Ref. ETSI EN 300 119). The ODU1 may be mounted directly to the antenna for antenna sizes up to and including 1.8 m. Alternatively the ODU can be supplied with a mount for a vertical column (Ø=60-115mm).

19.2 Dimensions IFU and DXC Frame2 444 mm (W) x 225 mm (D) x 44 mm (H), 17.5” x 8.9” x 1.73” ODU 1+0, 5 - 11 GHz: 228 mm (W) x 197 mm (D) x 240 mm (H), 9” x 7.6” x 9.5” ODU 1+0, 13 - 38 GHz: 218 mm (W) x 177 mm (D) x 230 mm (H), 8.6” x 7” x 9.1” RF Coupler 5 GHz: 232 mm (W) x 102 mm (D) x 500 mm (H), 9.1” x 4.0” x 19.6” RF Coupler 6 - 11 GHz3: 232 mm (W) x 102 mm (D) x 415 mm (H), 9.1” x 4.0” x 16.3”

13 - 38 GHz: 220 mm (W) x 106 mm (D) x 374 mm (H), 8.7” x 4.2” x 14.7” XCVR 4 - 11 GHz: 218 mm (W) x 125 mm (D) x 230 mm (H), 8.6” x 4.9 x 9.1” Branching Housing 600 mm (W) x 632 mm (D) x 519 mm (H), 23.6” x 24.9 x 20.4” Incl. XCVR Indoor XCVR shelf: 481 mm (W) x 231 mm (D) x 308 mm (H), 8.6” x 9.1 x 12.1” 2 IFU Shelf: 481 mm (W) x 233 mm (D) x 88.7 mm (H), 18.9” x 9.2 x 3.5” 4 IFU Shelf: 481 mm (W) x 233 mm (D) x 177.3 mm (H), 18.9” x 9.2 x 7” 4 IFU+DXC Shelf: 481 mm (W) x 233 mm (D) x 221.5 mm (H), 18.9” x 9.2 x 8.7”

19.3 Weights IFU: 2.5 kg / 5.5 lbs ODU 5 - 11 GHz: 8.0 kg / 17.7 lbs ODU 13 - 38 GHz: 6.5 kg / 14.3 lbs RF Coupler: 5 kg / 11 lbs XCVR: 5.2 kg / 11.5 lbs Branching Housing 50 kg / 110 lbs (incl. branching for 4 ch)

1 The ODUs in 5 and 6 GHz are pole mounted 2 The width and depth of the unit are exclusive flanges (mounting brackets) and table studs for free-standing mounting. Special brackets for mounting into different cabinets are available 3 The 6 GHz RF-coupler has a shorter antenna insert

Page 115: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

113

20. POWER SUPPLY AND CONSUMPTION

The equipment operates from a battery supply between -40.5 volt and -57 volt, nominally -48 volt DC according to EN 300 132-2. The primary DC-power is supplied to the IFU through a filtering function that includes input filter to attenuate the common mode noise. The power to the outdoor unit is supplied from the IFU via the IFU-ODU coaxial cable.

20.1 Overvoltage protection The equipment has inverse polarity protection and overvoltage protection.

20.2 24 Volt DC Adapter An optional + 24 Volt Adapter is available. Input voltage +20 to +30 volt.

20.3 Power Consumption

4-11 GHz 13-23 GHz Terminal without interface

Average Maximum Average Maximum

1+0 Terminal, Universal IFU 70 W 79 W 57 W 66 W

HSB/1+1/2+0 Term, Universal IFU 127 W 145 W 101 W 119 W

1+0 Terminal, Access IFU 69 W 78 W 56 W 65 W

HSB Terminal, Access IFU 126 W 144 W 100 W 118 W

Long Haul 1+1 Terminal HP XCVR 141 W 159 W

Per additional channel 70 W

Table 20-1 Power consumption terminal

Unit

Universal IFU, incl. SU and fans 13.5 W Universal IFU, 6.5 W Access IFU 10.5 W Radio Interface Unit 9.5 W Line Interface Unit, Electrical or S-1.1 optical 2.5 W Line Interface unit, L-1.1 or L-1.2 optical 4 W Gigabit Ethernet Interface Unit 10 W E1and T1 Interface Unit 4 W 3xE3/DS3 Unit 3 W Auxiliary Units 2.5 W DXC Unit 5.5 W DXC Frame 10.5 W

