12
EXERCISES FOR CHAPTER 1: Sequences and Limits 1. (a) 1 2 n (b) 2 3 n (c) 1 + n 1 2n Solution (a) lim n 1 2 n = lim n ( 1) n 2 n = 0 (b) lim n 2 3 n = lim n 2 n 3 n = 0 (c) lim n 1 + n 1 2n = lim n 1 2 = 1 2 2. (a) 1 + ( 1) n 2 (b) 1 + n 2 1 + n (c) n + 2 n 2 + 3 Solution (a) Limit does not exist. (b) lim n 1 + n 2 1 + n = lim n 2n 1 = (c) lim n n + 2 n 2 + 3 = lim n 1 2n = 0 3. (a) 6n 5 + n 3n 5 + 1 (b) sin 2n n (c) ln2n ln n Solution (a) lim n 6n 5 + n 3n 5 + 1 = lim n 6n 5 (1 + 1 6n 4 ) 3n 5 (1 + 1 3n 5 ) = 2 (b) 1 n sin 2n n 1 n lim n sin 2n n = 0 since lim n 1 n = 0 (c) lim n ln 2n ln n = lim n ln 2 ln n + lim n ln n ln n = 1 4. (a) 7 3/ n (b) 5n 3 n (c) 2 n n 2 Solution

EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

EXERCISES FOR CHAPTER 1: Sequences and Limits

1. (a) 1

2

n

(b) 2

3

n

(c) 1 + n

1 2n

Solution

(a) limn

1

2

n

= limn

( 1)n

2n= 0

(b) limn

2

3

n

= limn

2n

3n= 0

(c) limn

1+ n

1 2n= lim

n

1

2=

1

2

2. (a) 1 + ( 1)n

2 (b)

1 + n2

1+ n (c)

n + 2

n2 + 3

Solution (a) Limit does not exist.

(b) limn

1+ n2

1+ n= lim

n

2n

1=

(c) limn

n + 2

n2 + 3= lim

n

1

2n= 0

3. (a) 6n5 + n

3n5 + 1 (b)

sin2n

n (c)

ln2n

lnn

Solution

(a) limn

6n5 + n

3n5 +1= lim

n

6n5 (1+16n4

)

3n5 (1+13n5

)= 2

(b)

1

n

sin2n

n

1

n

limn

sin2n

n= 0

since limn

1

n= 0

(c) limn

ln2n

lnn= lim

n

ln2

lnn+ lim

n

lnn

lnn= 1

4. (a) 73 / n (b) 5n3n (c) 2n

n2

Solution

Page 2: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

2

(a) y = limn

73/n ln y =3

nlimn

ln 7 = 0 y = 1

(b) limn

5n3n= lim

n51/n lim

nn3/n = 1

(c) limn

2n

n2= lim

n

2n ln2

2n= lim

n

2n (ln2)2

2=

5. (a) n3

3n (b)

n!+ n2

2n!+ n (c)

n!+ 3n

1+ n

Solution

(a) limn

n3

en= lim

n

3n2

3n ln 3= lim

n

6n

3n (ln 3)2= lim

n

6

3n (ln 3)3= 0

(b) limn

n!+ n2

2n!+ n= lim

n

n!(1+n2

n!)

2n!(1+n

2n!)=1

2

(c) limn

n!+ 3n

1+ n= lim

n

n!(1+3n

n!)

n(1+1n)=

6. (a) en

1+ 2en (b)

e2n

(1+ 2en )2 (c) nsin

2n

Solution

(a) limn

en

1+ 2en= lim

n

en

2en=1

2

(b) limn

e2n

(1+ 2en )2= lim

n

e2n

4e2n (1+12en

)2=1

4

(c) limn

nsin2n

= limn

sin2n1n

= limn

2n2cos

2n1n2

=2limn

cos2n

=2

7. (a) lnen +1

en 1

(b)

2n +1

n (c)

3

2

n

Solution

(a) limn

lnen +1

en 1= ln lim

n

en +1

en 1= ln lim

n

en

en= ln1 = 0

(b) limn

2n +1

n= lim

n

n( 2 +1n)

n= 2

(c) limn

3

2

n

= since 3

2> 1

Page 3: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

3

8. Show that (a) limn

1+x

n

n

= ex , (b) limn

1+x

n

n+

= ex and (c) limn

1+x

n +

n

= ex

where is a constant. Solution

(a) Let y = limn

1+x

n

n

. Call x

n=1

m so that m as n . Then n = mx and so

y = limm

1+1

m

mx

= limm

1+1

m

m x

= ex

(b)

limn

1+x

n

n+

= limn

1+x

nlimn

1+x

n

n

= 1 limn

1+x

n

n

= 1 ex = ex

(c) Call m = n + . Then as n , m . So

limn

1+x

n +

n

= limm

1+x

m

m

= limm

1+x

mlimm

1+x

m

m

= 1 ex = ex

9. (a) 11

n2

n

(b) 1 +n

n

(c) n 1

n

n

Solution (a)

limn

11

n2

n

= limn

11

n1+

1

n

n

= limn

11

n

n

limn

1+1

n

n

= e 1e1

= 1

(b)

