exam_2012-10-30

  • Upload
    lieth-4

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 exam_2012-10-30

    1/5

    Multivariable calculus, 2012-10-30.

    Per-Sverre Svendsen, Tel.035 - 16 76 15/0709 - 398 526.

    Minimum requirements: Grade 5: 27p, 4: 21p, 3: 15p.You are allowed to use one unmarked, ordinary (non-mathematical) dictionary of your choice.No additional written material is allowed. Also, no calculators or any other electronic equipment.

    1. Calculate the directional derivative of   f (x, y) = 

    8 − x2 − 2y2

    at the point  P  = (2, 1) and in the direction  v   = (1, 1).   (2p)

    2. The equation   ez + z − x2 − y2 = 1 implicitly defines a function   z  =  f (x, y)for which  f (0, 0) = 0. Show that

    (a) (0, 0) is a critical point,   (2p)

    (b)   f (0, 0) is a local minimum value.   (2p)

    3. Calculate

     

    D

    (x + y) ex2−y2 dx dy,   D   = {(x, y) ∈   R2 | 0 ≤ x + y ≤ 1,   0 ≤ x− y ≤ 1}.   (3p)

    4. Calculate

     

    A

    y x2 + y2

    dx dy,   A   = {(x, y) ∈   R2 | x2 + y2 ≤ y }.   (3p)

    5. Find the absolute minimum and maximum values of   g(x, y) =   x2 +   y2 −   2x

    on the set ∆ = {(x, y

    ) ∈  R

    2

    |x− 2 ≤

    y ≤ −

    x + 2

    , x≥ 0}  .   (5p)

    6. We are given a function   f (x ,y ,z) =   xy + z.

    (a) Find the absolute minimum and maximum values of  f subject to the constraint   x2 + y2 + z2 = 9.   (5p)

    (b) Calculate the surface integral

     

    f (x ,y ,z) dS ,

    where   S   = {(x ,y ,z) ∈   R3 | x2 + y2 + z2 = 9, x ≥ 0, y ≥ 0, z ≥ 0}.   (3p)

    7. Calculate the  average  value of   g(x ,y ,z) =  z

    x2 + y2 + 1 given by

    g   =  1

    V  K 

     

    g(x ,y ,z) dx dy dz, where  V  K  =

     

    dx dy dz, and

    K   = {(x ,y ,z) ∈   R3 | x2 + y2 ≤ 1,   0 ≤ z ≤ 

    2− x2 − y2}.   (5p)

  • 8/18/2019 exam_2012-10-30

    2/5

    Reference formulas and equations in Multivariable Calculus

    Trigonometry and Logarithms

    sin(x± y) = sin x cos y ± cos x sin y   sin x± sin y = 2 sin x ± y2

      cos x ∓ y2

    cos(x± y) = cos x cos y ∓ sin x sin y   cos x− cos y = −2sin x + y2

      sin x − y

    2

    tan(x± y) =   tan x ± tan y1∓ tan x tan y   cos x + cos y = 2cos

     x + y

    2  cos

     x − y2

    cot(x± y) =   cot x cot y ∓ 1± cot x + cot y   2sin x sin y = cos(x− y)− cos(x + y)

    sin2x = 2sin x cos x   2cos x cos y = cos(x− y) + cos(x + y)

    cos2x = cos2 x− sin2 x = 2cos2 x− 1 = 1− 2sin2 x   2sin x cos y  = sin(x− y) + sin(x + y)

    ln x + ln y = ln xy   ln x

    −ln y = ln

     x

    yln xa = a ln x   (x, y > 0)

    Standard limits

    limx→0+

    xα loga x = 0 (a > 1,  α > 0) limx→∞

    ax

    xα  = ∞   (a > 1)

    limx→0

    sin x

    x  = 1 lim

    x→∞

    loga x = ∞ (a > 1,  α > 0)

    limx→0

    ln(1 + x)

    x  = 1 lim

    n→∞

    an

    n!  = 0

    limx→0

    ex − 1

    x

      = 1

    Basic derivatives

    f (x)   f (x)

    xa axa−1

    ax ax ln a

    ln |x|   1x

    sin x   cos x

    cos x   − sin x

    tan x   1 + tan2 x =  1

    cos2 x

    arcsin x  1√ 

    1− x2arccos x   −   1√ 

    1− x2arctan x

      1

    1 + x2

    lnx + x2 + α

    1√ x2 + α

    12x√ x

    2

    + α +  α

    2  lnx +√ x

    2

    + α  

    x2

    + α

  • 8/18/2019 exam_2012-10-30

    3/5

    Taylor Series

    Taylor’s formula for a function   f   :   R→ R

    f (a + h) =   f (a) +   f (a) h   +  f (a)