SP HP HP/SD LC

ODU/XCVR 4-11 GHz and 26-38 GHz 57 W 64 67 39

ODU 13-23 GHz 44 W

Table 20-2 Maximum power consumption units

Page 116: Evolution Series Technical Description E

114 Evolution Series NGP\00330 Rev. E 2009-04-03

21. INTEGRATED ANTENNAS

21.1 Baseline Series

Frequency (GHz) Diameter (m) Gain (dB) Low

Gain (dB) Centre

Gain (dB) High

F/B (dB)

0.6 30.4 31.2 32.0 54 0.9 34.0 34.8 35.8 58 1.2 36.4 37.2 38.0 60 1.8 40.0 40.8 41.5 64 2.4 42.5 43.3 44.0 65

7.125 to 8.500

3.0 44.4 45.2 45.9 67 0.6 34.0 34.3 34.7 57 0.9 37.5 37.8 38.2 61 1.2 40.0 40.4 40.7 63

10.700 to 11.700

1.8 43.5 43.9 44.3 66 0.3 29.5 29.6 29.8 50 0.6 35.5 35.6 35.8 52 0.9 39.0 39.2 39.3 60 1.2 41.5 41.7 41.8 60

12.750 to 13.250

1.8 45.0 45.2 45.3 66 0.3 30.5 30.8 31.1 52 0.6 36.5 36.8 37.1 58 0.9 40.1 40.3 40.6 62 1.2 42.6 42.8 43.1 65

14.400 to 15.350

1.8 46.1 46.4 46.6 68 0.3 32.3 32.8 33.2 54 0.6 38.3 38.8 39.3 60 0.9 41.8 42.3 42.8 64 1.2 44.3 44.8 45.3 66

17.700 to 19.700

1.8 47.9 48.3 48.8 69 0.3 33.9 34.3 34.8 55 0.6 39.9 40.4 40.8 60 0.9 43.4 43.9 44.3 64

21.200 to 23.600

1.2 45.9 46.4 46.8 67 0.3 35.0 35.4 35.8 55 0.6 41.1 41.5 41.8 61 0.9 44.6 45.0 45.3 65

24.250 to 26.500

1.2 47.1 47.5 47.8 67 0.3 38.7 39.1 39.4 58 37.000 to 40.000 0.6 44.2 44.6 44.9 63

Page 117: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

115

21.2 Low Profile series

Frequency (GHz) Diameter (m) Gain (dB) Low

Gain (dB) Centre

Gain (dB) High

F/B (dB)

