30
SEDIMENTOLOGY AND DEPOSITIONAL ENVIRONMENT OF THE WADESBORO SUB BASIN, EASTERN PIEDMONT, NORTH CAROLINA Seth Brazell

Example Research Project Proposal

Embed Size (px)

Citation preview

SEDIMENTOLOGY  AND  DEPOSITIONAL  ENVIRONMENT  OF  THE  WADESBORO  SUB-­‐BASIN,  EASTERN  PIEDMONT,  NORTH  CAROLINA

Seth  Brazell

I.  INTRODUCTION

Background

Rift   basins   form   under   extensional   tectonic   regimes   and   contain   valuable  

repositories   of   sediment   that   record   signiOicant   episodes   of   geologic   history  

(LeTourneau  and  Olsen  2003;  Schlische  1993).  The  timing  and  rates  of  rifting  can  be  

constrained   by   documenting   the   age,   thickness,   and   stratigraphy   of   rift   basin  

sequences   (Randazzo   et   al.   1970,   Tiercelin   1990).   The   Mesozoic   rift   basins   of  

eastern  North   America   provide   valuable   sedimentary   records   for   the   breakup   of  

Pangea   in  Triassic   and   Jurassic   times.   In   addition,   these   rift   basins   are   known   to  

contain  valuable  economic   resources   including  oil,   coal,   natural   gas,   uranium,   and  

materials   used   for   brick-­‐making   (Schlische   1993;   Olsen   et   al.   1996,   Olsen   et   al.  

1991).  Further  study  is  needed  to  constrain  the  geometries  of  extensional  basins  so  

that   accurate   Oilling  models   of   the   basins   can   be   developed   (Schlische   and  Olsen  

1990).

The  following  proposed  research  project  focuses  on  a  Mesozoic  rift  basin  

located  in  the  Piedmont  physiographic  province  of  North  Carolina.  Rift  basins  

located  in  North  Carolina  include  the  Dan  River  Basin,  the  Deep  River  Group  

(Durham,  Sanford,  and  Wadesboro  sub-­‐basins)  and  small  outliers,  the  Davie  County  

Basin  and  the  Ellerbe  basin.  This  study  focuses  on  the  southernmost  exposed  sub-­‐

basin  of  the  Deep  River  Group,  the  Wadesboro  basin,  which  covers  portions  of  

Union,  Anson,  Richmond,  and  Montgomery  Counties  and  a  portion  crosses  into  

South  Carolina  (Figure  1).  

Figure  1:  Location  map  of  research  project  9ield  site  highlighting  the  Wadesboro-­‐sub-­‐basin  and  clay  pit  in  Anson  County.  (Modi9ied  from  Olsen  et.  al,  1996  and  Randazzo,  1970)

  Few  studies  have  examined  the  geologic  history  of  the  Wadesboro  sub-­‐basin,  

however,  extensive  studies  have  been  conducted  in  the  adjacent  Sanford  and  

Durham  sub-­‐basins  of  the  Deep  River  Group  (Olsen  et.  al  1996,  Reid  and  Milici  

2008)  and  detailed  geologic  maps  of  the  northern  two  members  of  the  Deep  River  

Group  have  been  produced.  Recent  work  in  the  Sanford  and  Durham  sub-­‐basins  

have  identiOied  the  presence  of  natural  gas  which  has  spurred  the  need  for  a  

comprehensive  study  of  the  Deep  River  and  Dan  River  Groups  for  their  economic  

resources  by  differentiating  the  bedrock  geology  and  identifying  the  depositional  

history  of  the  sub-­‐basin.  

