25
Examples 1

Examples - BIU

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Examples - BIU

Examples

1

Page 2: Examples - BIU

2

History of the displacement vector D

(1791 โ€“1867)

Michael Faraday

Q

I

Q

Insulator

I?

Conducting current Displacement current

โ€ข Faraday tried many types of insulators but never prevented the displacement of charge

โ€ข The charge displaced was always Q, equal to that placed on the left plate.โ€ข A sketch of the original system used by Faraday:

gold-leaf electroscope

Page 3: Examples - BIU

3

The relation between ๐œ–0, ๐œ–, ๐œ–๐‘Ÿ ๐ท,๐ธ in Linear-Isotropic-Homogeneous medium

00 0 0

0

0 0 0 0

N N

S S S

N N N

S S

qE ds E ds E ds q

E D E D D ds q D ds divD

๐‘ช๐’Žโˆ’๐Ÿ

๐ธ๐‘œ =๐œŽ0,๐‘“๐œ€0+

++++++++++

+++++++++++

-------------

-

+

+

+

-

-

-

๐‘ฌ๐‘ท ฮค= ๐ˆ ๐‘ท ๐œบ๐ŸŽ

+๐ˆ ๐ŸŽ,๐’‡ โˆ’๐ˆ ๐ŸŽ,๐’‡โˆ’๐ˆ ๐‘ท +๐ˆ ๐‘ท

๐ธ๐‘›=๐ธ๐‘œ-๐ธ๐‘ƒ=๐ˆ๐’

๐œบ๐ŸŽ

+๐ˆ๐’ = ๐ˆ ๐ŸŽ,๐’‡ โˆ’๐ˆ ๐‘ท โˆ’๐ˆ๐’= +๐ˆ ๐‘ท โˆ’ ๐ˆ ๐ŸŽ,๐’‡

The polarization per unit volume:

๐’…

๐‘ƒ =๐‘

๐‘‰=

๐‘„๐‘ƒโˆ™๐‘‘

๐‘‰=

๐œŽ๐‘ƒโˆ™๐ดโˆ™๐‘‘

๐‘‰=

๐œŽ๐‘ƒโˆ™๐‘‰

๐‘‰= ๐œŽ๐‘ƒ [1]

[3] 0 0 1 1 ; oi i o

qD E E E

S

[2]0 eP E

The relation between ๐ธ and ๐‘ƒ is:

And therefore the resultant field in the medium is:

0 0 0

0

0 0 0 0 0 0

0 0 0

0

/

1 1 1

PN P

P e

e e e r

E E E E E

E E E P D P D E

D E E E E

unitless

A privet case of orthogonal fields:

D

Page 4: Examples - BIU

4

Boundary condition for the electric field โˆ†โ„Ž โ†’ 0

1 21 2 1 2

1 2

1. 0

b d

T TT T T T

c a c

D DE dl E dl E dl E E

1 2 1 2 1 2

1 1 2 2

2. ss N N N N s N N

s top bottom

N N s

QQ D ds D ds D ds D D s D D

s

E E

1 2 1 1 2 20 (3) (4)s N N N NWhen D D and E E

An important emphasis:s spis not

Is this is true in the case of time dependent fields?

Page 5: Examples - BIU

5

๐œŒ๐‘ ๐‘1

๐œŒ๐‘ ๐‘2

๐ธ๐‘2

๐ธ๐‘1

๐œŒ๐‘ ๐‘๐‘› = ๐œŒ๐‘ ๐‘1- ๐œŒ๐‘ ๐‘2

Regarding the charge on the interface plan:

1 1 2 2 0

0 1 1 0 2 2

0 1 1 0 2 2

0 1 0 1 1 0 2 0 2 2 0

0 1 1 0 2 2

0 1 2 2

0 , (4) ; int :

; int 1 :

1 1

; :

; :

s N N r

r N r N r

N N

N N N N

N N N N N sp

N N N

When E E roducing

E E roducing

E E

E E E E recalling that P E

E P E P recalling that P

E E P

1 2 1

2 1

1 2

0 0

:

(5)

N sp sp

sp sp spn

N N

P and therefore

E E

Why is ๐œŒ๐‘ ๐‘๐‘› not expressed in Equation 4? ๐œ€1

๐œ€2

As in a capacitor!