5.925 to 6.425 0.6 29.0 29.5 29.6 44

6.425 to 7.125 0.6 29.1 29.5 29.7 44

1.2 34.0 35.0 36.0 61

1.8 37.8 39.0 39.8 65

2.4 41.4 42.5 41.8 68 5.925 to 7.125

3.0 43.3 44.3 44.7 71

0.6 29.5 30.7 31.9 57

0.8 33.2 33.9 34.3 60

1.2 36.8 37.3 37.7 63 7.125 to 8.500

1.8 40.0 40.8 41.1 67

0.6 33.7 33.8 34.3 56

0.8 36.3 36.7 37.0 63

1.2 39.6 40.0 40.4 66 10.000 to 10.700

1.8 43.0 43.1 43.3 69

0.6 34.0 34.4 35.0 60

0.8 36.8 37.5 38.1 63

0.8 36.9 37.4 38.3 59

1.2 40.0 40.4 40.8 67

10.700 to 11.700

1.8 43.3 43.8 44.4 70

0.3 30.6 30.9 31.0 53

0.6 35.6 35.8 36.6 62

0.8 38.2 38.4 38.6 65

1.2 41.2 41.5 41.8 67

12.750 to 13.250

1.8 44.8 45.2 45.5 70

0.3 31.6 32.0 32.1 53

0.6 36.5 36.8 37.2 65

0.8 39.3 39.7 40.1 68

1.2 42.2 42.5 42.8 71

14.250 to 15.350

1.8 45.7 46.0 46.3 73

0.3 33.5 34.0 34.4 55

0.6 38.3 38.7 39.1 67

0.8 40.5 41.0 41.4 69

1.2 43.7 44.5 45.1 72

17.700 to 19.700

1.8 47.0 47.8 48.4 76

Page 118: Evolution Series Technical Description E

116 Evolution Series NGP\00330 Rev. E 2009-04-03

Frequency (GHz) Diameter (m) Gain (dB) Low

Gain (dB) Centre

Gain (dB) High

F/B (dB)

0.3 34.7 35.3 35.9 62

0.6 39.8 40.4 41.0 66

0.8 42.5 43.0 43.4 72

1.2 46.0 46.5 47.0 74

21.200 to 23.600

1.8 48.5 49.3 49.7 74

0.3 36.2 36.6 37.1 63

0.6 40.8 41.2 41.8 68

0.8 43.7 44.1 44.5 72 24.250 to 26.500

1.2 47.0 47.4 47.8 75

0.3 37.6 38.1 38.6 64 27.500 to 29.500

0.6 41.8 42.2 42.7 68

0.3 38.7 38.9 39.1 58 31.800 to 33.400

0.6 43.4 43.7 44.0 61

0.3 39.6 40.1 40.5 61 37.000 to 40.000

0.6 44.6 45.2 45.8 66

Page 119: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

117

22. REFERENCES

Document code: Title/Description: ETSI EN 301 489-4 V1.4.1 (2002-08)

Electromagnetic compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 4: Specific conditions for fixed radio links and ancillary equipment and services. For grade B equipment

ETSI EN 300 019-1-1 V2.1.4 (2003-04)

Classification of environmental conditions; Storage. Class 1.2, weather protected

ETSI EN 300 019-1-2 V2.1.4 (2003-04)

Classification of environmental conditions; Transportation. Class 2.3, public transportation

ETSI EN 300 019-1-3 V2.1.2 (2003-04)

Classification of environmental conditions; Stationary use at weather protected locations. Class 3.2, partly temperature controlled locations

ETSI EN 300 019-1-4 V2.1.2 (2003-04)

Classification of environmental conditions; Stationary use at non-weather protected locations

ETSI EN 300 132-2 V2.1.2 (2003-09)

Equipment Engineering (EE); Power supply interface at the input to telecommunication equipment; Part 1: Interface operated by Direct Current (DC)

ETSI EN 302 217-1 V1.1.3 (2004-12)

Overview and system-independent common characteristics

ETSI EN 302 217-2-1 V1.2.1 (2007-06)

System-dependent requirements for digital systems operating in frequency bands where frequency co-ordination is applied

ETSI EN 302 217-2-2 V1.2.3 (2007-09)

Harmonized EN covering essential requirements of Article 3.2 of R&TTE Directive for digital systems operating in frequency bands where frequency co-ordination is applied

CENELEC EN 60950: 2000 Safety of information technology equipment CENELEC EN 60215: 1989 Safety requirements for radio transmitting equipment CENELEC EN 60825-1 1994 Safety of laser products, Part 1: Equipment classification, requirements and user’s

guide CENELEC EN 60825-2 2000 Safety of laser products, Part 2: Safety of optical fibre communication systems ITU-R Rec. F.746-7 (2003) Radio-frequency channel arrangements for fixed service systems ITU-R Rec. F.382-7 (1997-09) Radio-frequency channel arrangements for radio-relay systems operating in the 2 and 4 GHz