In  order  to  reconstruct  the  geologic  history  of  the  Wadesboro  sub-­‐basin  and  

assess  its  economic  potential,  a  detailed  study,  including  petrographic,  stratigraphic,  

and  structural  analyses,   is   proposed  here.   Previous  studies  of  the  Wadesboro   sub-­‐

basin  have  been  limited  in  extent  by  comparison  to  other  basins  within  the  Newark  

Supergroup   (Clark   et   al.   2001).   Since   1970   there   have   been   few   studies   of   the  

Wadesboro   sub-­‐basin;   furthermore,   detailed  geologic  mapping   for   the  Wadesboro  

sub-­‐basin  is  absent,  and  stratigraphic  units  are  only  generally  deOined  (Randazzo  et  

al.   1970).   This   study   proposes   to   document   the   geometry,   sedimentology,  

depositional   environments   and   economic   potential   of   the   central   portion   of   the  

Wadesboro   sub-­‐basin.   Central   to   this   study   is   the   detailed   study   of   the  

sedimentology,  stratigraphy  and  provenance  of  87  meters  of  exposure  in  a  clay  pit  

that  is   located  in  the  geographic  center  of  the  Wadesboro  sub-­‐basin.  The  facies  and  

stratigraphy   identiOied  from  detailed  work  at  the  clay  pit  will  be  extended  to  a  map  

area  comprising  the  southern-­‐central  portion  of  the  Wadesboro  sub-­‐basin,  which  is  

typiOied  by  limited  and  poor  surface  exposures.

This  project  aims  to  Oill  a  gap  in  knowledge  concerning  the  geologic  history  of  

the  Wadesboro   sub-­‐basin.  This  will   be   accomplished  by   a  combination   of  detailed  

sedimentologic  logging,  facies  analysis,  petrographic  analysis,  and  geologic  mapping.  

Literature  Review

Pangea  began  to  break  up  during  the  Mesozoic  period  approximately  200Ma.  

Extensional   forces   produced   by   this   rifting   event   created   a   series   of   segmented  

faults   along   the   eastern   margin   of   the   North   American   continent   that   paralleled  

Paleozoic   contractional   structures   and   faults   that   were   activated   during   the  

Appalachian   orogen   and   where   extensional   forces   were   at   a   high   angle   to   the  

preexisting   structures   (Schlische   1993).     These   segmented   faults   produced  

numerous   northeast-­‐southwest   trending  half-­‐graben  basins  known  as   the  Newark  

Supergroup  that   are  present,   exposed  or  buried,   from  Nova-­‐Scotia   to   Florida.   The  

highest   displacement   along   the   border   fault   systems   occur   in   the   center   of   the  

basins  with  decreasing  displacement   toward  the  ends  of   the  basins.   As   the  border  

fault   systems  grew  during  extension   the  basins   likely  widened  and  linked  to  other  

once  isolated  basins.  Most  of  the  exposed  Mesozoic  basins  experienced  an  incipient  

period   of   Oluvial   sedimentation   that   was   replaced   by   lacustrine   sedimentation  

(Schlische  1993).  

Most  extensional  basin  Oilling  models  have  focused  on  tectonics  (differential  

subsidence)   and   climate   Oluctuations   as   the   mechanisms   controlling   depositional  

environments.   Other  models   have   attributed  transitions   from   Oluvial   to   lacustrine  

environments   to   increases   or   decreases   in   sediment   supply   (Lambiase   and  

Bosworth,  1995),  however,  Schlische  and  Olsen  have  proposed  a  simple  model  that  

assumes  constant  subsidence  and  inputs  of  sediment  and  water,  a  model  that  yields  

results   consistent   with   previous   theoretical   models   and   observed   basin   Oilling  

(Schlische   and   Olsen   1990,   Tiercelin   1990).   The   Schlische   and   Olsen   model  

prediction   suggests   Oluvial   and   alluvial   deposition   during   initial   subsidence,  

processes  indicative  of  open-­‐basin  conditions,  followed  by  a  transition  to   lacustrine  

deposition  as   the  basin  grows.  During  lacustrine  deposition  the  basin  continues  to  

grow  and  transitions   from  an  open  to   a  closed-­‐basin  environment,  which  results   in  

deep  lacustrine  deposition  followed  by  a  further  subsidence,  a  wider  and  shallower  

basin,   and   a   decrease   in   lacustrine   deposition   with   a   Oinal   return   to   Oluvial  

deposition  (Schlische  and  Olsen,  1990).  The  Oilling  model  proposed  by  Schlische  and  

Olsen   makes   simple   assumptions   that   do   not   reOlect   the   obvious   complexities   of  

many   extensional   basins   and,   furthermore,   this   model   assumes   full-­‐graben   basin  

architecture  though  evidence  is  available  to  suggest  a  correlation  of  the  Oilling  model  

for  half-­‐graben  basins.  

