81
Existence of Modular Sonar Sequences of Twin-Prime Product Size for CDMA Signal Sets Sung-Jun Yoon The Graduate School Yonsei University Department of Electrical and Electronic Engineering

Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

Existence of Modular Sonar Sequences

of Twin-Prime Product Size

for CDMA Signal Sets

Sung-Jun Yoon

The Graduate School

Yonsei University

Department of Electrical and Electronic

Engineering

Page 2: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

2

This certifies that the dissertation of

Sung-Jun Yoon is approved.

_________________________

Thesis supervisor : Hong-Yeop Song

_________________________

Dong-Ku Kim

_________________________

Jong-Moon Chung

The Graduate School

Yonsei University

June 2007

Page 3: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

3

Contents

List of Figures

List of Tables

Abstract

1. Introduction

1.1 Motivation

1.2 Overview

2. Interleaved construction of signal set

2.1 Interleaved sequences

2.2 Interleaved constructions for signal sets

2.3 Shift sequence e in the )32,,( 2 vvv signal sets construction

2.3.1 Criterion for shift sequence e

2.3.2 Two known methods to construct the shift sequence e

2.3.3 Comment

Page 4: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

4

3. Modular sonar sequence

3.1 Definition of Modular sonar sequence

3.2 Constructions of Modular sonar sequence

3.2.1 Known Modular sonar sequence constructions

3.2.2 Transformation of Modular sonar sequence

3.3. Relation Between vv Modular sonar sequence and shift

sequence e

4. )32,,( 2 vvv signal set with v=p(p+2)

4.1 The case of v=3ⅹ5=15

4.1.1 Result summary

4.1.2 Analysis

4.2 The Case of v=5ⅹ7=35

5. Concluding remarks

Appendix

Bibliography

Page 5: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

5

Abstract

Existence of Modular Sonar Sequences

of Twin-Prime Product Size

for CDMA Signal Sets

An exhaustive search for 15ⅹ15 Modular sonar sequences found 9000

examples which are grouped with 5 equivalent classes. Four classes of them

can obtained by the known “Shift Sequence” construction, and the

remaining 1 class turn out to be new, and has some interesting property.

We prove that, for an odd v, any given vv Modular sonar sequence with

self-reciprocal property must satisfy the same interesting property shared by

the new class of size 15 that we have found.

We applied these observation to the case 3575 v for a partial search,

and fail to locate any example. Furthermore, we approached this problem

with some algebraic constructions and transformations of the obtained

Modular sonar sequences, but unfortunately, all failed. This implies the

Page 6: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

6

general case of )2()2( pppp Modular sonar sequence seem to be

non-existing.

Index Terms- Modular sonar sequence, Interleaved construction of

signal set, twin prime

Page 7: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

7

Chapter 1

Introduction

1.1 Motivation

A family of pseudorandom sequences with low cross correlation, good

randomness, and large linear span has important application in code-division

multiple-access (CDMA) communications and cryptology [17].

It has long been conjectured that if a balanced binary sequence of period v

has the ideal two-level autocorrelation, then v must be either 12 n for

some positive integer n, a prime p of type 4k+4, or a product of twin-prime.

It is interesting to note that those three types of integers seem to have no

common property except for the above. For the lengths v other than those

listed above, no such binary sequences of period v are currently known,

neither the proof of non-existence of such examples are completed. On the

other hand, for search of these types of lengths, at least one easy

construction for such sequence are well-known [8][12][13][14][15].

Page 8: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

8

In [1], Gong introduce a new design for families of binary sequences

with low cross correlation, balance property, and large linear span. The key

idea of this new design is to use short binary periodic sequences with two-

level autocorrelation function and an interleaved structure to construct a set

of long binary sequences with the desired properties. This property also has

significant meaning with the application on signal detection of high-speed

broad-band communication system.

Let vZ be the integers mod v. This Gong’s construction gives a

)32,,( 2 vvv signal set consisting of v binary sequences of period 2v

whose out-of-phase autocorrelation and cross-correlation maximum is

bounded by 2v+3. The construction requires two binary sequences of period

v with the ideal two-level autocorrelation, and a “so-called” shift sequence

e of length v defined over the alphabet vZ . She proved that the

construction works in general if there exists two sequences with the ideal

autocorrelation together with a “shift sequence” e with desired property,

and specifically gave constructions for e as the following two cases : (1)

when 1 npv for a prime p and a positive integer n, and (2) when

pv which is a prime of type 34 k [1].

Page 9: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

9

As long as binary sequences are concerned, the above construction uses

two well-known types of balanced binary sequences of period v with the

ideal two-level autocorrelation : (1) 12 nv and (2) pv is a prime of

type 4k+3. These two case cover all types of two-level binary

autocorrelation sequences as “building blocks” except for a class of two-

level autocorrelation sequences of period v where v is a twin prime p(p+2).

What is happening to these twin prime product type missing here? This is

the main motivation of this paper.

We first have recognized that the construction for “shift sequence” e in

[1] is the same at the construction for Modular sonar sequence of length v

mod v [5]. In fact, it is essentially the same at the one given by Games in [4]

for the case 12 nv or 1np , or the exponential-Welch construction in

[6][5] for the case pv of type 4k+3.

To investigate the missing case, that is, the case )2( ppv , we have to

design a construction for Modular sonar sequences over vZ of length v

mod v, which is unfortunately not completed yet. That is, we were not able

to show the non-existence, nor we could find one single example, except for

the one special case v=15. Note that the case v=15 is very special in that it is

Page 10: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

10

the only case which is both product of twin-prime and of the form 12 n .

Then the rest of the construction comes easily for families of

)32,,( 2 vvv signal sets for )2( ppv by way of the interleaved

construction in [1], since the existence of balanced binary sequence of

period )2( ppv with the ideal two-level autocorrelation is well-known

[8][14].

1.2 Overview

In Chapter , we first will review interleaved sequences and constructions

for signal set, and shift sequence e construction with criterion of shift

sequence e and two known methods to construct these sequence. In

Chapter 3, we will introduce nn Modular sonar sequence that has same

property with shift sequence e . Next Chapter we will introduce the

)32,,( 2 vvv signal set with )2( ppv from executive search of the

first small case of 1553 , and consider existence of general case of

)2()2( pppp Modular sonar sequence. Finally all those of this

dissertation are summarized and some discussions follow in Chapter 5.

Page 11: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

11

Chapter 2

Interleaved Construction of Signal Set

In this Chapter, we review Gong’s new design methods for families of

sequences over )( pGF with low correlation, balance property, and large

linear span. By Gong’s interleaved construction [1], we can obtain

)32,,( 2 vvv signal set that has interleaved sequences of period 2v ,

v cyclically shift distinct sequences in each family, and the maximal

correlation value 32 v which is optimal with respect to the Welch bound.

In particular, for binary case, cross/out-of-phase autocorrelation values

belong to the set {1, - v, v+2, 2v +3, -2v -1} and any sequence where the

short sequences are quadratic residue sequences achieves the maximal linear

span.

The key idea of Gong’s new design is to use short p -ary sequences of

period v with two-level autocorrelation function together with the

interleaved structure to construct a set of long sequences with the desire

Page 12: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

12

properties. So, we start with interleaved sequences, and interleaved

construction in the first two sections. In section 3, we describe Gong’s

interleaved construction for )32,,( 2 vvv signal set with two

construction methods of shift sequence e .