Page 4: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

4

limn

1+n

n

= limn

1+n

n

= e( )

= e2

(c)

limn

n 1

n

n

= limn

11

n

n

= e 1

10. (a) n + 3

n + 2

n

(b) n

n + 3

n

(c) 12

n

2n

Solution (a)

limn

n + 3

n + 2

n

= limn

n + 2 +1

n + 2

n

= limn

1+1

n + 2

n

= e

(b)

limn

n

n + 3

n

= limn

n + 3 3

n + 3

n

= limn

13

n + 3

n

= e 3

(c) limn

12

n

2n

= limn

12

n

n 2

= (e 2 )2 = e 4

11. (a) ln n( )7

n2 (b) n3nn (c) n

1+1

n

Solution

(a)

limn

lnn( )7

n2= lim

n

7 lnn( )6

2n2= lim

n

42 lnn( )5

4n2= = 0

(b) limn

n3nn= lim

nnn lim

n3nn

= 1 3 = 3

(c) limn

n1+1

n = limn

n limn

n1

n = 1 =

12. (a) n7nn (b) 1

n

1/ lnn

(c) arctan n

Solution

Page 5: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

5

(a) limn

n7nn= lim

nnn lim

n7nn

= 1 7 = 7 .

(b) Let y =1

n

1/ln n

. Then limn

ln y = limn

ln(1n)

lnn= lim

n

lnn

lnn= 1 .

Thus limn

1

n

1/ln n

= e 1 .

(c) limn

arctann =2

.

13. Show that limn

1+ xn( )1/n

= 1 if x < 1 . Hence find limn

5n + 7n( )1/n

.

Solution

y = limn

1+ xn( )1/n

ln y = limn

ln(1+ xn )

n= 0

y = 1

limn

5n + 7n( )1/n

= limn

7 1+5

7

n 1/n

= 7 limn

1+5

7

n 1/n

= 7

14. Find the limit (a) limn

2n + 4n( )1/n

.

Solution

limn

2n + 4n( )1/n

= limn

1

2n + 4n( )1/n

= limn

1

424

n

+1

1/n

=1

4

15. (a) 2n + 4n

3n + 6n (b)

2n + 4n

5n + 6n

1/n

Solution

(a) limn

2n + 4n

3n + 6n= lim

n

4n

6n

12

n

+1

12

n

+1

= limn

4n

6n= 0

(b) limn

2n + 4n

5n + 6n

1/n

=4

6limn

24

n

+1

56

n

+1

1/n

=2

3

Page 6: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

6

16. (a) n137

137n (b)

n17

en (c)

32n+1

5n2

Solution

(a) limn

n137

137n= 0 , standard result.

(b) limn

n17

en= 0 , standard result.

(c) limn

32n+1

5n2= lim

n

32n+12 ln 3

10n= lim

n

32n+1(2 ln 3)2

10=

17. (a) arctann

(b) ln(n + 1) ln n (c) ln(n2 + n) lnn2

Solution

(a) limn arctann

=

2

= 2

(b) limn

ln(n +1) lnn( ) = limn

ln(n +1

n) = ln lim

n(n +1

n) = ln1 = 0

(c) limn

ln(n2 + n) lnn2( ) = limn

ln(n2 + n

n2) = ln lim

n(n2 + n

n2) = ln1 = 0

18. (a) 8n!

5nn (b)

n!

10n!+(n 1)! (c)

ln9n

n3

Solution

(a) limn

8n!

5nn= 0 , standard result.

(b) limn

n!

10n!+ (n 1)!= lim

n

n!

10n!(1+110n

)=1

10

(c) limn

ln9n

n3= lim

n

ln9

n3+ lim

n

lnn

n3= 0 + lim

n

1n

13n 2 /3

= 3limn

1

n1/3= 0

19. (a) n2 +1

n (b)

sin n

n (c)

n!

5n2

Solution

(a) limn

n2 +1

n= lim

n

n 1+1n

n=

(b) 1

n

sin n

n

1

nlimn

sin n

n= 0 since lim

n

±1

n= 0

(c) limn

n!

5n2= , standard result.

Page 7: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

7

20. (a) n

3n (b) n3e 2n (c)

n!+(n 1)!

(n 1)!+(n 2)!