Quantitatively  analyzing  basin  sediments  for  changing  provenance  is  another  

aspect   of   this   project.   Provenance   analysis   is   never   straight   forward,   however,  

advances   have  been  made  in  the   last  few   decades.   Large  concentrations   of  zircon,  

tourmaline,   and   rutile   and   Zr/Sc   ratios   have   been   used   to   suggest   sediment  

recycling  and  may   be  used  to   suggest   interbasin  sediment   transport   (Huert,   1962  

and   McLennan   et   al.,   1993).   SEM,   CL,   and   ICP-­‐MS   have   also   been   used   as  

microscopic-­‐morphological  techniques  to  constrain  protolith  characteristics  (Weltje  

and  von  Eynatten,  2004)

Of   the   9  major   basins   the  Deep  River   basin   is   the   southern  most   exposed  

basin  in  North  America.  The  Deep  River  Basin  is  sub  divided  into   three  basins,   the  

Durham  sub-­‐basin,  Sanford  sub-­‐basin,   and  the  Wadesboro  sub-­‐basin  from  north  to  

south,   respectively.   The  three  basins  are  structurally  separated  by  cross   structures  

with  the  Durham  and  Sanford  sub-­‐basins  separated  by  the  Colon  cross  structure  and  

the  Sanford  and  Wadesboro  sub-­‐basins  separated  by  the  Pekin  cross-­‐structure.  The  

Durham  and  Sanford  sub-­‐basins  are  differentiated  by  the  presence  of  dark,  organic  

rich  strata   that  is  not  present   or  is  unexposed  in  the  Wadesboro   sub-­‐basin.  Of  the  

three   sub-­‐basins,   the  Wadesboro   sub-­‐basin   is   the   least   studied   and   much   of   the  

strata  remain  undifferentiated.

  Studies   that   have  been  conducted   in   the  Wadesboro   sub-­‐basin  (Reinemund  

1955,   Zablocki   1959,   Randazzo   et   al.   1970,   Clark   et.   al   2001,   and  Reid  and  Milici  

2008,)   lack   fundamental   context   to   cohesively   address   important   economic  

questions  of  today.  The  development  of  a  geologic   framework   including  a  detailed  

bedrock  map,  and  understanding  of  basin  depositional  history  and  the  identiOication  

of   formations   is   needed   to   assess   the  economic   potential   of   the   Wadesboro   sub-­‐

basin.  

 

II.  PROBLEM  STATEMENT

Few  studies  of  the  Wadesboro  sub-­‐basin  exist  that  examine  the  extent  of  lithologies  

present   in  the  basin  and  their  depositional  environments.  Coal  and  other  economic  

deposits   have   been   identiOied   in   adjacent   basins   within   the   Deep   River   Group  

(Sanford  and  Durham  sub-­‐basins),  however  no  such  deposits  have  been  identiOied  in  

the  Wadesboro  sub-­‐basin.  

III.  HYPOTHESES

The  hypotheses  to  be  tested  include:  1)  whether  depositional  environments  such  as  

alluvial   fans,  axial  Oluvial  rivers,  and  lakes  can  be  recognized  in  the  Wadesboro  sub-­‐

basin;   2)   are   the   depositional   environments   tectonically   controlled;   3)   did  

sedimentary   provenance  change  over   time;   and  4)  did  conditions   exist   for  natural  

gas   production?   This   study   will   document   the   sedimentology   and   depositional  

environments   of   the   Wadesboro   sub-­‐basin.   This   information   will   be   used   to  

constrain  the  tectonic  controls  on  basin  evolution  and  to  assess  natural  gas  potential  

of  the  Wadesboro  sub-­‐basin.

IV.  METHODS

This  project  aims  to   Oill   a  gap   in  knowledge   concerning   the  geologic  history   of  the  

Wadesboro   sub-­‐basin.   This   will   be   accomplished   by   a   combination   of   detailed  

sedimentologic  logging,   facies  analysis,  petrography,  and  geologic  mapping.  Each  of  

the  hypotheses  can  be  tested  by  this  approach.  