2.1 Interleaved sequences

Gong introduced the concept of interleaved sequences over )( pGF in

[7]. Let },{ 1,1,0 stuuu u be a p-ary sequence of period st where 1s

or 1t . We can arrange the element of the sequence u in to a s by t

matrix as follows :

1)1(1)1()1(

12122

11

110

ttststs

tttt

tttt

t

uuu

uuu

uuu

uuu

A

If each column vector of the above matrix is either a phase shift of a p-ary

sequence, say a of period s, or zero sequence, then we say that u is an (s,

t) interleaved sequence over )( pGF and A is the matrix form of u . Let

Page 13: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

13

jA called column(componet) sequence of u be the jth column vector of

A, then ),,,( 110 tAAAA . According to the definition, )(aje

j LA ,

10 tj where we denote je if )0,,0,0( jA and )(ajeL

is left shift operator (that is )(ajeL = ),,,,,,( 1011

jejejaaaaa ve

for a ),,,( 110 vaaa ). ),,,( 110 teee e is called a shift

sequence of u . For a given e and a , the interleaved sequence u is

uniquely determined. So u is an (s, t) interleaved sequence associated with

),( ea .

Example 1 : Let

e = (1, 3, 2, 6, 4, 5, 1)

and

a = (1, 1, 1, 0, 1, 0, 0)

be a binary m-sequence of period 7. Then a 7 by 7 matrix A can be given as

follows :

Page 14: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

14

1100111

0011110

0110010

1111001

0101100

1001011

1010101

A

From A, we have the following (7, 7) interleaved sequence of period 49.

u = 1010101110100100110101001111010011001111001110011

2.2 Interleaved construction for signal sets

In this section, we will give a procedure to construct a signal set

consisting of u ),( vv interleaved sequences.

Procedure

1) Choose

),,,( 110 vaaa a

and

),,,( 110 vbbb b

Page 15: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

15

two sequence over )( pGF of period v with two-level autocorrelation.

2) choose

),,,( 110 veee e ,

an integer sequence whose elements are taken from vZ .

3) Construct

),,,(110 2

v

uuu u ,

a (v, v) interleaved sequence whose jth column sequence is give by

)(ajeL where vj 0 .

4) Set

),,,(1,1,0, 2

vjjjj sss s , vj 0

whose elements are defined by

,1, jiij bus vji ,0 or equivalently )(bus j

j L

5) A signal set ),,( ebaSS is defined as

}1,,1,0:{ vjS j s.

Page 16: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

16

We called a and b base sequences of S and e a shift sequence of S.

From Steps 1)-4) in Produce has a matrix from kk BAS where

111

222

111

110

110

110

110

veveve

eee

eee

eee

v

v

v

v

aaa

aaa

aaa

aaa

A

and

11

11

11

11

vkk

vkk

vkk

vkk

k

bbb

bbb

bbb

bbb

B

If we write ),,,(1,1,0,

vkkkk SSSS , then column j of

kS is given by

,)( kj

e

k bLS j

a vj 0 .

Example 2: Let p=2 and v=7

1) Choose a = (1110100), b =(1001011), m-sequences of period 7.

2) Choose e = (1, 3, 2, 6, 4, 5, 1)

3) Construct the interleaved sequence u =

1010101110100100110101001111010011001111001110011 which is the

same example 1 and has the matrix form A.

4) Construct kS : 6,,1,0 k .

Page 17: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

17

0001110

1110111

1011011

0010000

1000101

0100010

0111100

1101001

1101001

1101001

1101001

1101001

1101001

1101001

1100111

0011110

0110010

1111001

0101100

1001011

1010101

00 BAS

In this fashion, we obtain seven sequences in S :

1011100011011110110000100110010101000100111001000 s

11110010010001010101101100001111000011010000101111 s

10101110101000001000110000100011101101011110111002 s

00010111111010110000001001111010110001100010011113 s

01100101011111000011111011000000001000111011001014 s

10000000110100100110011110110101111010001001110015 s

00001011100010101100010101110110111111101100010006 s

5) Set },,,{ 610 sss S .

Page 18: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

18

2.3 Shift sequence e in the )32,,( 2 vvv signal sets construction

In this section, first we will give a criterion for the shift sequence e

such that S, constructed by Procedure in above section, is )32,,( 2 vvv

signal set. Then we will provide two methods to construct the shift sequence

),,,( 110 veee e satisfying the criterion.

2.3.1 Criterion for shift sequence e

Theorem 2.1 : Let S be constructed by Procedure in section 2. If the shift

sequence ),,,( 110 veee e satisfies the following condition :

.1 allfor }0|{ vssvsvjee sjj (2. 1)

Then S is a )32,,( 2 vvv signal set.

A proof of this Theorem can be found in [1].

If shift sequence ),,,( 110 veee e satisfies the condition of (2.1) in

Theorem 2.1, any pair of sequences in S are shift distinct, each sequence in

Page 19: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

19

S has period 2v , and the maximal correlation of S is 32 v .

2.3.2 Two known methods to construct the shift sequence e

In this subsection, we will describe two known methods to construct the

shift sequence e that satisfies the condition of (2.1) in Theorem 2.1.

Construction A : )12,1,)1(( 2 nnn ppp signal set

1) Choose a and b , two sequence over )( pGF of period 1np

with two-level autocorrelation (may not be different).

2) Choose and , primitive elements of )( 2n

pGF and )( 2n

pGF ,

respectively.

3) Computer je ’s satisfying

10 ),(Tr 12 njn

n

epjj (2.2)

where )(Tr 2 xn

n is the trace function from )( 2n

pGF to )( 2n

pGF

and )( 2n

pGF with .0)(Tr 2 n

n

Page 20: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

20

Construction B : )32,,( 2 vvv signal set

1) Choose a and b , two-level autocorrelation sequences over )2(GF

with a prime period v .

2) Choose , a primitive element of )(vGF .

3) Computer je ’s satisfying

vje j

j 0 , . (2.3)

Lemma 2.1 : The shift sequence ),,,( 110 veee e , constructed

form Construction A for 1 npv or Construction B for v a prime,

satisfies the condition (2.1) of in Theorem 2.1.

A proof of this Lemma can be found in [7].

2.3.3 Comment

In )32,,( 2 vvv signal sets constructed form Construction A and

Construction B, we choose two-level autocorrelation sequences for binary

sequences a and b of period v . (In construction A, we also choose p-ary

Page 21: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

21

sequences of period v with two-level autocorrelation.) There are many

known constructions (that are m-sequences [9], GMW sequences [11],

Quadratic Residue Sequences(Legendre Sequences) [9], Hall’s Sextic

Residue Sequences [10], Jacobi symbol construction [8], and etc.) for binary

sequences of period v with two-level autocorrelation. The binary sequences

of period v for shift sequence ),,,( 110 veee e in Construction A for

12 nv or Construction B for v prime allow to utilize all types of two-

level autocorrelation sequences as “building blocks” except for a class of

two-level autocorrelation sequences of period v where v is a product of twin

prime p(p+2).

Therefore, if we find shift sequence ),,,( 110 veee e for

)2( ppv , we can design new )32,,( 2 vvv signal sets from

construction similar to Construction A or Construction B. In this new case,

we can use Jacobi symbol construction for binary sequences a and b of

period )2( ppv .

A family of pseudorandom sequences with low cross correlation, good

randomness, and large linear span such above signal set has important

application in code-division multiple-access (CDMA) communications and

Page 22: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

22

cryptology. The pseudorandom sequences with low cross correlation

employed in CDMA communications can successfully combat interference

from the other users who share a common channel [7].