bands ITU-R Rec. F.635-6 (2001) Radio-frequency channel arr. based on a homogenous pattern for radio-relay systems operating in

the 4 GHz band ITU-R Rec. F.1099-3 (1999) Radio-frequency channel arrangements for high capacity radio-relay systems operating

in the 5 GHz (4 400-5 000 MHz) band ITU-R Rec. F.383-7 (2001) Radio-frequency channel arrangements for high capacity radio-relay systems operating

in the lower 6 GHz band ITU-R Rec. F.384-8 (2004-01) Radio-frequency channel arrangements for medium and high capacity analogue or

digital radio-relay systems operating in the upper 6 GHz band ITU-R Rec. F.385-8 (2005) Radio-frequency channel arrangements for radio-relay systems operating in the 7 GHz

band ITU-R Rec. F.386-6 (1999-02) Radio-frequency channel arrangements for medium and high capacity analogue or

digital radio-relay systems operating in the 8 GHz band ITU-R Rec. F.387-9 (2002-05) Radio-frequency channel arrangements for radio-relay systems operating in the 11 GHz

band ITU-R Rec. F.497-6 (1999) Radio-frequency channel arrangements for radio-relay systems operating in the 13 GHz

frequency band ITU-R Rec. F.636-3 (1994) Radio-frequency channel arrangements for radio-relay systems operating in the 15 GHz

band ITU-R Rec. F.595-8 (2003-02) Radio-frequency channel arrangements for radio-relay systems operating in the 18 GHz

band ITU-R Rec. F.637-3 (1999) Radio-frequency channel arrangements for radio-relay systems operating in the 23 GHz

band ITU-R Rec. F.748-4 (2001) Radio-frequency channel arrangements for radio-relay systems operating in the 25, 26,

and 28 GHz bands ITU-R F.1520-2 (2003-02) Radio-frequency arrangements for systems in the fixed service operating in the band

31.8-33.4 GHz ITU-R Rec. F.749-2 (2001) Radio-frequency channel arrangements for radio-relay systems operating in the 38 GHz

band

Page 120: Evolution Series Technical Description E

118 Evolution Series NGP\00330 Rev. E 2009-04-03

ITU-R Rec. F.750-4 (2000-05) Architectures and functional aspects of radio-relay systems for synchronous digital hierarchy (SDH)-based network

ITU-T Rec. G.703 (11/2001) Physical/electrical characteristics of hierarchical digital interfaces ITU-T Rec. G.707/Y.1322 (02/2006)

Network node interface for the synchronous digital hierarchy (SDH)

ITU-T Rec. G.783 (2004) Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks. ITU-T Rec. G.823 (03/2000) The control of jitter and wander within digital networks which are based on the 2048

kbit/s hierarchy ITU-T Rec. G.825 (03/2000) The control of jitter and wander within digital networks which are based on the

synchronous digital hierarchy (SDH). ITU-T Rec. G.826 (02/1999) Error performance parameters and objectives for international, constant bit rate digital

paths at or above the primary rate ITU-T Rec. G.828 (03/2000) Error performance parameters and objectives for international, constant bit rate

synchronous digital paths ITU-T Rec. G.921 (11/1988) Digital Sections based on the 2048 kbit/s hierarchy. ITU-T Rec. G.957 (06/1999) Optical interfaces for equipments and systems relating to the synchronous digital

hierarchy ITU-T Rec. G.958 (11/1994) Digital line systems based on the synchronous digital hierarchy for use on optical fiber

cable ITU-T G.7041 / Y.1303 (08/05) Generic framing procedure (GFP) ITU-T G.7042 / Y.1305 (03/06) Link capacity adjustment scheme (LCAS) for virtual concatenated signals

ETSI TR 101 036-1 V1.3.1 (2002-08)

Fixed Radio Systems; Point-to-point equipment; Generic wordings for standards on digital radio systems characteristics; Part 1: General aspects and point-to-point equipment parameters