Hypothesis   1:   Sedimentologic   logging   and   facies   analysis   should   provide  a  

detailed  record  of  sedimentary  environments  that  existed  during  rifting  of  the  basin.  

Interpretation  of  the  various  depositional  environments  will  depend  on  comparison  

of   sedimentologic   logs   from   the   Wadesboro   sub-­‐basin   with   established   facies  

models   (e.g.   Cant   and   Walker   1978)   and   well-­‐documented   sections   from   other  

Triassic  rift  basins  (e.g.  Olsen  et  al.  1996).  To  address  this  problem,  a  detailed  study  

of  a  brick  quarry  in  Anson  County,  NC,  has   been  initiated.  The  facies  established  in  

the  clay  pit  will  be  used  to  extend  a  geologic  map  to  those  portions  of  the  basin  that  

lack  good  exposures.  

Hypothesis  2:  Geologic  mapping  of  the  central  portion  of  the  Wadesboro  sub-­‐

basin   (an   area   equivalent   to   a   standard   USGS   7.5’   quadrangle)   will   provide  

information  about  thicknesses,   attitude  and  distribution  of  stratigraphic  units.  This  

map  will   identify   faults,   joints,   and  possibly  folds  within  the  sub-­‐basin.  Progressive  

changes   in   dip   could   provide   information   about   the   amount   and   timing   of   fault  

motion  on  the  margins  of  the  rift  basin.  The  distribution  of  Oluvial   channel  deposits  

could  provide  information  about   the  fault  control  on  the  basin  (e.g.   Alexander  and  

Leeder  1987).  

Hypothesis  3:  Petrographic  analysis  of  sandstones  could  provide  information  

about  provenance  and  tectonic  setting  (e.g.  Dickinson  1985).   Petrographic  analysis  

of  major  constituents  could  be  supplemented  by  heavy  mineral  analyses  using  both  

heavy  liquids  and  magnetic  separation  to  segregate  the  heavy  mineral  assemblages.  

Mineralogy  of  the  mudstones  will  be  analyzed  using  X-­‐ray  diffraction.  

Hypothesis   4:   The   facies   analysis   and   geologic   mapping   could   provide  

information  about   the  thickness   and  lateral  extent  of  organic-­‐rich  lacustrine  facies.  

Combined  with  estimates  of  total  organic  content  (TOC)  and  depth  of  burial  derived  

from   vitrinite   reOlectance   data,   it   may   be   possible   to   establish  whether   suitable  

sediments   have   entered   the   hydrocarbon   window.   Natural   gas   and   other  

hydrocarbon  resources  have  been  identiOied  in  the  adjacent  Sanford  sub-­‐basin  of  the  

Deep  River  group  (Reid  and  Milici  2008).

This  study  proposes   to  document  the  geometry,   sedimentology,  depositional  

environments  and  economic   potential   of  the  Wadesboro   sub-­‐basin.   Central   to   this  

study  is  the  detailed  study  of  the  sedimentology,  stratigraphy  and  provenance  of  87  

meters  of  exposure  in  a  brick  quarry   that  is   located  in  the  geographic  center  of  the  

Wadesboro   sub-­‐basin.   The   facies   and   stratigraphy   developed   from   the   detailed  

work  at  that  quarry  will  be  extended  to   a  map  area  comprising  the  southern  half  of  

the   Wadesboro   sub-­‐basin   which   is   generally   characterized   by   limited   and   poor  

exposures.