The advantage of Eq. 4 over 5 is due to the value of ๐œ€ being known, while ๐œŒ๐‘ ๐‘๐‘› is unknown and to be calculated.

Page 6: Examples - BIU

6

0 0 01 1 2 2 0 0 0(4) ;N N

r r

E EE E E E E E E

The particular case of EN

2

0 0

2 2

0

4

4 4r r r

q

E r q qE

r r

and for homogeneously charged infinite plane: 0 0

0

s

s s

r r r

EE

and so onโ€ฆ and therefore in all the expressions of electric field one should introduces ๐œ€ instead of ๐œ€0.

As for the electric potential:

0

0

0

0 0

1

b b

ra a

b b

r r

a a

EE dl dl

VVV

VE dl E dl

Is crossing the interface between two media might change the direction of the electric field vector and how?

The electric fields of point charge, infinite wire, charged sphere, infinite charged plane and more, where all calculated for vector field perpendicular to the medium surface. Assuming medium-vaccumeinterface, one get from Eq. 4:

That is to say that the field in vacuum is ๐œ€๐‘Ÿ times greater than that in medium.

Employed this on the case of electric field of a point charge one gets:

Page 7: Examples - BIU

7

As for the electric flux:

0

0

0 0 0

1rs s

r r

s s

EE ds ds

E ds E ds

As for the effective charge qโˆ—:

**0 0 0

0 0r r r r

q qq q q qq

And the capacitance:

0

0

r

r

Q QC C C

V V

Page 8: Examples - BIU

8

Continuity of the current density ิฆ๐ฝ

๐œ€1, ๐œŽ1

๐œ€2, ๐œŽ2s

ิฆ๐ฝ๐‘1

ิฆ๐ฝ๐‘‡1

ิฆ๐ฝ๐‘2

ิฆ๐ฝ๐‘‡2

From Kirchhoff Junction law we get: 1 2 1 2 1 20 N N N N N N N

Cylinder Cy top bottom

J ds J ds J ds J ds J J J J

As for ิฆ๐ฝ๐‘‡ ? On that we learn from the continuity of ๐ธ๐‘‡1 2

1 2

1 2

T TT T

J JE E

๐œƒ1

๐œƒ2

21

1 2 1 21 2 1

1 2 1 1

22 1

1

tan ; tan tan

tan tan

T

T T

N N N

JJ J

J J J

What happens to าง๐ฝ in the interface conductor-insulator (๐œŽ2 โ†’ 0)?

The relation between the direction of J1 and J2 at the interface:

In insulator ๐ฝ = 0 โŸน ๐ฝ๐‘1 = 0 = ๐ฝ๐‘2. On the other hand ๐ธ๐‘2 โ‰  0, ๐‘ฆ๐‘’๐‘ก ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘๐‘ก๐‘  ๐‘กโ„Ž๐‘’ ๐‘“๐‘Ž๐‘๐‘ก ๐‘กโ„Ž๐‘Ž๐‘ก ๐ฝ๐‘2 = 0since ๐ฝ๐‘2 = ๐œŽ2๐ธ๐‘2 but ๐œŽ=0. In any case, at any point within a conductor ๐ธ = ๐ท = 0, ๐‘–. ๐‘’. ๐ธ1 = ๐ท1 = 0, out of which ๐ธ๐‘‡2 = 0 ๐‘Ž๐‘›๐‘‘ ๐ท๐‘2 = 0

Page 9: Examples - BIU

9

Page 10: Examples - BIU

10

Does this result correlate with what we know about currents and equi-potetial surfaces?

Therefore, for ๐œŽ1 โ‰ซ ๐œŽ2 โŸน ๐œƒ2 โ†’๐œ‹

2and hence for every current arriving the conducting-isolator, it apparently

flow along the interface. However, though current can not exist in insulator, electric field does.

In summary, the only component of the electric field exist is perpendicular to the interface conductor-isolator (see figure)

21

1 2 1 21 2 1

1 2 1 1

22 1

1

tan ; tan tan

tan tan

T

T T

N N N

JJ J

J J J

Page 11: Examples - BIU

11

0

1 2

1 1s NJ

The continuity of J in the interface between two conductors:

1 1 2 2

1 21 2 1 2

1 2

1 2

1 2 1 2

; int

;sin

1 1

N N s

N Ns N N N

s N N

JE E roducing E

J Jce J J J

J J

From the continuity of ๐ท โˆ†๐ท๐‘ = ๐œŒ๐‘  :

In good conductors ๐œ€ โ†’ ๐œ€0 ๐‘Ž๐‘›๐‘‘ โ„Ž๐‘’๐‘›๐‘๐‘’:

Why a voltage difference is developed between the to sides of a resistor?