Page 23: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

23

Chapter 3

Modular sonar sequence

In above Chapter, we review shift sequence ),,,( 110 veee e for

the construction of )32,,( 2 vvv signal sets, and if we find new

construction method of shift sequence ),,,( 110 veee e for

)2( ppv , we can design new )32,,( 2 vvv signal sets. In this Chapter

we review vv Modular sonar sequence that has same property with shift

sequence ),,,( 110 veee e . Because of same property of vv

Modular sonar sequence and shift sequence e , we can construct shift

sequence e by construction methods of vv Modular sonar sequence.

In the first section , we describe Modular sonar sequence with definition

and explain their properties. In the next section we introduce and explain

known construction methods of Modular sonar sequence, and we review

similarity of vv Modular sonar sequence and shift sequence e .

Page 24: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

24

3.1 Definition of Modular sonar sequence

Sonar sequence were introduced in [2] as examples of two-dimensional

synchronization patterns with minimum ambiguity.

For integers m and n, let }.,2,1{ and },2,1{ nNmM

Definition 3.1 : Regard M as a set of representatives of the integers modulo

m. A function MNf : has the distinct modular differences property if

for all integers h, i, and j, with ,,1 11 hnjiandnh

jimjfhjfifhif i m p l i e s ) ( m o d )()()()( . (3.1)

Definition 3.2 : An nm Modular sonar sequence is a function

MNf : with the distinct modular differences property.

Example 3.1 : The sequence 1 3 6 11 9 4 4 3 11 4 11 is a 11ⅹ11 Modular

sonar sequence (mod 11). (See Figure 3.1)

3.2 Constructions of Modular sonar sequence

In this section we introduce known sonar sequences constructions and

transformations in an attempt to produce better sonar sequences.

Page 25: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

25

1 3 6 11 9 4 4 3 11 4 11

2 3 5 9 6 0 10 8 4 7

5 8 3 4 6 10 7 1 0

10 6 9 4 5 7 0 8

8 1 9 3 2 0 7

3 1 8 0 6 7

3 0 5 4 2

2 8 9 0

10 1 5

3 8

10

Figure 3.1 : 11ⅹ11 Modular sonar sequence (Modulo 11, Length 11)

3.2.1 Known Modular sonar sequence constructions

A. Quadratic [3]

Let p be any odd prime and a, b, c be integer constants with a not

congruent to 0 (mod p). Then },,2,1{}1,,2,1{: ppf defined by

) (mod )( 2 pcbiaiif is )1( pp Modular sonar sequence.

Example 3.2 : If p=7, a=1, b=2, c=1 and )7 (mod )1(12)( 22 iiiif ,

then we can construction a 7ⅹ8 Modular sonar sequence.

Page 26: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

26

4 2 2 4 1 7(=0) 1 4 (Modulo 7, Length 8)

B. Exponential Welch [2] [6]

Let be a primitive element modular the prime p. Then

},,2,1{}1,,2,1{: ppf defined by iaif )( is a Modular

)1( pp sonar sequence.

Example 3.3 : If p=7, =3 and )7 (mod 3)( iif , then we can

construction a 7ⅹ6 Modular sonar sequence 3 2 6 4 5 1 (Modulo 7, Length 6).

C. Logarithmic Welch [6]

Let be a primitive element modular the prime p. Then

}1,,2,1{}1,,2,1{: ppf defined by iif alog)( is a modular

)1()1( pp sonar sequence.

Example 3.4 : If p=7, =3 and 7) (mod 3 ; log)( )(

3 iiif if , then we

can construction a 6ⅹ6 Modular sonar sequence 6 2 1 4 5 3 (Modulo 6,

Length 6).

Page 27: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

27

D. Lempel [2][6]

Let 2 rpq be a prime power, and let be a primitive element of )( rpGF .

Then }1,,2,1{}2,,2,1{: rr ppf defined by 1 iff )( jijif

is a modular )2()1( rr pp sonar sequence.

Example 3.5 : If 32 rpq and be a primitive element of )2( 3GF

whose irreducible polynomial over )2(GF is 1)( 3 xxxh , then

1264554136231 . We can

construction a 7ⅹ6 Modular sonar sequence 3 6 1 5 4 2 (Modulo 7,

Length 6).

E. Golomb [6]

Let 2 rpq be a prime power, and let and be a primitive

element of )( rpGF . Then }1,,2,1{}2,,2,1{: rr ppf defined by

1 iff )( jijif is a modular )2()1( rr pp sonar sequence.

Example 3.6 : If 32 rpq , be a primitive element of )2( 3GF

Page 28: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

28

whose irreducible polynomial over )2(GF is 1)( 3 xxxh and be

a primitive element of )2( 3GF whose irreducible polynomial over )2(GF

is 1)( 23 xxxh , then

1266544133251 .

We can construction a 7ⅹ6 Modular sonar sequence 5 3 1 4 6 2 (Modulo 7,

Length 6).

F. Extended exponential Welch [5]

Let be a primitive element modular the prime p and s an integer.

Then },,2,1{}1,,2,1,0{: ppf defined by

siaif )( (3.2)

is a modular pp sonar sequence.

Example 3.7 : If 7p , 3 , s=0 and )7 (mod 3)( iif , then we can

construction a 7ⅹ7 Modular sonar sequence 1 3 2 6 4 5 1 (Modulo 7,

Length 7).

Page 29: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

29

Table 3.1 : Summary of the Sonar Sequence Constructions

Constructions Length Range Modulo Reference

Quadratic 1 pn },,2,1{ p

pm [3]

Exponential Welch 1 pn },,2,1{ p

pm [2], [6]

Logarithmic Welch 1 pn }1,,2,1{ p

1 pm [6]

Lempel 2 rpn }1,,2,1{ rp 1 rpm [2], [6]

Golomb 2 rpn }1,,2,1{ rp 1 rpm [6]

Extended

Exponential Welch pn },,2,1{ p

pm [5]

Shift Sequence rpn }1,,2,1{ rp 1 rpm [4]

G. Shift sequence [4]

Let p be a prime, a primitive element of )( 2rpGF , and a

primitive element in )( rpGF .

For p=2, let }1,,2,1{},,2,1{: rr ppf be defined by

)(Tr)( ; ))((log)( 2)( ir

r

ipiifipi rr

βif (3.3)

where )(Tr2 xr

ris the trace function from )( 2rpGF to )( rpGF .

Page 30: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

30

For p odd, defined f similarly, except change the domain to

}.2/)1(2/)1(:{ rr pipi Then, f is a rr pp )1( Modular sonar

sequence.

Note : By known (to us) Modular sonar sequence constructions, the modulo

of Modular sonar sequence have three types that is 1 ,1 , rpp-p (see

Table 1).

3.2.2 Transformation of Modular sonar sequence

An nm Modular sonar sequence can be subjected to three

transformation in an attempt to produce better sonar sequences [5].

A. Addition by a modulo m, )(mod )()( maifif a .

This corresponds to cyclically rotation the rows of the sonar array a units.

Contiguous empty rows are rotated to the top of the sonar array, and

dropped to produce a better sonar array.

B. Multiplication by a unit u modulo m, )(mod )()( miufif u .

This corresponds to a permutation of the rows of the sonar array.

Page 31: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

31

Permutation are applied in attempt to increase the number of contiguous

empty rows in the sonar array.