V.  PRELIMINARY  RESULTS

  Fieldwork  in  a  clay  pit  in  Anson  County,  N.C.  has  been  conducted  in  which  87  

meters   of   continuous   exposure   was   sedimentologically   described,   sampled,   and  

logged  (Appendix  A).  This  stratigraphic  work  has  identiOied  7  distinct  lithofacies:  1)  

a  cyclic  Oining  upward  facies  86.7-­‐72.0m;  2)  an  interbedded  sand  and  siltstone  facies  

72.0-­‐61.4m;   3)   a   channelized   deposit   61.4-­‐54.5m;   4)   a  massive   mudstone   facies  

54.5-­‐42.6m;   5)   an   interbedded   mudstone,   siltstone,   and   sandstone   facies  

42.6-­‐23.0m;  6)  an  interbedded  mudstone  and  siltstone  with  alternating  gray  and  red  

beds  23.0-­‐1.7m;  and  7)  an  organic   rich  gray  shale   in  the   lowest  exposed  section  of  

the  pit  located  at  1.7-­‐0m  with  a  base  not  seen.

  Facies   1   contains   7   cyclic   Oining   upward   sequences,   possibly   climactically  

inOluenced,   that   grade   from   Oine   sandstone   to   siltstone   and   is   interpreted   as   a  

proximal   Olood   plain   facies   as   crevasse   splays   were   accreted   onto   a   Olood   plain  

dominated  by  silt  and  clay.    Facies  2  is  not  obviously  cyclic  but  does  display  similar  

Oining  upward  sequences  as  identiOied  in  facies  1.    Facies  2  contains  coarser  grained  

sandstones   that   generally   Oine   upward,   interbedded   with   siltstones   and   is  

interpreted  as  a  proximal  Olood  plain  facies  when  the  channel  was  closer  than  facies  

1.  Facies  3  is   interpreted  as  a  channelized  Oluvial  deposit  reaching  7m  at  its  thickest  

extent  and  spanning  ~50m  laterally  that  has  eroded  into  facies  4  and  contains  very  

coarse   grained   to   granular   sandstones   that   Oine   upward   to   medium   sandstone.  

Trough   cross   stratiOication   is   visible   in   the   deposit   and   a   paleo-­‐Olow   direction   of  

azimuth  190°  was  measured  suggesting  axial  basin  Olow.   Facies  4  is  a  massive,   red,  

silty-­‐mudstone  with  numerous  crosscutting  veins   of  calcite  .5-­‐2cm   thick  with  very  

few   thin   beds   of   siltstone   and   very   Oine   sandstone   5-­‐10cm   thick.   This   facies   is  

interpreted   as   a   distal   Oloodplain   facies   as   the  dominant   grain  size   is   silt   and  clay  

and  thin  beds  of  siltstone  and  sandstone  that  may  have  been  deposited  during  large  

Olood  events.   The   bright   red   color   and  mottled   texture   of   this   facies   suggests   an  

oxidizing  environment  and  a  vegetated  surface,  however,  the  presence  of  paleosols  

was   not   observed   in   the   Oield.     Facies   5   contains   siltstone   beds   1-­‐2m   thick  

interbedded   with   Oine   to   medium   sandstones   and   small-­‐scale   coarsening   upward  

sequence  with  cross   trough   laminations   and  is   interpreted  as   a   Oluvial-­‐dominated  

delta.   Facies   6   represents   a   departure   from   Oluvial   dominated   depositional  

environments  and  a  transition  to  shallow   lacustrine  facies.  This  facies   is  comprised  

of   siltstone  and  silty-­‐mudstones   that   alternate   color   from  gray   to   red.   This   cyclic  

color  change  is  interpreted  as  a  function  of  oxidizing  and  reducing  environment  as  a  

lacustrine   transgression   and   regression.   Desiccation   cracks   at   the   tops   of   gray  

siltstone  beds  evidence  periods  of  aridity  and  variable  lake  levels,  which  allowed  the  

subsequently   deposited  sediments  to  be  oxidized.    Facies   7   is   partially  exposed   in  

the  clay  pit  and  is  comprised  of  gray  shale  and  is  interpreted  as  lacustrine  in  origin.    

This  bed  is  of  interest  for  its  potential  to  produce  natural  gas,  however,  initial  Total  

Organic   Carbon   (TOC)   analysis   does   not   support   this   view.     There   is   anecdotal  

evidence   of   numerous   vertebrate   fossils   in   facies   7,   however,   none   were   found  

during  preliminary  Oield  work.  