CEPT/ERC Rec. 74-01 E (2002-10) Spurious Emissions CEPT/ERC Rec. 12-08 E Harmonized radio frequency channel arrangements and block allocations for low, medium and

high capacity systems in the band 3600 to 4200 MHz CEPT/ERC Rec 14-01 E (1996-08) Radio-frequency channel arrangements for high capacity analogue and digital radio-

relay systems operating in the band 5925 MHz – 6425 MHz CEPT/ERC Rec 14-02 E (1996-08) Radio-frequency channel arrangements for medium and high capacity digital radio-

relay systems operating in the band 6425 MHz – 7125 MHz CEPT/ECC Rec 02-06 (2002-08) Preferred channel arrangement for digital fixed service systems operating in the

frequency range 7125-8500 MHz CEPT/ERC Rec. 12-06 E (1996-12) Harmonised radio frequency channel arrangements for digital terrestrial fixed systems

operating in the band 10.7 – 11.7 GHz CEPT /ERC/REC 12-02 (1996-08) Harmonised radio frequency channel arrangements for analogue and digital terrestrial

fixed systems operating in the band 12.75 GHz to 13.25 GHz CEPT/ERC/REC 12-07 E (1996-08)

Harmonised radio frequency channel arrangements for digital terrestrial fixed systems operating in the bands 14.5 - 14.62 GHz paired with 15.23 - 15.35 GHz

CEPT/ERC/REC 12-03 (1996-08) Harmonised radio frequency channel arrangements for digital terrestrial fixed systems operating in the band 17.7 GHz to 19.7 GHz

CEPT T/R 13-02 (1994-02) Preferred channel arrangements for fixed services in the range 22.0-29.5 GHz IEC 297-2 Dimensions of mechanical structures of the 486.6mm (19in) series: Cabinet and pitches

of the rack structures”. IEC 297-3 Dimensions of mechanical structures of the 486.6mm (19in) series: Sub-rack and

associated plug in units”. IEC 60169-16, Ed. 1.0 Radio-frequency connectors. Part 16: R.F. coaxial connectors with inner diameter of

outer conductor 7 mm (0.276 in) with screw coupling - Characteristic impedance 50 ohms (75 ohms)

IEC 60169-29, Ed. 1.0 Radio-frequency connectors - Part 29: Miniature r.f. coaxial connectors with screw-, push-pull and snap-on coupling or slide-in rack and panel applications; Characteristic impedance 50 ohms

IEC 60603-7 (1996) Connectors for electronic equipment - Part 7-1: Detail specification for 8-way, shielded free and fixed connectors with common mating features, with assessed quality

IEC 60835-2-8 (1993-05) Methods of measurement for equipment used in digital microwave radio transmission systems - Measurements on terrestrial radio-relay systems - Adaptive equalizer.

IEEE 802.3 Carrier Sense Multiple Access with Collision Detection

Page 121: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

119

ANSI/Industry Canada: Document code: Title/Description: Radio Frequency Channel Plans:

FCC 47 CFR Part 101 Fixed Microwave Services SRSP – 305.9 Technical Requirements for Line-of-sight Radio Systems Operating in the Fixed Service in the

Band 5915 – 6425 MHz SRSP – 306.4 Technical Requirements for Line-of-sight Radio Systems Operating in the Fixed Service in the

Band – 6425 – 6930 MHz SRSP – 307.1 Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band 7125-

7725 MHz SRSP – 307.7 Technical Requirements for Fixed Line-of-sight Radio Systems Operating in the Band 7725-8275

MHz SRSP – 310.7 Technical Requirements for Fixed Line-of-sight Radio Systems Operating in the Band 10.7-11.7

GHz Electromagnetic Compatibility: FCC 47CFR Part 15 Radio Frequency Devices (EMC regulations)

Safety: CAN/CSA 22.2 No. 60950-00 Safety – Information processing and business equipment UL 1950 Safety of Information Technology Equipment

SONET: ANSI Rec. T1.105 SONET - Basic Description including Multiplex Structure, Rates and Formats ANSI Rec. T1.105.06-1996 Telecommunications-Synchronous Optical Network (SONET): Physical Layer Specifications ANSI Rec. T1.646-1995 Broadband ISDN Physical Layer Specification for User Network Interfaces Including DS1/ATM ANSI T1.102-1993 Digital Hierarchy – Electrical Interfaces”.