C. Shearing by s modulo m, )(mod )()()( msiifif sshear .

This corresponds to shearing the columns of the sonar array by s units and

reducing modulo m. Shears are applied in an attempt to increase the number

of empty rows in the sonar array.

Note : If f is an nm Modular sonar sequence and u is a unit modulo

m, then g defined by )(mod )()( masiiufig is an nm

Modular sonar sequence.

3.3 Relation between vv Modular sonar sequence and

shift sequence e

Now we consider the definitions of distinct differences property and

Modular sonar sequence in above section. We can find that condition of

(3.1) for distinct differences property is similar to condition of (2.1) in

Theorem 2.1 for shift sequence e . If nm in equation (3.1), n in equation

(3.1) regard as v in equation (2.1), and h in equation (3.1) regard as s in

Page 32: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

32

equation (2.1), condition of (3.1) and (2.1) has a same property. Therefore

we can find that shift sequence e is same to vv Modular sonar

Sequence.

Two methods to construct the shift sequence e in section 2.3.2 are very

similar with construction method of Modular sonar sequence in section

3.2.1. From nn pp )1( Modular sonar sequence constructed by “Shift

Sequence” method, we can obtain )1()1( nn pp Modular sonar

sequence by eliminating the last column. Because any nm Modular

sonar sequence can be shortened to a )( inm Modular sonar sequence

by eliminating i columns from the ends of the sonar array. This

)1()1( nn pp Modular sonar sequence is same to shift sequence e ,

constructed with method in Construction A by similarity of condition of

(2.2) and (3.3). Also pp Modular sonar sequence constructed by

Extended Exponential Welch method is sane to shift sequence e , constructed

with method in Construction B by similarity of condition of (2.3) and (3.2).

Page 33: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

33

Table 3.2 : All Case of binary sequence with two-level autocorrelation and

vv Modular sonar sequence

Cases of binary sequences of period

v with two-level autocorrelation

Cases of vv Modular sonar

sequence (shift sequence e )

pv pv

12 nv 12 nv

)2( ppv unknown

In above Chapter, We knew that the cases of all known constructions for

binary sequences of period v with two-level autocorrelation are pv ,

1 npv , and )2( ppv . We also knew the construction method of

shift sequence e and vv Modular sonar sequence for pv or

1 npv , but the case of )2( ppv is not. (See Table 3.2)

Page 34: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

34

Chapter 4

)32,,( 2 vvv Signal Sets with v=p(p+2)

In Chapter 2, we observed that the two construction methods of

)32,,( 2 vvv signal set by two generating methods of shift sequence e .

The one of the case is 1 npv and the other is pv . From Modular

sonar sequence in Chapter 3, we obtain shift sequence e from vv

Modular sonar sequence that has same property with shift sequence e . By

construction method of Modular sonar sequence that is “Shift Sequence”

and “Extended Exponential Welch”, we construct two types of shift

sequence e in above cases. These two case cover all types of two-level

autocorrelation sequences as “building blocks” except for a class of two-

level autocorrelation sequences of period v where v is a twin prime p(p+2).

Therefore we can obtain new construction method of )32,,( 2 vvv

signal set in the case of )2( ppv if we find generating method of shift

Page 35: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

35

sequence e by )2()2( pppp Modular sonar sequence.

In this Chapter, we will start the first small case of 1553 v from

the exhaustive full search.

4.1 The case of v=3ⅹ5=15

4.1.1 Result Summary

By an exhaustive search, we found 9000 1515 Modular sonar

sequences. If we consider transformation by Addition by a modulo m which

is )(mod )()( maifif a , the number is reduced to 600(=9000/15).

Because all possible a are 0 to 14 for modulo 15m . Each these 600

sequences have 1 as the first element of sequence (see Appendix A~E). If

we also consider other transformation that is Multiplication by a unit u

modulo m or Shearing by s modulo m, the 600 1515 Modular sonar

sequences are grouped with 5 equivalent classes. Because }14,,2,1,0{ s

and

}14,13,11,8,7,4,2,1{15)} (mod 5 and 3 tocongruent not is ,150|{ iiiu ,

there are )815(120 equivalent sequences having 1 as the first element

of sequence in each class. Therefore, 1800 1515 Modular sonar

Page 36: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

36

sequences are grouped with 5 equivalent classes, and in each equivalent

class has )15158(1800 equivalent sequences having equivalence of

)(&)( igif in given by transformation equation asi iufig )()(

)(mod m .

Four out of five equivalent classes turned out to be the ones that can be

constructed by the known method, which in called “Shift Sequence” [4].

The remaining one class is new.

4.1.2 Analysis

As we know from above section, each of the 5 equivalent classes has

1800 equivalent sequences. Representative sequences from each of the 5

equivalent classes are :

Class 1 : e = (1,3,1,7,11,3,14,15,8,8,13,7,4,14,2)

Class 2 : e = (1,1,4,1,9,7,11,1,8,2,12,13,4,6,2)

Class 3 : e = (1,1,2,14,2,13,4,9,13,12,4,2,11,6,8)

Class 4 : e = (1,1,4,9,4,11,10,8,5,9,10,1,9,5,7)

Class 5 : e = (1,6,12,13,10,14,7,9,7,14,10,13,12,6,1)

Page 37: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

37

e 1 3 1 7 11 3 14 15 8 8 13 7 4 14 2

15 ●

14 ● ●

13 ●

12

11 ●

10

9

8 ● ●

7 ● ●

6

5

4 ●

3 ● ●

2 ●

1 ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array form of 1515 Modular sonar sequence in Class 1

1 3 1 7 11 3 14 15 8 8 13 7 4 14 2

⑬ 2 ⑨ ⑪ 8 ④ ⑭ 7 0 ⑩ 6 3 ⑤ 12

0 ⑪ ⑤ 4 ⑫ ③ 6 7 ⑩ 1 9 ⑧ 2

⑨ ⑦ ⑬ ⑧ ⑪ ⑩ 6 2 1 4 ⑭ 5

⑤ 0 ② ⑦ 3 ⑩ 1 8 4 ⑨ 11

⑬ ④ ① ⑭ 3 ⑤ 7 11 ⑨ 6

② ③ ⑧ ⑭ ⑬ ⑪ 10 1 6

① ⑩ ⑧ ⑨ 4 ⑭ 0 13

⑧ ⑩ ③ 0 7 ④ 12

⑧ ⑤ ⑨ 3 ⑫ 1

③ ⑪ ⑫ 3 9

⑨ ⑭ ② 5

⑫ ⑥ ⑭

② 1

Modular difference Triangle of 1515 Modular sonar sequence in Class 1

Figure 4.1 : Array form and Modular difference Triangle of sequence in Class 1

Page 38: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

38

e 1 1 4 1 9 7 11 1 8 2 12 13 4 6 2

15

14

13 ●

12 ●

11 ●

10

9 ●

8 ●

7 ●

6 ●

5

4 ● ●

3

2 ● ●

1 ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array form of 1515 Modular sonar sequence in Class 2