  Additional   measured   section   of   an   outcrop   on   the   CSX   rail   line   near  

Russellville  at  Bogan  Cut  Road  was   logged.   The  Bogan  Cut  outcrop  is  composed  of  

channelized  deposits   of  gray,  coarse   to  medium  grain  lithic   arenite  sandstone  with  

lenses  of  dark  gray,  Oine  grained  low-­‐Olow  deposits  and  alternating  beds  of  red,  very  

Oine  sandstone  overbank  deposits.  This  outcrop  was  Oirst  described  by  Russell  1892  

and   is   described   as   a   normal   fault   dominated   environment,   however,   this  

interpretation  is  rejected  in  place  of  a  Oluvial  dominated  environment  with  evidence  

of  only  1  normal  fault  with  a  throw  of  ~1.5m.   The  measured  section  for  Bogan  Cut  

can  be  found  in  Appendix  B.

  Preliminary  petrographic  analysis  of  selected  sandstones  within  the  clay  pit  

has  been  conducted  by  examining  thin  sections  of  sandstone  units  within  the  pit  and  

by  preforming  XRD  analysis   of  those   thin  sections.  Dominant  mineralogies   include  

quartz,   feldspar,  and  calcite  (a  likely  precipitating  cement).   Data  from  this  analysis  

can  be  found  in  Appendix  C.

  Additional   Oieldwork   has   been  conducted   in   the  basin  surrounding  the  clay  

pit   by   examining   roadside   outcrops   and   those   along   rail   lines.   This   preliminary  

Oieldwork  will   contribute  to   a  detailed  bedrock  geologic  map  of  the  basin  with  the  

clay  pit  at   the  center  point.  Outcrop  lithologies,  bed  attitude  (where  available),  and  

location  have  been  digitally  mapped  (Appendix  D).   Sandstone   samples   from  basin  

outcrops,  as  well  as  samples  from  within  the  clay  pit,  have  been  processed  using  the  

Frantz   magnetic   barrier   separator   to   determine   weight   percentages   of   magnetic  

mineral   facies   (Table   1),   which   will   be   used   to   infer   changes   in   sediment  

provenance.    

Magnetic  Mineral  Facies MineralogyFacies  1  –  Non-­‐Magnetic Quarts,   Feldspar,   Calcite,   Zircon,   Rutile,  

Apatite,  Corundum,  Fluorite,  SillimaniteFacies  2  –  Flux  0.40  Amp Garnet,   Ilmenite,   Chromite,   Chloritoid,  

OlivineFacies  3  –  Flux  0.80  Amp Biotite,  Hornblende,   Hypersthene,  Augite,  

Actinolite,  Staurolite,  Epidote,  ChloriteFacies  4  –  Flux  1.50  Amp Muscovite,   Spinel,   Enstatite,   Tourmaline,  

Clinozosite,  Diopside,  TremoliteTable  1.  Magnetic  mineral  facies  assemblages,  from  Rosenblum,  1958)

Magnetic  separation  data  has  been  arranged  perpendicular   to   basin   strike  (NW  to  

SE)  in  order  to  capture  changes  in  mineralogy  over  time  that  may  indicate  changes  

in  sediment  provenance  (Figure  2).

Figure   2.   Cross   sectional   magnetic   mineral   facies   distribution   within   Wadesboro   sub-­‐basin,  perpendicular  to  basin  strike  by  wt.%.

  The   data   shows   three   areas   in   the   basin   with   a   higher   percentage   of   magnetic  

minerals.   Little   correlation   can   be   discerned   from   the   current,   small   data   set,  

furthermore,   additional   analysis   will   be   conducted   to   measure   the   effects   of  

weathering   on   the   magnetic   susceptibility   of   minerals   within   a   lithology.   The  

magnetic  data  collected  from  the  clay  pit  samples  sandstones  over  the  extent  of  the  

exposure   includes  the  interpreted  lacustrine  and  Oluvial   facies  and  are  identiOied  in  

Appendix  A  (Figure  3).    

Figure  3.  Magnetic  mineral  facies  distribution  up   section   in  a  clay  pit  in  Anson  County,  N.C.  Location  of  samples  noted  in  Appendix  A.