23. TERMINOLOGY

Abbreviation: Description: ACAP Adjacent Channel Alternate Polarisation ACCP Adjacent Channel Co-Polarisation ADM Add/Drop/Multiplex

AIS Alarm Indication Signal ALM External alarm input/output

AP Alternating Polarisation ATDE Adaptive Time Domain Equaliser ATPC Automatic Transmitter Power Control

AUX Auxiliary functions BER Bit Error Rate

CCDP Co Channel Dual Polarisation C/I Carrier to Interference ratio CS Channel Spacing

DCC Data Communications Channel |DF-SP Dual Frequency – Single Polarisation

ECC Embedded Control Channel EM Element Manager

EMC Electro Magnetic Compatibility EOW Engineering Order Wire

EW Early Warning FSC Frame Check Sum (CRC) GFP Generic Framing Procedure

HBER High Bit Error Rate HSB HotStandBy IFU InterFace Unit

LAN Local Area Network port (10/100BASE-TX Ethernet) LBER Low Bit Error Rate LCAS Link Capacity Adjustment Scheme

LCT Local Craft Terminal LIU Line Interface Unit LLF Link-Loss Failure LOF Loss Of Frame

Page 122: Evolution Series Technical Description E

120 Evolution Series NGP\00330 Rev. E 2009-04-03

Abbreviation: Description: LOS Loss Of Signal

MLM Multi-Longitudinal Mode MTBF Mean Time Between Failure

NMS Network Management System NOH Nera OverHead OC-3 Optical Carrier – level 3 = 155Mbit/s (OC-1 – level 1 = 51.84 Mbit/s) ODU OutDoor Unit OOF Out Of Frame PDH Plesiochronous Digital Hierarchy PFI Payload FCS Indicator

PRBS Pseudo Random Bit Sequence PXC PDH-X-Connect

PWR Power Supply RIU Radio Interface Unit RF Radio Frequency

ROHS Restriction on Hazardous Substances RPS Radio Protection Switching RX Receiver

SERV Service function (plug-in unit) SDH Synchronous Digital Hierarchy

SETS Synchronous Equipment Timing Source SF-DP Single Frequency - Dual Polarisation SNCP Sub Network Connection Protection SNMP Simple Network Management Protocol

SONET Synchronous Optical Network SPE Synchronous Payload Envelope

STM-1 Synchronous Transport Module, 1 means the lowest defined data rate = 155.520 Mbit/sec SU Supervisory Unit

SVCE SerVice ChannEl, used to define the voice channel circuit board TCP/IP Transmission Control Protocol/Internet Protocol

TX Transmitter USB Universal Serial Bus

VCAT Virtual concatenation WEEE Waste Electrical & Electronic Equipment XCVR Transmitter/Receiver

XIF XPIC Improvement Factor XPIC X-Polar Interference Canceller

Page 123: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

121

APPENDIX 1 – ODU/DIPLEXER SUB-BAND RANGE

The ODU/Diplexer tuning range per sub-band is given in the table below. The range is given for the centre frequency of the channel for a channel with BW as given in the last column. If the used channel BW is smaller the tuning range is wider. For a complete overview see the document ODU-Diplexer Coverage and Variants NGP\00601.