1 1 4 1 9 7 11 1 8 2 12 13 4 6 2

0 ⑫ 3 ⑦ 2 ⑪ 10 ⑧ 6 ⑤ ⑭ 9 ⑬ 4

⑫ 0 ⑩ ⑨ ⑬ 6 3 ⑭ ⑪ ④ 8 7 2

0 ⑦ ⑫ ⑤ 8 ⑭ 9 ⑤ ⑩ ⑬ 6 11

⑦ ⑨ ⑧ 0 1 5 ⑭ ③ 4 ⑪ 10

⑨ ⑤ 3 ⑧ 7 ⑩ ⑭ ⑫ 2 0

⑤ 0 ⑪ ⑭ ⑫ ⑨ 7 ⑩ 6

0 ⑧ 2 ④ ⑪ 3 5 ⑭

⑧ ⑭ ⑦ ③ 5 1 9

⑭ ④ ⑥ ⑫ 3 5

④ ③ 0 ⑩ 7

③ ⑫ ⑬ ⑭

⑫ ⑩ 2

⑩ ⑭

Modular difference Triangle of 1515 Modular sonar sequence in Class 2

Figure 4.2 : Array form and Modular difference Triangle of sequence in Class 2

Page 39: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

39

e 1 1 2 14 2 13 4 9 13 12 4 2 11 6 8

15

14 ●

13 ● ●

12 ●

11 ●

10

9 ●

8 ●

7

6 ●

5

4 ● ●

3

2 ● ● ●

1 ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array form of 1515 Modular sonar sequence in Class 3

1 1 2 14 2 13 4 9 13 12 4 2 11 6 8

0 ⑭ ③ 12 ④ 9 ⑩ ⑪ 1 8 2 ⑥ 5 ⑬

⑭ ② 0 1 ⑬ 4 ⑥ ⑫ 9 10 ⑧ ⑪ 3

② ⑭ ④ 10 ⑧ 0 ⑦ 5 11 1 ⑬ ⑨

⑭ ③ ⑬ 5 ④ 1 0 7 2 6 ⑪

③ ⑫ ⑧ 1 ⑤ 9 2 ⑬ 7 4

⑫ ⑦ ④ 2 ⑬ 11 ⑧ 3 5

⑦ ③ ⑤ 10 0 2 ⑬ 1

③ ④ ⑬ 12 ⑥ 7 ⑪

④ ⑫ 0 3 ⑪ 5

⑫ ⑭ ⑥ 8 ⑨

⑭ ⑤ ⑪ 6

⑤ ⑩ ⑨

⑩ ⑧

Modular difference Triangle of 1515 Modular sonar sequence in Class 3

Figure 4.3 : Array form and Modular difference Triangle of sequence in Class 3

Page 40: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

40

e 1 1 4 9 4 11 10 8 5 9 10 1 9 5 7

15

14

13

12

11 ●

10 ● ●

9 ● ● ●

8 ●

7 ●

6

5 ● ●

4 ● ●

3

2

1 ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array form of 1515 Modular sonar sequence in Class 4

1 1 4 9 4 11 10 8 5 9 10 1 9 5 7

0 ⑫ ⑩ 5 ⑧ 1 2 3 ⑪ ⑭ 9 ⑦ 4 ⑬

⑫ ⑦ 0 ⑬ ⑨ 3 5 ⑭ ⑩ 8 1 ⑪ 2

⑦ ⑫ ⑧ ⑭ ⑪ 6 1 ⑬ 4 0 5 ⑨

⑫ ⑤ ⑨ 1 ⑭ 2 0 7 ⑪ 4 3

⑤ ⑥ ⑪ 4 ⑩ 1 9 ⑭ 0 2

⑥ ⑧ ⑭ 0 ⑨ 10 1 3 ⑬

⑧ ⑪ ⑩ ⑭ 3 2 5 1

⑪ ⑦ ⑨ 8 ⑩ 6 3

⑦ ⑥ 3 0 ⑭ 4

⑥ 0 ⑩ 5 ⑫

0 ⑦ ⑭ 2

⑦ ⑪ ⑫

⑪ ⑨

Modular difference Triangle of 1515 Modular sonar sequence in Class 4

Figure 4.4 : Array form and Modular difference Triangle of sequence in Class 4

Page 41: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

41

e 1 6 12 13 10 14 7 9 7 14 10 13 12 6 1

15

14 ● ●

13 ● ●

12 ● ●

11

10 ● ●

9 ●

8

7 ● ●

6 ● ●

5

4

3

2

1 ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array form of 1515 Modular sonar sequence in Class 5

1 6 12 13 10 14 7 9 7 14 10 13 12 6 1

⑩ ⑨ ⑭ 3 ⑪ 7 ⑬ 2 ⑧ 4 ⑫ 1 6 5

④ ⑧ 2 ⑭ 3 5 0 ⑩ ⑫ 1 ⑬ 7 11

③ ⑪ ⑬ 6 1 7 ⑧ ⑭ ⑨ 2 4 12

⑥ ⑦ 5 4 3 0 ⑫ ⑪ ⑩ 8 9

② ⑭ 3 6 ⑪ 4 ⑨ ⑫ 1 13

⑨ ⑫ 5 ⑭ 0 1 ⑩ 3 6

⑦ ⑭ ⑬ 3 ⑫ 2 1 8

⑨ ⑦ 2 0 ⑬ 8 6

② ⑪ ⑭ 1 4 13

⑥ ⑧ 0 7 9

③ ⑨ 6 12

④ 0 11

⑩ 5

0

Modular difference Triangle of 1515 Modular sonar sequence in Class 5

Figure 4.5 : Array form and Modular difference Triangle of sequence in Class 5

Page 42: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

42

Figures 4.1~4.5 show that array form and modular difference triangle of

these representative sequences.

Following are some observation.

Observation 1 : Class 1 and Class 2 come from (known) “Shift Sequence”.

The representative sequences e = (1,3,1,7,11,3,14,15,8,8,13,7,4,14,2) of

1800 equivalent sequence in Class 1 are generated by “Shift Sequence”

method for )12()12( 44 Modular sonar sequence. All 1800 equivalent

sequence in Class 1 are the sequences of transformations of representative

sequence e =(1,3,1,7,11,3,14,15,8,8,13,7,4,14,2) by asi iufig )()(

)(mod m .

From “Shift Sequence” method, that is

}1,,2,1{}1,,2,1{: rr ppf

be defined by

)(Tr)( ; ))((log)( 2)( ir

r

ipiifipi rr

βif

Page 43: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

43

where )(Tr2 xr

ris the trace function from )( 2rpGF to )( rpGF ,

p=2, a primitive element of )( 2rpGF , and a primitive element in

)( rpGF , we can calculate )12()12( 44 Modular sonar sequence )(if .

In this case, a primitive element of )2( 8GF , and a primitive

element in )2( 4GF . Each shift sequences )(if were constructed with a

primitive element of )2( 8GF whose irreducible polynomials over

)2(GF are

1)( 2348 xxxxxf , 1)( 358 xxxxxf ,

1)( 2368 xxxxxf , 1)( 2568 xxxxxf ,

1)( 4568 xxxxxf , 1)( 278 xxxxxf ,

1)( 3578 xxxxxf , and 1)( 678 xxxxxf .

For example, if 12348 xxxxa , then we obtain 1515

Modular sonar sequence )(if = e = (2,4,2,8,12,4,15,1,9,9,14,8,5,15,3), that is

equivalent with representative sequence of Class 1, )(ig = e =

(1,3,1,7,11,3,14,15,8,8,13,7,4,14,2) by the equivalence of )(&)( igif given

Page 44: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

44

by transformation equation )15(mod 14)()( ifig )14,0,0( isu .