The  clap  pit  samples  contained  anomalously  higher  weight  percentages  of  magnetic  

minerals  than  were  identiOied  in  samples  from  the  surrounding  basin.  This  may  be  a  

result  of  FexOx  coating  mineral  grains  freshly  exposed  in  the  pit  than  may  be  leached  

with  continued  surface  exposure.  

VI.  TIMELINE

Conducting  Research  (Summer  2012,  by  week)                                                                    1          2          3          4          5          6          7        8        9        10      11      12        13        14        15

Contact  Land  Owners            X          X          XComplete  Field  Work                                                          X          X          X          X        X        XLab  Analysis                            X          X            X            X            X              X

Conducting  Research  (Fall  2012,  by  week)                                                                    1        2        3      4      5        6        7        8      9      10  11    12      13      14      15      16        17

Conduct  Research  for  Study                  X        X        X      X      X      X        X        X        X        X        X        X            X          X          X          X            XLab  Analysis                  X        X        X      X      X      X        X        X        X        X        X        X            X          X          X          X            XAnalyze  data  from  research                          X        X            X        X            X

Writing  and  Defending  Dissertation  (Spring  2013,  by  week)                                                                    1        2        3        4      5      6        7        8      9      10    11    12      13      14      15      16        17

Outline  Dissertation                  X          Update  Proposal  ChaptersFor  Dissertation                            X          X      X      X      X        Write  Results  Chapter                  X      X      X      X      X        X      XWrite  Summary  and

Conclusions  Chapter                          X      X        X      X        X          X          XPolish  Writing              X          X          X            XDefend  Dissertation                                    X            X            XMinor  Revisions                            X            XGraduate                                        X

VII.  REFERENCES

Clark, T.W., Gore, P.J., and Watson, M.E., 2001, Depositional and structural framework of the Deep River Triassic basin, North Carolina, in Hoffman, C.W., ed. Field Trip Guidebook for the 50th Annual Meeting of the Southeastern Section, Geological Society of America, Raleigh, North Carolina, p. 27-50.

Dickinson, W.D., 1985, Interpreting provenance relations from detrital modes of sandstone, in Zuffa, G.G., editor, Provenance of Arenites: Dordrecht, Holland, Reidel p. 333-361

Hubert, J.F., 1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sediment and Petrology, v.32, p. 440-450

Lambiase, J. J., and Bosworth, W., 1995, Structural controls on sedimentation in continental rifts, in Lambiase, J.J., ed., Hydrocarbon habitat in rift basins: Geological Society Special Publication 80, p. 117-144.

Letourneau, P.M., and Olsen, P.E. (Eds.), 2003, The Great Rift Valleys of Pangea in Eastern North America, Volume 1: Tectonics, Structure, and Volcanism: Columbia University Press.

McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments. Special Paper, Geologic Society of America, v. 284, p.21-40.

Olsen, P.E., Froelich, A.J., Daniels, D.L., Smoot, J.P., and Gore, P.W., 1991, The Geology of the Carolinas: North,, p. 142-170.

Olsen, P.E., Kent, D.V., Cornet, B., Witte, W.K., and Schlische, R.W., 1996, High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America): Geological Society of America Bulletin, v. 108, no. 1, p. 40-77, doi: 10.1130/0016-7606(1996)108<0040:HRSOTN>2.3.CO;2.

Randazzo, A.F., Swe, W., and Wheeler, W.H., 1970, A study of tectonic influence on triassic sedimentation - the Wadesboro Basin, Central Piedmont: Journal of Sedimentary Petrology, v. 40, no. 3, p. 998-1006.

Reid, B.J.C., Milici, R.C., and Survey, U.S.G., 2008, Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins , North Carolina: North,.

Reinemund, J.A., 1955, Geology of the Deep River coal field, North Carolina: U.S. Geological Survey Professional Paper 246, 159 p.

Schlische, R.W., 1993, TRIASSIC-JURASSIC CONTINENTAL RIFT SYSTEM , EASTERN NORTH AMERICA: America, v. 12, no. 4, p. 1026-1042.