Freq. band

[GHz]

Duplex Spacing

Tx. Freq: Sub-band 1 Sub-band 2 Sub-band 3

RF Channel

BW

4.4-5.0 312 Low: High:

4418 - 4516 4719 - 4816

4502 – 4596 4804 - 4898

4584 – 4676 4884 - 4982 ~28 MHz

4.4-5.0 300 Low: High:

4424 – 4510 4725 - 4810

4508 – 4590 4810 - 4892

4590 – 4670 4890 - 4976 40 MHz

5.9-6.4 252.04 Low: High:

5945.2 – 6034.15 6197.24 – 6287.19

6063.8 - 6153 6315.8 – 6405 ~28 MHz

5.9-6.4 252.04 Low: High:

5930 - 6020 6182 - 6272

6049 - 6138 6301 - 6390 ~28 MHz

6.4-7.1 340 Low: High:

6450 - 6580 6790 - 6920

6610 - 6740 6950 - 7080 40 MHz

6.4-7.1 100 Low: High:

6595 6695

6625 6725

6655 6755 30 MHz

6.4-7.1 160 Low: High:

6545 - 6627.5 6715 - 6787.5

6635 – 6705 6795 - 6865 10 MHz

7.1-7.4 154,161 Low: High:

7128 - 7184 7289 - 7345

7170 - 7226 7331 - 7387

7205 - 7264 7366 - 7425 ~28 MHz

7.1-7.4 175 Low: High:

7128 - 7184 7289 - 7345 ~28 MHz

7.1-7.4 196 Low: High:

7121 - 7177 7317 - 7373

7177 - 7233 7373 - 7429 ~28 MHz

7.4-7.7 154,161, 182

Low: High:

7428 - 7484 7589 - 7645

7470 - 7526 7631 - 7687

7505 - 7564 7666 – 7725 ~28 MHz

7.4-7.7 168 Low: High:

7428 - 7484 7589 - 7645

7470 - 7526 7631 - 7687

7513 - 7569 7681 – 7737 ~28 MHz

7.4-7.7 150 Low: High:

7428 - 7484 7589 - 7645 ~28 MHz

7.2-7.6 161 Low: High:

7250 - 7305 7411 – 7466

7292 - 7347 7453 – 7508

7334 - 7389 7495 – 7550 ~28 MHz

7.4-7.9 245 Low: High:

7442 - 7526 7687 – 7771

7554 - 7638 7799 – 7883 ~28 MHz

7.1-7.7 300 Low: High:

7139 – 7261 7439 – 7561

7289 - 7411 7589 – 7711 ~28 MHz

7.7-8.3 310 Low: High:

7732 - 7837 8039 – 8148

7836 - 7956 8147 – 8267 ~28 MHz

7.9-8.4 266 Low: High:

7919 - 8013 8185 – 8279

8031 - 8122 8297 – 8388 ~28 MHz

7.9-8.5 310 Low: High:

7919 – 8031 8229 – 8341

8059 - 8171 8369 – 8481 ~28 MHz

8.2-8.5 See table below

10 350 Low: High:

10017.5 – 10140 10367.5 - 10490

10161 - 10285.75 10511 - 10635.75 ~28 MHz

10 65 Low: High: See details in doc NGP\00601 5 MHz

Page 124: Evolution Series Technical Description E

122 Evolution Series NGP\00330 Rev. E 2009-04-03

Freq. band

[GHz]

Duplex Spacing

Tx. Freq: Sub-band 1 Sub-band 2 Sub-band 3

RF Channel

BW

11 490/530 /520

Low: High:

10735 - 10935 11225 - 11465

10975 - 11175 11465 - 11665 40 MHz

11 530 Low: High:

10715 - 10915 11245 - 11445

10955 - 11155 11485 - 11685 40 MHz

11 490/500 FCC

Low: High:

10715 - 10925 11215 - 11415

10850 - 11060 11340 – 11550

10985 - 11185 11475 – 11685 30 MHz

13 266 Low: High:

12765 - 12877 13031 - 13143

12849 – 12963 13115 - 13229 28 MHz

15 490 Low: High:

14417 - 14676 14907 - 15166

14669 - 14914 15117 - 15334 28 MHz

15 420 Low: High:

14515 - 14732 14935 - 15152

14669 - 14914 15117 - 15334 28 MHz

15 644/728 Low: High:

14515 - 14683 15159 - 15334 28 MHz

15 315 Low: High:

14641 - 14781 14956 - 15096

14753 - 14893 15068 - 15208 28 MHz

18 1010 Low: High:

17713.7 - 18207.3 18723.7 - 19216.3

18181.2 - 18676.3 19191.2 - 19686.3 27.5 MHz

18 1560 Low: High:

17727.5 – 18112.5 19287.5 – 19672.5 55 MHz

18 1092.5 Low: High:

17727.5 - 18195 18820 - 19287.5

18112.5 - 18580 19205 - 19672.5 27.5 MHz

18 1120 Low: High:

17742 - 18181 18834- 19273

18127 - 18566 19219 – 19658 55 MHz

23 1232 Low: High:

21214 – 21786 22414 - 23002

21777 – 22330 23009 - 23562 28 MHz

23 1200 Low: High:

21225 - 21775 22425 - 22991

21825 - 22375 23025 – 23575 50 MHz

23 1008 Low: High:

22017 - 22576 23025 – 23585 28 MHz

26 1008 Low: High:

24563 - 24990 25571 – 25998

24983 - 25431 25991 - 26439 28 MHz

26 800 Low: High:

24270 – 24530 25070 – 25330 40 MHz

28 1008 Low: High:

27562.5 - 27989.5 28570.5 - 28997.5

27982.5 - 28430.5 28990.5 – 29438.5 28 MHz

32 812 Low: High:

31829 - 32214 32641 – 33026

32204 - 32557 33016 - 33369 28 MHz

38 1260 Low: High:

37072 – 37604 38332 - 38864

37632 - 38164 38892 - 39424 28 MHz

38 700 Low: High:

38625 - 38800 39325 - 39500

38850 - 39025 39550 - 39725

39075 - 39275 39775 - 39975 50 MHz

Page 125: Evolution Series Technical Description E

NGP\00330 Rev. E 2009-04-03 Evolution Series

123

Freq. band

[GHz]

Duplex Spacing

Tx. Freq: Sub-band 1 Sub-band 2 RF Channel

BW

Low: High:

8210,048 - 8233,372 8361,662 - 8384,986

8245 - 8273 8396,648 - 8427

~28 MHz

Sub-band 3 Sub-band 4 8.2-8.5 151,614/ 154

Low: High:

8273 - 8303,344 8427 - 8455

8315,006 - 8338,33 8466,62 - 8489,944

~28 MHz

Sub-band 1 Sub-band 2

Low: High:

8293 – 8307 8412 - 8429,5

8303,5 – 8321 8429,5 – 8447

~28 MHz

Sub-band 3 Sub-band 4 8.2-8.5 119/126

Low: High:

8328 – 8342 8454 – 8468

8345,5 – 8363 8468 - 8482

~28 MHz

Freq. band

[GHz]

Duplex Spacing

Tx. Freq: Sub-band 1 Sub-band 2

RF Channel

BW Low: High:

4415 – 4443 4515 - 4543

4515 - 4543 4556 - 4585 28 MHz

Sub-band 3 Sub-band 4 Sub-band 5

Low: High:

4615– 4629 4713.5 – 4729

4643 – 4657 4741.5 – 4757

4671 – 4685 4769.5 – 4785 28 MHz

Sub-band 6 Sub-band 7 Sub-band 8

4.4-5.0 98/100

Low: High:

4811.5 – 4822 4909.5 - 4920

4836 – 4850 4936 - 4948

4867.5 – 4885 4965.5 - 4985

Page 126: Evolution Series Technical Description E

This page is intentionally left blank

Page 127: Evolution Series Technical Description E

This page is intentionally left blank

Page 128: Evolution Series Technical Description E

Nera Networks AS

Kokstadveien 23PO Box 7090, N-5020 Bergen, NorwayTel: +47 55 22 51 00, Fax: +47 55 22 52 99Email: [email protected]

www.neraworld.com