Similarly, the representative sequences e = (1,1,4,1,9,7,11,1,8,2,12,13,4,6,2)

of 1800 equivalent sequence in Class 2 are also generated by “Shift

Sequence” method for )12()12( 44 Modular sonar sequence. In this

case, “Shift Sequences” were constructed with a primitive element of

)2( 8GF whose irreducible polynomials over )2(GF are

1)( 2358 xxxxxf , 1)( 568 xxxxxf ,

1)( 3568 xxxxxf , 1)( 245678 xxxxxxxf ,

1)( 23468 xxxxxxxf , 1)( 23678 xxxxxxxf ,

1)( 25678 xxxxxxxf , and 1)( 2378 xxxxxf .

For example, if 12358 xxxxa , then we obtain 1515

Modular sonar sequence )(if = e = (1,2,6,4,13,12,2,8,1,11,7,9,1,4,1), that is

equivalent with representative sequence of Class 2, )(ig = e =

(1,1,4,1,9,7,11,1,8,2,12,13,4,6,2) by the equivalence of )(&)( igif given by

transformation equation )15(mod 14)()( iifig )0,14,0( isu .

Page 45: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

45

Observation 2 : Class 3 and Class 4 are the mirror image of Class 1 and

Class 2, respectively.

The representative sequences e = (1,1,2,14,2,13,4,9,13,12,4,2,11,6,8) of

1800 equivalent sequence in Class 3 are generated by mirror image of Class

1, that is

140 ),14()( iifig . (4.1)

By equation (4.1), we have e = (2,14,4,7,13,8,8,15,14,3,11,7,1,3,1) from

sequence e = (1,3,1,7,11,3,14,15,8,8,13,7,4,14,2) in Class 1. The sequence

e = (2,14,4,7,13,8,8,15,14,3,11,7,1,3,1) is a equivalent sequence of

representative sequence e = (1,1,2,14,2,13,4,9,13,12,4,2,11,6,8) in Class 3 with

transformation equation )15(mod 912)(8)( iifig )9,12,8( isu .

Each 1800 sequence in Class 3 have one to one corresponding pair (have

mirror image pair) with each 1800 sequence in Class 1 satisfying condition

of equation (4.1).

Similarly, the representative sequences e = (1,1,4,9,4,11,10,8,5,9,10,1,9,5,7)

Page 46: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

46

of 1800 equivalent sequence in Class 4 are generated by mirror image of

Class 2.

By equation (4.1), we have e = (2,6,4,13,12,2,8,1,11,7,9,1,4,1,1) from

sequence e = (1,1,4,1,9,7,11,1,8,2,12,13,4,6,2) in Class 2. The sequence

e = (2,6,4,13,12,2,8,1,11,7,9,1,4,1,1) is a equivalent sequence of

representative sequence e = (1,1,4,9,4,11,10,8,5,9,10,1,9,5,7) in Class 4 with

transformation equation )15(mod 44)(14)( iifig )4,4,14( isu .

Each 1800 sequence in Class 4 have also one to one corresponding pair

(have mirror image pair) with each 1800 sequence in Class 2 satisfying

condition of equation (4.1).

Observation 3 : Class 5 is “new”.

The rest 1800 equivalent sequences are sequences of transformation by

)()( asiiufig )15(mod with the representative sequence e =

(1,6,12,13,10,14,7,9,7,14,10,13,12,6,1) in Class 5.

Page 47: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

47

Why is this one equivalent class having 1800 equivalent sequences new?

1. For all of known (to us at the present time) construction methods for

nm Modular sonar sequences, )12()12( 44 Modular sonar

sequence are constructed by only one known method, which in called

“Shift Sequence”. As show in Table 3.1, the known construction

methods of Modular sonar sequence having 1 npm for their

modular are “Lempel”, “Golomb”, and “Shift Sequence”. Consider

length of these 3 methods, the “Shift Sequence” method can

mpn n 1 by eliminating the last column, but “Lempel” and

“Golomb” is not. We can construct 1515 Modular sonar sequence by

“Shift Sequence” method, but can not construct by “Lempel” or “Golomb

method. From “Lempel” or “Golomb” method, we only obtain

1415 Modular sonar sequence

2. The sequences of Class 1 and Class 2 cover all possible 1515 Modular

sonar sequences constructed by “Shift Sequence”. Because all possible

number of primitive element of )2( 8GF whose irreducible

polynomials over )2(GF for )12()12( 44 Modular sonar

sequences constructed by “Shift Sequence” method is 16, and 8 primitive

element are used for sequences in Class 1, and the other 8

Page 48: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

48

primitive element are used for sequences in Case 2.

3. As we know, Case 3 is obtained from Case 1 by (4.1) and Case 4 is

obtained from Case 2 by (4.1). Is Case 5 also obtained from Case 1 or

Case 2? It is not! Because all of the each 1800 sequence in Case 1

(Case 2 ) has one to one corresponding pair with sequence in Case 3

(Case 4) satisfying condition (4.1). All of the each 1800 sequence in

Case 5 has one to one corresponding with sequence in Class 5. In detail,

each )180015

7(840 sequence in Class 5 has one to one corresponding

with one of the other )180015

7(840 sequences in Class 5, and each

)180015

1(120 sequence has one to one corresponding with itself.

Therefore, Case 5 is a “new” class.

Observation 4: Property of Class 5

In this special case, for each u of Modular sonar sequence transformation

which is ) (mod )()( masiiufig , there is only one sequence having

reciprocal property that is

viivfif 0 ),()( for sequence )(if of period v. (4.2)

Page 49: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

49

For each u, there are 15 sequences, and 1 sequence having reciprocal

property, and the other 14 sequences have one to one corresponding with

each other. For example, the sequence obtained by transformation where

u=1,s=0,a=0 is corresponding with the sequence obtained by transformation

where u=1,s=12,a=0. All possible number of u is 8 and a is 15, so there are

120 sequences having reciprocal property.

From sequences having reciprocal property in Class 5, for example

e =(1,6,12,13,10,14,7,9,7,14,10,13,12,6,1), we also find some fact that is

first 8 elements of sequence e satisfies the following condition :

.81 allfor 8}80|0][),({ sssjeejsd sjj (4.3)

where

714 where)(15

0 7 where||

8 0 where

15 8 where)(15

][

sjjsjj

sjjsjj

sjjsjj

sjjsjj

sjj

eeee

eeee

eeee

eeee

ee

and 8][0 sjj ee .

This condition (4.3) means that half sequence (period 8) of Modular sonar

sequence of period 15 has the property similar to distinct difference property

(See Figure 4.4).

Page 50: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

50

1 6 12 13 10 14 7 9 7 14 10 13 12 6 1

⑤ ⑥ ① 3 ④ 7 ② 2 ⑦ 4 ③ 1 6 5

④ ⑦ 2 ① 3 5 ⑤ ③ 1 ② 7 ④

③ ④ ② 6 1 ① ⑥ 2 4 ③

⑥ ⑦ 5 4 ④ ⑤ ⑦ ⑥

② ① 3 ③ 1 ②

⑥ ③ 3 6

⑦ ⑦

Figure 4.4 : Difference Triangle for condition (4.2)

General condition (4.3) for sequence of odd period v is that,

.2

11 allfor

2

1}

2

10|0][),({

vss

vs

vjeejsd sjj

(4.4)

where

2

1)1( where)(

02

1 where||

2

10 where

2

1 where)(

][

veeveev

eev

ee

veeee

veev

eev

ee

sjjsjj

sjjsjj

sjjsjj

sjjsjj

sjj

Page 51: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

51

and 2

1][0

vee sjj

Theorem 1 : For any sequence ),,,( 110 veee e of odd period v that

has self-reciprocal property of condition (4.2), if the sequence e is a

vv Modular sonar sequence, then a sequence of period 2

1v that has first

2

1v elements of e satisfies condition (4.4).