Schlische, R.W., and Olsen, P.E., 1990, Quantitative filling model for continental extensional basins with applications to Early Mesozoic rifts of Eastern North America: The Journal of Geology, v. 98, no. 2, p. 135-155.

Tiercelin, J.J., 1990, Rift-basin sedimentation  : responses to climate , tectonism and volcanism. Examples of the East African Rift: Journal of African Earth Sciences, v. 10, no. 1, p. 283-305.

Weltje, G.J. & von Eynatten, H. 2004, Quantitative provenance analysis of sediments: review and outlook.- Sedimentary Geology, v.171, p. 1-11

Zablocki, F.S., 1959, A gravity study of the Deep River-Wadesboro Triassic basin of North Carolina: (Unpubl. MS Thesis) University of North Carolina at Chapel Hill, North Carolina, 44 p.

VIII.  APPENDIX  A  –  Anson  County  Clay  Pit  Stratigraphic  Column

 

 

 

 

 

 

IX.  APPENDIX  B  –  Bogan  Cut  Stratigraphic  Column

 

 

 

X.  APPENDIX  C  –  Anson  County  Clay  Pit  XRD  Analysis

TBQ00-­‐02

Tbq  00-­‐2Tbq  00-­‐2Tbq  00-­‐2Phase Mineral Figure  of  MeritMajor Quartz 1.9Major Albite-­‐high 6Minor Quartz 3.3Minor Albite-­‐high 6Trace Quartz 10.2  

TBQ01-­‐05

Tbq  01-­‐05Tbq  01-­‐05Tbq  01-­‐05Phase Mineral Figure  of  MeritMajor Quartz 1.4Major Calcite 4.3Major Albite-­‐high 9.4Minor Albite-­‐low 5.7Minor Calcite 5.9Minor Quartz 6.6Minor Cuprite 7Minor Cristolobite 7.4Minor Wurtzite 8.3Minor Corundum 9.4Trace Albite-­‐high 4.6Trace Calcite 6.3Trace Corundum 6.7Trace Wurtzite 7.4Trace Cobalite 9.8

TBQ  03-­‐10.5

Tbq3-­‐10.5Tbq3-­‐10.5Tbq3-­‐10.5Phase Mineral Figure  of  MeritMajor Quartz 2.8Major Albite-­‐low 6Major Cristobolite(low) 6.1Major Topaz 8.2

Major Calcite 9.4Minor Calcite 5.4Minor Quartz 6.1Minor Corundum 7.1Minor Chalcopyrite 7.5Minor Cristobolite(low) 7.7Minor Albite-­‐low 7.9Trace Calcite 7.4Trace Quartz 8.4Trace Albite-­‐low 9.6Trace Cristobolite(low) 9.7

TBQ05-­‐12.1

Tbq  05-­‐12.1Tbq  05-­‐12.1Tbq  05-­‐12.1Phase Mineral Figure  of  MeritMajor Quartz 1Major Albite-­‐high 6Major Analcime 8.6Major Calcite 9.5Minor Quartz 3.9Minor Cuprite 6.4Minor Albite 7.4Minor Analcime 10Trace N/a <10.0

TBQ06-­‐1.1

Tbq  06-­‐1.1Tbq  06-­‐1.1Tbq  06-­‐1.1Phase Mineral Figure  of  MeritMajor Quartz 1.9Major Analcime   8.3Major Cristobolite(low) 9.2Minor Quartz 3.7Minor Albite-­‐low 5.7Minor Calcite 8.1Minor Cuprite 9.1Trace Lime 6.1Trace Beryll 7.7Trace Silicon 9.4

TBQ  07-­‐03

Tbq  07-­‐03Tbq  07-­‐03Tbq  07-­‐03Phase Mineral Figure  of  MeritMajor Quartz 1.8Major Albite-­‐low 7.3Major Calcite 9.8Minor Calcite 6Minor Quartz 1.8Minor Cristobolite(low) 7.3Minor Albite-­‐low 3.6Trace Calcite 2.9Trace Lime 6Trace Albite-­‐low 2.7Trace Halite   8.8

XI.  APPENDIX  D  –  Outcrop  map  of  southern-­‐central  portion  of  Wadesboro  sub-­‐basin