exam_2008-10-31

  • Upload
    lieth-4

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 exam_2008-10-31

    1/5

    Multivariable calculus, 2008-10-31.

    Per-Sverre Svendsen, Tel.035 - 167 615/0709 - 398 526.

    Minimum requirements: Grade 5: 27p, 4: 21p, 3: 15p.You are allowed to use one unmarked, ordinary (non-mathematical) dictionary of your choice.No additional written material is allowed. Also, no calculators or any other electronic equipment.

    1. The function   f (x, y) =   ex2+2x+y2 is defined on the disk  D   =   {(x, y)  R2| x2 + 2x + y2 ≤ 0}.

    (a) Calculate the maximum directional derivative of  f (x, y) at the point (−12 ,  12).   (2p)(b) Calculate the absolute minimum and maximum values of   f (x, y) (on  D).   (3p)

    (c) Calculate

    ZZ D

    f (x, y) dx dy.   (3p)

    2. Find and classify all critical points of the function   g(x, y) =  x2y + y2 + 2xy.   (3p)

    3. Calculate

    ZZ A

    r x

    y dx dy, where  A  is bounded by the curves  x2y  = 1, y = 1 and   x = 4.   (3p)

    4. Calculate

    ZZ D

    (x2 − y2) ln(x + y) dx dy   ,   D   =   {(x, y)  R2| 0 ≤ x− y ≤ 1,   1 ≤ x + y ≤ 2}.   (3p)

    5. Calculate

    ZZZ B

    1p x2 + y2 + z2

    dx dy dz, where  B  is the solid sphere   x2 + y2 + z2 ≤ 3.   (3p)

    6. Find the absolute minimum and maximum values of  f (x, y) =  x2 + y2

    subject to the constraint 5x2 − 6xy + 5y2 = 4.   (5p)

    7. Calculate

    ZZZ K 

    zp 

    x2 + y2 dx dy dz   ,   K   =   {(x,y,z)     R3 |p 

    x2 + y2 ≤ z ≤ 2− x2 − y2 }.   (5p)

  • 8/18/2019 exam_2008-10-31

    2/5

  • 8/18/2019 exam_2008-10-31

    3/5

    Taylor Series

    Taylor’s formula for a function   f   :   R→ R

    f (a + h) =   f (a) +   f 0(a) h   +  f 00(a)

    2  h2 +   · · ·   =

    ∞Xn=0

    f (n)(a)

    n!  hn

    Table of particular expansions (a = 0, h → x)

    1.  1

    1− x   =∞Xk=0

    xk = 1 +   x   + x2 +   x3 + · · ·   (−1 < x

  • 8/18/2019 exam_2008-10-31

    4/5

    Double Integrals

    General substitution

    Assume a one-to-one mapping between a region  D  in the  xy-plane and a region  Duv   in the  uv-plane

    x   =   x(u, v)

    y   =   y(u, v)⇔

    u   =   u(x, y)

    v   =   v(x, y)

    Then

    ZZ D

    f (x, y) dxdy   =

    ZZ Duv

    f (x(u, v), y(u, v))∂ (x, y)∂ (u, v)

    dudv,

    with  ∂ (x, y)

    ∂ (u, v)  =

    xu   xv

    yu   yv

    6= 0.

    Polar coordinates

    x   =   r cos θ

    y   =   r sin θ

    ∂ (x, y)

    ∂ (r,θ)  =   r,

    ZZ D

    f (x, y) dxdy   =

    ZZ Drθ

    f (r cos θ, r sin θ) rdr dθ

    Triple Integrals

    General substitution

    As above assume a one-to-one mapping between points (x,y,z) in  ∆  and (u,v,w) in  ∆uvw.

    ZZ ∆

    f (x,y,z) dxdydz   =

    ZZ ∆uvw

    f (x(u,v,w), y(u,v,w), z(u,v,w)) ∂ (x,y,z)∂ (u,v,w)

    dudvdw,

    with  ∂ (x,y,z)

    ∂ (u,v,w) 6= 0

    Spherical coordinates

    x   =   ρ sinφ cos θ

    y   =   ρ sinφ sin θ

    z   =   ρ cosφ

    ∂ (x,y,z)

    ∂ (ρ, φ, θ)  =   ρ2 sinφ

    ZZZ ∆

    f (x,y,z) dxdydz   =

    ZZZ ∆ρφθ

    f (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφ dρ dφ dθ

  • 8/18/2019 exam_2008-10-31

    5/5

    Line Integrals

    Line integral with respect to arc length

    Given a parametrized curve   C  :   r(t) = (x(t), y(t), z(t)), a ≤ t ≤ b  and a function  f   :   R3 → R.

    Z C 

    f (x,y,z) ds   =

    b

    Z a

    f (x(t), y(t), z(t))p 

    (x0

    (t))2

    + (y0

    (t))2

    + (z0

    (t))2

    dt,   (ds =  d|r

    |)

    Surface Integrals

    General parametrized surface

    S  :   r   =   r(u, v) = (x(u, v), y(u, v), z(u, v)),   (u, v)  D.

    ZZ S 

    f (x,y,z) dS   =

    ZZ D

    f (r(u, v))∂ r∂ u ×  ∂ r

    ∂ v

    dudv

    Function graph   z  =  h(x, y)

    S  :   r   = (x,y,z) = (x,y,h(x, y)),   (x, y)  S xy.ZZ S 

    f (x,y,z) dS   =

    ZZ S xy

    f (x,y,h(x, y))q 

    1 + h2x + h2y dxdy