Page 12: Examples - BIU

12

Conductor Insulator

J=ฯƒE=-ฯƒ gradV D=ฮตE=-ฮต gradV

div J=0 Div D=0

delta JN =0 delta DN=0

ฮค๐ฝT1 ๐œŽ1 = ฮค๐ฝT2 ๐œŽ2 ฮค๐ท1๐‘‡ ๐œ€1 = ฮค๐ทT2 ๐œ–2

๐‘… = ฮค๐‘™ ๐œŽ๐ด ๐ถ = ฮค๐œ–๐ด ๐‘™

๐‘…๐ถ =๐œ–

๐œŽ= ฯ„

0E dl 0E dl

The duality between J and D (electrostatics):

Page 13: Examples - BIU

2/27/2020 13

2 2

4

:

( ) 

1 ( )

1 10 ( )

0.5Earth

B

B

MKS

Weber Wb

WbB T Tesla

m m

T Gauss cgs

B G

Magnetism: Units

๐‘พ๐’ƒ =๐‘ฒ๐’ˆ โˆ™ ๐’Ž๐Ÿ

๐’”๐’†๐’„๐Ÿ โˆ™ ๐‘จ= ๐‘ฝ๐’๐’๐’• โˆ™ ๐’”๐’†๐’„ = ๐‘ป โˆ™ ๐’Ž๐Ÿ =

๐‘ฑ

๐‘จ= ๐Ÿ๐ŸŽ๐Ÿ–๐‘ด๐’™

Page 14: Examples - BIU

0 0

2

ห† 1[1]

4 4l l

I dl r IB dl grad

r r

:ืžื—ืฉื‘ื•ืŸ ื•ื•ืงื˜ื•ืจื™ ื™ื“ื•ืข ื”ืฉื•ื•ื™ืŸ

: [2]From vector analysis curl A curl A A grad A grad curl A curl A

:ื›ืš[ 1]ื ื™ืชืŸ ืœื”ื‘ื™ืข ืืช [ 2]ื‘ืืžืฆืขื•ืช

0 0

0

1

4 4

; [3]4

l l

l

I Idl dlB curldl curl curl

r r r

I dlcurl curlA B curlA

r

= 0

2/27/2020 14

Biotโ€“Savart law and the vector potential เดฅ๐‘จ

Page 15: Examples - BIU

:ิฆ๐ดื”ื•ื“ื•ืช ื”ืคื•ื˜ื ืฆื™ืืœ ื”ื•ื•ืงื˜ื•ืจื™

0 0 0 0

, ,

ห†

4 4 4 4l l s l s V

I dl Jdsdl Jldsdl JdvA

r r r r

:ื“ื”ื™ื™ื ื•, ืžื‘ื—ื™ื ื” ืžืชืžื˜ื™ืช ื”ืื™ื ื˜ื’ืจืœ ื”ื–ื” ื–ื”ื” ืœื–ื” ืฉืœ ื”ืคื˜ื ืฆื™ืืœ

V consequently one get the similarity between ๐‘‰ ๐‘Ž๐‘›๐‘‘ าง๐ด:

2 2

2 2 2; ;

V

x x y y z z

V A J

A J A J A J

4 4

V

V

dvQV

r r

2/27/2020 15

Page 16: Examples - BIU

:ื”ื”ืฆื’ื” ื”ืื™ื ื˜ื’ืจืœื™ืช ื•ื”ื“ื™ืคืจื ืฆื™ืืœื™ืช ืฉืœ ื—ื•ืง ืืžืคืจ

0 f

L

B dl I

2/27/2020 16

Stokes theorem

0 0( )s s

B ds J ds B J

The integral and differential expression of Ampere's law:

Current is the source of magnetic field and charge is the source of electric field

Page 17: Examples - BIU

2/27/2020 17

Lorentz force

The magnetic force acting upon a current caring wire is given by:

sin sin sin sinB eF Il B IlB JSlB vVB QvB Qv B

e

s s

I J ds v ds ิฆ๐‘ 

ิฆ๐‘™

๐ตฮธ

And in the presence of eclectic field the total force is:

Hendrik Antoon Lorentz 1853 โ€“1928

Type equation here.เดค๐น = ๐‘„ เดค๐ธ + าง๐‘ฃ ร— เดค๐ต

Page 18: Examples - BIU

2/27/2020 18

Bemf

s

d dV B ds

dt dt

Hence the circulation integral should include the contribution of the magnetic field as well:

0 BTotal T emf T

l s l s

d d dV E dl V B ds E dl B ds

dt dt dt

s s

d dBE ds B ds E

dt dt

Faraday law

StokeStokes theorem

Conservative field

Michael Faraday (1791 โ€“ 1867)

Page 19: Examples - BIU

2/27/2020 19

, 2

,

0 0 0

: ; ; [ ; ] ; ;f n V V

e f n V

s s

qI E ds divE D ds q divD E gradV V

2

0: 0 ; 0 ; [ 0 ; 0] ; ;s s

II B ds divB H ds divH B curlA A J

: ;B

General

l s

d Ad d dBIII E dl B ds E A E gradV A

dt dt dt dt

0 0

0

: ? ; ?

[ ? ; ?]

l

l

IV B dl I B J

BH H dl I H J

Maxwell Equations :

Page 20: Examples - BIU

20

:ื”ืฉืœืžืช ืžืงืกื•ื•ืืœ

curlH J divcurlH divJ 0 0

:Following the continuity law

0

0

0

0

( ) 0 ( ) ( ) 0

VV V

C D

divJ divE divE

div J E div J D div J J

0 0e

D

s s

d d dI D ds E ds

dt dt dt

: ืขื™ื“ื›ื•ืŸ ืžืงืกื•ื•ืืœ

0 0 0 0 0

0 0 0 0

: ( ) ( ) ( )

( ) ( ) ( )

eC D C C

l s

C D C C

d dIV B dl I I I I E ds

dt dt

B J J J E J D

Relating to the differential aspect of equation VI

Page 21: Examples - BIU

H-The magnetic field intensity

0 0

0 0

;f f

L L

f

L

B BB dl I dl I H B H

AH dl I H

m

:ื”ื”ืฉืœื›ื•ืช ืœืžืฉื•ื•ืื•ืช ืžืงืกื•ื•ืืœ

0 0

( ) ( )

0

:f f

L L S L S L

f

B dl I Via StcokesTheorm B dl XB ds J ds

XB J

:ื‘ืื•ืคืŸ ื“ื•ืžื” ื ืงื‘ืœfXH J

:ืฉืžื•ืช

:

: int

B Themagnetic flux density

H Themagnetic field ensity

2/27/2020 21

Page 22: Examples - BIU

Types of magnetism:

Diamagnetism Paramagnetism Ferromagnetism

No Yes but weak Yes and constant Magnetic field

Electrons spin orbital Electrons spin Magnetizing regions Source of magnetism

Opposite Identical Varies, Hysteresis Direction of B in respect to H

Cupper, Lead, Diamond, Mercury, Silicon

Aluminum, Calcium, Magnesium, Tungsten

Iron, Nickel, Cobalt Typical materials

โ‰ˆ โˆ’10โˆ’5 โ‰ˆ 10โˆ’5 ๐œ’ ๐‘š โ‰ซ 1 ๐œ’๐‘šTypical

โ‰ˆ 1 โ‰ˆ 1 ๐œ‡ ๐‘Ÿ โ‰ซ 1 Typical ๐œ‡๐‘Ÿ

2/27/2020 22

Page 23: Examples - BIU

Ferromagnetism

Diamagnetism

Paramagnetism

2/27/2020 23

Page 24: Examples - BIU

24

Within each grain are a series of lighter

and darker stripes (imaged by using the

optical Kerr effect) that are ferromagnetic

domains with opposite orientations.

Averaged over the whole sample, these

domains have random orientation so the

net magnetization is zero. Moving

domain exist as well.

Page 25: Examples - BIU

๐‘ฉ

1 2 1 1 2 20 N N N N

s

B ds B B H H

1 2 1 2

1 2

1 2

1 2

1 2

0 : 0

f

f T T f T T f T f

L

T Tf

T Tf T

IH dl I H H L I H H i H i

L

B Bi

B BFor i H and

2/27/2020 25

Boundary conditions for B and H