Solution

(a) limn

n

3n= lim

n

1

3n ln 3= 0

(b) limn

n3e 2n= lim

n

n3

e2n= lim

n

3n2

2e2n= lim

n

6n

4e2n= lim

n

6

8e2n= 0

(c) limn

n!+ (n 1)!

(n 1)!+ (n 2)!= lim

n

n!(1+1n)

(n 1)!(1+2

n 1)=

21. (a) lnn

n (b) n ln(1+

2

n) (c)

32n

7n

Solution

(a) limn

lnn

2n= lim

n

1n

21

2 n

= limn

2

n= 0

(b) limn

n ln(1+2

n) = ln lim

n1+

2

n

n

= lne2 = 2

(c) limn

32n

7n= lim

n

9n

7n= lim

n

9n ln9

7=

22. (a) n!

1+ 5n! (b)

2nn

nn + 3nn 1

Solution

(a) limn

n!

1+ 5n!= lim

n

n!

5n!(1+15n!)=1

5

(b) limn

2nn

nn + 3nn 1= lim

n

2nn

nn (1+3n)= 2

23. (a) 2nn

nn + n! (b)

n!

e2n + 3n! (c)

ln2n

2n

Solution

(a) limn

2nn

nn + n!= lim

n

2nn

nn (1+n!nn)= 2

(b) limn

n!

e2n + 3n!= lim

n

n!

3n!(1+e2n

3n!)=1

3

(c) limn

ln2n

2n= lim

n

ln2

2n+ lim

n

lnn

2n= 0 + lim

n

1n

21

2 n

= limn

2

n= 0

Page 8: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

8

24. James Stirling (1692-1770) showed that for large values of n, n!n

e

n

2 n . Use

this approximation for the factorial of n to show that limn

n!

nn= 0 .

Solution

limn

n!

nn= lim

n

(n / e)n 2 n

nn= lim

n

2 n

en= 0 .

(Notice that Stirling’s result leads to the elegant limit limn

n!en

nn n= 2 .)

25. (a) Show that limn

n2

n2 +1= 1 . (b) Establish this limit by an N proof.

Solution

(a) limn

n2

n2 +1= lim

n

n2

n2 (1+1n2)= 1

(b) n2

n2 +11 < <

n2

n2 +11< <

1

n2 +1< . Hence we have that

n2 +1<1

n >11 . Thus

n2

n2 +11 < for all n > N where N =

11 .

26. (a) Show that limn

1

2n= 0 . (b) Establish this limit by an N proof.

Solution

(a) Let y =1

2n. Then lim

nln y = lim

nln

1

2n= lim

nn ln2 = . Hence y e = 0 .

(b) 1

2n< <

1

2n< . Hence

1

2n< 2n >

1n >

ln

ln2. Thus

1

2n<

for all n > N where N =ln

ln2.

27. (a) Show that limn

n!

1+ 2n!=1

2. (b) Establish this limit by an N proof.

Solution

(a) limn

n!

1+ 2n!= lim

n

n!

2n!(1+12n!)=1

2.

(b) n!

1+ 2n!

1

2< <

n!

1+ 2n!

1

2< . I.e. <

2n! 1 2n!

2(1+ 2n!)< i.e.

<1

2(1+ 2n!)< . We must then ensure that

Page 9: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

9

1

2(1+ 2n!)>

1

2(1+ 2n!)<

2n!>21

n!>1 1

2

Now n!> n and so we if we demand n >1 1

2 we automatically ensure n!>

1 1

2.

Thus n!

1+ 2n!

1

2< for all n > N where N >

1 1

2. As a check take

= 10 1 N >101

2. With N = 10 we have that

10!

1+ 2 10!

1

2< 6.89 10 8

<10 1 .

This shows that the choice of N is very loose. This is so because the inequality n!> n is

very easily satisfied so a much lower value of N than N >1 1

2 could have done.

28. A sequence of positive numbers is defined recursively through un+1 = 1 un , with

u1 =1

2. Given that the sequence is convergent, find the limit of the sequence,

limn

un .

Solution Let the limit be L. Then lim

nun = L , lim

nun+1 = L and so L = 1 L L2 + L 1 = 0 .

The positive root is L =1+ 5

2.

29. Find limx 0

1 cos x

x2.

Solution

Limit is of the 0/0 type. Hence limx 0

1 cos x

x2= lim

x 0

sin x

2x= lim

x 0

cos x

2=1

2.

30. Find the limit limx 0

ln(1 2x)

x.

Solution

Limit is of the 0/0 type. Hence limx 0

ln(1 2x)

x= lim

x 0

21 2x1

= 2 .

31. Evaluate the limit limx 0

tan x

x.