Proof : If the sequence of period 2

1v that has first

2

1v elements of e

does not satisfy condition (4.4). There exist ),,()',(' jsdjsd

sv

jj

2

1'0 for some

2

11

vs , or .0),( jsd

If sjj eea is a original value of ),( jsd and sjj eea ''' is a

original value of )',(' jsd in condition (4.4),

)},(),,(),,(),,({ jsdvjsdjsdjsdva ,

)}',(),',(),',(),',({' jsdvjsdjsdjsdva .

Because a modular v is ),( jsdv or ),( jsd and 'a modular v is

)',(' jsdv or )',(' jsd , there exist 4 cases.

1. If ),()(mod jsdvva and )',()(mod' jsdvva ,

then )(mod')(mod vava .

Page 52: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

52

2. If ),()(mod jsdva and )',()(mod' jsdva ,

then )(mod')(mod vava .

3. If ),()(mod jsdvva and )',()(mod' jsdva ,

then )(mod')(mod vavva .

4. If ),()(mod jsdva and )',()(mod' jsdvva ,

then )(mod')(mod vavva .

In case 1 and 2,

)(mod)(mod '' veevee sjjsjj for sv

jj

2

1'0 (4.5)

In case 3 and 4, ')1()'()1()(mod' jvsjv eevav by self-reciprocal

property of condition (4.2), therefore

)(mod)(mod )'1()'1( veevee ssjvsjvsjj (4.6)

for '12

1

2

10 vsjvs

vs

vj

.

In the case of ,0),( jsd by self-reciprocal property of condition (4.2),

)(mod)(mod )1()1( veevee ssjvsjvsjj =0 (4.7)

for 12

1

2

10 vsjvs

vs

vj

.

Page 53: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

53

From (4.5), (4.6) and (4.7), the sequence ),,,( 110 veee e of period v

does not satisfy the distinct modular differences property. Therefore, for

any sequence ),,,( 110 veee e of odd period v having self-reciprocal

property, if the sequence of period 2

1v that has first

2

1v elements of

e does not satisfy condition (4.4), the sequence e is not a vv Modular

sonar sequence. □

4.2 The case of v=5ⅹ7=35

The second short case of )2( ppv is a v=5ⅹ7=35. When we

consider present computer hardware speed, exhaustive search of v=5ⅹ7=35

is impossible. Because hardware complexity is exponentially increased by

adding more length of the sequence. So we approached without exhaustive

search by using Theorem 4.1 and some algebraic idea.

Approach 1 : Using Theorem 4.1

If we use a Theorem 4.1, we can find 35ⅹ35 Modular sonar sequence by

Page 54: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

54

considering only first 18 elements of sequence.

If there exist vv Modular sonar sequence of period 3575 v , the

sequence has the same singularity property of 1515 Modular sonar

sequence (property from “New” self-reciprocal sequences of Class 5 in

above section except “known” sequences by “Shift Sequence” method).

Therefore the 3535 Modular sonar sequence will have self-reciprocal

property, too. For all sequence ),,,( 3410 eee e of period 35 having

self-reciprocal property, if there does not exist the sequence that has first 18

elements of e and satisfies condition (4.4), there dose not exist the

vv Modular sonar sequence of period 3575 v

We have exhaustive search for all sequence e of period 35 that has self-

reciprocal property by following algorithm.

1. Choose value 1 for first element of sequence e . We does not have to

consider other 2 to 35 value for first element of sequence, because of

addition transformation by a modulo m.

2. Choose value from 1 to 35 for second element of sequence e . If

second element satisfies condition (4.4) for 1,0 sj with first

element of sequence e , go Stage 3. Else if, return Stage 1.

3. Choose value from 1 to 35 for third element of sequence e . If third

element satisfies condition (4.4) for 31,20 sj with first

Page 55: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

55

element and second element of sequence e , go Stage 4. Else if,

return Stage 1.

4. Choose value from 1 to 35 for fourth element of sequence e . If

fourth element satisfies condition (4.4) for 41,30 sj with

first element, second element, and third element of sequence e , go

Stage 5. Else if, return Stage 1.

5. For 5th

~18th

elements of sequence e , computing satisfaction of

condition (4.4) by method of Stage 4.

6. If there are all of 1th

~18th

elements of sequence e are satisfy Stage

1-5, we can obtain 18th

~35th

elements of sequence e by

3518 ),35()( iifif .

If there exists the self-reciprocal sequence e satisfying all stage of

above algorithm, the sequence is or is not 3535 Modular sonar sequence.

Some of self-reciprocal sequence e is a 3535 Modular sonar sequence.

But if there does not exist the self-reciprocal sequence e satisfying all

stage of above algorithm, there does not exist 3535 Modular sonar

sequence.

From several repeated computing simulation (running time of

computing is about 7 days per one simulation), we dose not obtain the self-

reciprocal sequence e satisfying all stage of above algorithm.

Page 56: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

56

Approach 2 : Algebraic construction

We may be able to come up with an algebraic construction using the

following observation. There exists n such that )2( ppv is a divisor of

12 n . Consider the finite field nF2

and an element of order v in it.

Successive powers of will produce a sequence of length v over nF2

.

The final step is to see if there exists a transformation that sends this

sequence into those over vZ .

In the case of 3575)2( ppv , 35 is a divisor of 1212 . For

exam, if is a primitive element of )2( 12GF whose irreducible

polynomials over )2(GF is 1)( 4612 xxxxxf , then we can

consider an element 117 of order 35 in )2( 12GF . As see Figure 4.5,

successive powers of will produce a sequence of length 35 over 122F . If

we consider following transformation that is

),,,( 3521 xxxi x ,

),,,( 3521 yyyi

y ,

jx of

5

1

),(2n

n

i jnix (mod 35) and

Page 57: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

57

Figure 4.5: Example of Approach 2 for 35 by 35 Modular sonar sequence

jy of

12

1

),(2n

n

ijniy (mod 35)

where ),( jni is a value of ))12(mod(12 ni th-dimensional vector

of 12-dimensional vectors representation for j ,

then we can obtain a sequence of length 35 over 35Z . Finally, we observer

the sequence is 35 by 35 Modular sonar sequence or not.

In spite of several initial attempts, all for these approach failed.

Approach 3: Using Transformation of Modular sonar sequence

A main idea of Approach 3 is same as Approach 2 without using

Page 58: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

58

Figure 4.6: Example of Approach 3 for 35 by 35 Modular sonar sequence

transformation method of Modular sonar sequence.

Steps for Approach 3 are that

Step 1 : There exists n such that )2( ppv is a divisor of 12 n .

Step 2 : Consider the finite field nF2

and an element of order v in it.

Step 3 : Successive powers of will produce a sequence of length v

over nF2

.

Step 4 : Find vn 2 Modular sonar sequence by transformation that

sends this sequence into those over nZ2

.

Step 5 : Otain vv Modular sonar sequence by transformation of above

vn 2 Modular sonar sequence.

Page 59: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

59

Step 1~3 is same as Approach 2, and Figure 4.6 is example of these steps

in the case of v=35.

From Step 1~4, we can obtain some 35212 Modular sonar sequences.