    2  h2 + · · ·   =

    ∞n=0

    f (n)(a)

    n!  hn

    Table of particular expansions (a = 0, h → x)

    1.  1

    1− x   =∞k=0

    xk = 1 +   x   + x2 +   x3 + · · ·   (−1 < x

  • 8/18/2019 exam_2012-10-30

    4/5

    Double Integrals

    General substitution

    Assume a one-to-one mapping between a region  D  in the  xy-plane and a region  Duv   in the  uv -plane

    x   =   x(u, v)

    y   =   y(u, v)⇔

    u   =   u(x, y)

    v   =   v(x, y)

    Then

     

    D

    f (x, y) dxdy   =

     

    Duv

    f (x(u, v), y(u, v))∂ (x, y)

    ∂ (u, v)

    dudv,

    with  ∂ (x, y)

    ∂ (u, v)  =

    xu   xv

    yu   yv

    = 0.

    Polar coordinates

    x   =   r cos θ

    y   =   r sin θ

    ∂ (x, y)

    ∂ (r, θ)  =   r,

     

    D

    f (x, y) dxdy   =

     

    Drθ

    f (r cos θ, r sin θ) rdr dθ

    Triple Integrals

    General substitution

    As above assume a one-to-one mapping between points (x ,y ,z) in ∆ and (u ,v ,w) in ∆uvw.

     

    f (x ,y ,z) dxdydz   =

     

    ∆uvw

    f (x(u ,v ,w), y(u ,v ,w), z(u ,v ,w)) ∂ (x ,y ,z)

    ∂ (u ,v ,w)

    dudvdw,

    with  ∂ (x ,y ,z)

    ∂ (u ,v ,w) = 0

    Spherical coordinates

    x   =   ρ sin φ cos θ

    y   =   ρ sin φ sin θ

    z   =   ρ cos φ

    ∂ (x ,y ,z)

    ∂ (ρ,φ,θ)  =   ρ2 sin φ

     

    f (x ,y ,z) dxdydz   =

     

    ∆ρφθ

    f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) ρ2 sin φ dρ dφ dθ

  • 8/18/2019 exam_2012-10-30

    5/5

    Line Integrals

    Tangent line integral

    Given a parametrized curve   C  :   r(t) = (x(t), y(t), z(t)), a ≤ t ≤ b  and a vector field   F    = (P,Q,R).

     C 

     · dr

      =

    b

     a

    (P,Q,R) · (x

    (t), y

    (t), z

    (t)) dt   =

    b

     a

    P x

    (t) +   Q y

    (t) +   R z

    (t)

    dt

    Line integral with respect to arc length

    Assume a curve  C  as above and a function  f   :   R3 → R. 

    f (x ,y ,z) ds   =

    b a

    f (x(t), y(t), z(t)) 

    (x(t))2 + (y(t))2 + (z(t))2 dt,   (ds =  d|r|)

    Green’s theorem

    Given a plane, closed, positively oriented curve  C   that encloses a region  D  and a field  F    = (P, Q).

     

    F  · dr   = 

    D

    ∂Q∂x −   ∂P 

    ∂y

    dxdy

    Surface Integrals

    General parametrized surface

    S  :   r   =   r(u, v) = (x(u, v), y(u, v), z(u, v)),   (u, v) ∈   D. 

    f (x ,y ,z) dS   =

     

    D

    f (r(u, v))∂ r

    ∂u ×  ∂ r

    ∂v

    dudv

    Parametrization of (parts of) the surface   x2 + y2 + z2 = R2 (R > 0).

    S  :  r   = (x ,y ,z) = (R sin φ cos θ, R sin φ sin θ, R cos φ),   (φ, θ) ∈ D. 

    f (x ,y ,z) dS   =

     

    D

    f (r(φ, θ))∂ r

    ∂φ ×  ∂ r

    ∂θ

    dφ dθ   = 

    D

    f (r(φ, θ)) R2 sin φ dφ dθ.

    Function graph   z  =  h(x, y).

    S  :   r   = (x ,y ,z) = (x ,y ,h(x, y)),   (x, y) ∈   S xy. 

    f (x ,y ,z) dS   =

     

    S xy

    f (x ,y ,h(x, y)) 

    1 + h2x + h2y dxdy

    Gauss’ theorem

    Given a space region  K  with (closed) surface boundary  S  and a field  F .n is the  outer  unit normal vector of the surface.

     

    F  · n dS   = 

    ∇ · F  dx dy dz.