Solution

Limit is of the 0/0 type. Hence limx 0

tan x

x= lim

x 0

sec2 x

1= 1 .

Page 10: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

10

32. Find limx 0

tan 3x

x.

Solution

Limit is of the 0/0 type. Hence limx 0

tan 3x

x= lim

x 0

3sec2 3x

1= 3 .

33. Find limx 0

arcsin(3x) 3x

x3.

Solution Limit is of the 0/0 type. Hence

limx 0

arcsin(3x) 3x

x3= lim

x 0

3

1 9x23

3x2= lim

x 0

3 ( 18x)(12)(1 9x2 ) 3/2

6x

= limx 0

27(1 9x2 ) 3/2 + 27x(32)(1 9x2 ) 3/2 ( 18x)

6=9

2

34. Evaluate limx 0(1

x

1

sin x) .

Solution

limx 0(1

x

1

sin x) = lim

x 0(sin x x

x sin x)

= limx 0(

cos x 1

sin x + x cos x)

= limx 0(

sin x

cos x + cos x x sin x)

= 0

35. Find the limit limx 0

sin(x + 2sin x)

sin x.

Solution

limx 0

sin(x + 2sin x)

sin x= lim

x 0

cos(x + 2sin x)(1+ 2cos x)

cos x= 3

36. Find limx 0(1

x

1

tan x) .

Solution

We may write 1

x

1

tan x=x tan x

x tan x which is a 0/0 limit. Using L’ Hôpital’s rule we

have

limx 0(1

x

1

tan x) = lim

x 0

x tan x

x tan x= lim

x 0

1 sec2 x

tan x + x sec2 x

= limx 0

2sec x(sec x tan x)

sec2 x + sec2 x + x2sec x(sec x tan x)= 0

Page 11: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

11

37. Find limx 1(1

ln x

1

x 1) .

Solution 1

ln x

1

x 1=x 1 ln x

(x 1)ln x which results in a 0/0 limit. Using L’ Hôpital’s rule we have

limx 1

x 1 ln x

(x 1)ln x= lim

x 1

11x

ln x +x 1x

= limx 1

1x2

1x+1x2

=1

2, using L’ Hôpital’s rule again.

38. Find limx 0

1+ x 1 x

x.

Solution The limit is of the 0/0 type. Using L’ Hôpital’s rule we have that

limx 0

1+ x 1 x

x= lim

x 0

1

2 1+ x+

1

2 1 x1

= 1 .

39. Consider the function f (x) = 1+ ex + e2x + + enx . (a) Show that f (x) =

e(n+1)x 1

ex 1.

(b) Show that

df

dx= 1ex + 2e2x + + nenx . (c) Hence show that

1+ 2 + + n =df

dx x=0

. (d) Hence evaluate 1+ 2 + + n . (e) Using this method find

an expression for (but do not attempt to evaluate) 1k+ 2k + + nk where k is a

positive integer. Solution

(a)

1+ ex + e2x + + enx =e(n+1)x 1

ex 1, by summing a geometric progression.

(b)

df

dx= 1ex + 2e2x + + nenx

(c) Setting x=0 in the result above gives the answer. (d) df (x)

dx=(n +1)e(n+1)x (ex 1) (e(n+1)x 1)ex

(ex 1)2

=ex e(n+1)x ne(n+1)x + ne(n+2)x

(ex 1)2

This gives a 0/0 limit if we put x=0. So by L’ Hôpital’s rule

Page 12: EXERCISES FOR CHAPTER 1: Sequences and Limits · K. A. Tsokos: Series and D.E. 8 24. James Stirling (1692-1770) showed that for large values of n, n! n e n 2 n.Use this approximation

K. A. Tsokos: Series and D.E.

12

df (0)

dx= lim

x 0

ex (n +1)e(n+1)x n(n +1)e(n+1)x + n(n + 2)e(n+2)x

2(ex 1)ex

= limx 0

ex (n +1)2e(n+1)x n(n +1)2e(n+1)x + n(n + 2)2e(n+2)x

4e2x 2ex

=1 (n +1)2 n(n +1)2 + n(n + 2)2

2

=1 n2 2n 1 n3 2n2 n + n3 + 4n2 + 4n

2

=n2 + n

2

=n(n +1)

2

(e) We saw that

df

dx= 1ex + 2e2x + + nenx . Differentiating again gives

d 2 f

dx2= 12ex + 22e2x + + n2enx

and so differentiating k times gives

dk f

dxk= 1k ex + 2k e2x + + nkenx .

Thus at x = 0 we have that

1k + 2k + + nk =dk f

dxkx=0

=dk

dxke(n+1)x 1

ex 1x=0

.

Applying L’ Hôpital’s rule to this expression is hopeless. To make progress requires more advanced work.