A example of 35212 Modular sonar sequence is that

e =(3417,1107,2707,1682,2516,413,1607,3489,1591,599,3075,2675,2390,

3517,468,3268,532,1842,165,2947,3486,3124,1271,2954,899,199,2151,

3684,3352,2647,346,3616,965,2863,2048).

But fail to obtain any 3535 Modular sonar sequence by all

transformation method of above Modular sonar sequence.

Page 60: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

60

Chapter 5

Concluding Remarks

We review two construction methods of )32,,( 2 vvv signal set by

two generating methods of shift sequence e . The one of the case is

12 nv and the other is pv . From vv Modular sonar sequence, we

can obtain shift sequence e . Because they have same property with each

other. By construction method of Modular sonar sequence that is “Shift

Sequence” and “Extended Exponential Welch”, we construct two types of

shift sequence e in above cases. These two case cover all types of two-

level autocorrelation sequences except for a class of two-level

autocorrelation sequences of period v =p(p+2).

By an exhaustive search of first small case of 1553)2( ppv , we

find 9000 1515 Modular sonar sequences. If we consider transformation

by asi iufig )()( )(mod m , 9000 1515 Modular sonar sequences

are grouped with 5 equivalent classes, and in each equivalent class has

Page 61: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

61

)15158(1800 equivalent sequences.

Two out of five equivalent classes (Class 1 and 2) turned out to be the

ones that can be constructed by the known method, which in called “Shift

Sequence”. Each 1800 sequence in other two equivalent Classes 3 and 4 has

one to one corresponding pair (have mirror image pair) with each 1800

sequence in Class 1 and 2. One remain Class 5 is new. Because 1515

Modular sonar sequence is only constructed by “Shift Sequence” method,

Class 1 and 2 cover all sequences constructed by “Shift Sequence” method,

and Class 5 does not come from Class 1~4. Each sequence in Class 5 has

one to one corresponding with each other or itself.

Class 5 that has unknown “new” constructed method satisfies some

singular condition. For any sequence ),,,( 110 veee e of odd period v

that has self-reciprocal property, if the sequence e is a vv Modular sonar

sequence, then a sequence of period 2

1v that has first

2

1v elements of

e satisfies these singular condition in Class 5. Using this theorem, we can

Page 62: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

62

find 35ⅹ35 modular sonar sequence by considering only first 18 elements

of sequence. From several repeated computing simulation, we dose not find

35ⅹ35 modular sonar sequence.

Furthermore we approached this problem with some algebraic

constructions and transformations of the obtained Modular sonar sequences,

but unfortunately, all failed.

General case of )2()2( pppp Modular sonar sequence seems to

be nonexistent. Because if general case of )2()2( pppp Modular

sonar sequence is exist, the 35ⅹ35 Modular sonar sequence has to been

constructed by method from same property of unknown “new” case of

15ⅹ15 Modular sonar sequence.

Page 63: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

63

Appendix

A. 120 sequences in Class 1 have “1” as the first element of sequence

u= 1, s= 0, a= 0 : 1 3 1 7 11 3 14 15 8 8 13 7 4 14 2

u= 1, s= 1, a= 0 : 1 4 3 10 15 8 5 7 1 2 8 3 1 12 1

u= 1, s= 2, a= 0 : 1 5 5 13 4 13 11 14 9 11 3 14 13 10 15

u= 1, s= 3, a= 0 : 1 6 7 1 8 3 2 6 2 5 13 10 10 8 14

u= 1, s= 4, a= 0 : 1 7 9 4 12 8 8 13 10 14 8 6 7 6 13

u= 1, s= 5, a= 0 : 1 8 11 7 1 13 14 5 3 8 3 2 4 4 12

u= 1, s= 6, a= 0 : 1 9 13 10 5 3 5 12 11 2 13 13 1 2 11

u= 1, s= 7, a= 0 : 1 10 15 13 9 8 11 4 4 11 8 9 13 15 10

u= 1, s= 8, a= 0 : 1 11 2 1 13 13 2 11 12 5 3 5 10 13 9

u= 1, s= 9, a= 0 : 1 12 4 4 2 3 8 3 5 14 13 1 7 11 8

u= 1, s=10, a= 0 : 1 13 6 7 6 8 14 10 13 8 8 12 4 9 7

u= 1, s=11, a= 0 : 1 14 8 10 10 13 5 2 6 2 3 8 1 7 6

u= 1, s=12, a= 0 : 1 15 10 13 14 3 11 9 14 11 13 4 13 5 5

u= 1, s=13, a= 0 : 1 1 12 1 3 8 2 1 7 5 8 15 10 3 4

u= 1, s=14, a= 0 : 1 2 14 4 7 13 8 8 15 14 3 11 7 1 3

u= 2, s= 0, a=14 : 1 5 1 13 6 5 12 14 15 15 10 13 7 12 3

u= 2, s= 1, a=14 : 1 6 3 1 10 10 3 6 8 9 5 9 4 10 2

u= 2, s= 2, a=14 : 1 7 5 4 14 15 9 13 1 3 15 5 1 8 1

u= 2, s= 3, a=14 : 1 8 7 7 3 5 15 5 9 12 10 1 13 6 15

u= 2, s= 4, a=14 : 1 9 9 10 7 10 6 12 2 6 5 12 10 4 14

u= 2, s= 5, a=14 : 1 10 11 13 11 15 12 4 10 15 15 8 7 2 13

u= 2, s= 6, a=14 : 1 11 13 1 15 5 3 11 3 9 10 4 4 15 12

u= 2, s= 7, a=14 : 1 12 15 4 4 10 9 3 11 3 5 15 1 13 11

u= 2, s= 8, a=14 : 1 13 2 7 8 15 15 10 4 12 15 11 13 11 10

u= 2, s= 9, a=14 : 1 14 4 10 12 5 6 2 12 6 10 7 10 9 9

u= 2, s=10, a=14 : 1 15 6 13 1 10 12 9 5 15 5 3 7 7 8

u= 2, s=11, a=14 : 1 1 8 1 5 15 3 1 13 9 15 14 4 5 7

u= 2, s=12, a=14 : 1 2 10 4 9 5 9 8 6 3 10 10 1 3 6

u= 2, s=13, a=14 : 1 3 12 7 13 10 15 15 14 12 5 6 13 1 5

u= 2, s=14, a=14 : 1 4 14 10 2 15 6 7 7 6 15 2 10 14 4

u= 4, s= 0, a=12 : 1 9 1 10 11 9 8 12 14 14 4 10 13 8 5

u= 4, s= 1, a=12 : 1 10 3 13 15 14 14 4 7 8 14 6 10 6 4

Page 64: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

64

u= 4, s= 2, a=12 : 1 11 5 1 4 4 5 11 15 2 9 2 7 4 3

u= 4, s= 3, a=12 : 1 12 7 4 8 9 11 3 8 11 4 13 4 2 2

u= 4, s= 4, a=12 : 1 13 9 7 12 14 2 10 1 5 14 9 1 15 1

u= 4, s= 5, a=12 : 1 14 11 10 1 4 8 2 9 14 9 5 13 13 15

u= 4, s= 6, a=12 : 1 15 13 13 5 9 14 9 2 8 4 1 10 11 14

u= 4, s= 7, a=12 : 1 1 15 1 9 14 5 1 10 2 14 12 7 9 13

u= 4, s= 8, a=12 : 1 2 2 4 13 4 11 8 3 11 9 8 4 7 12

u= 4, s= 9, a=12 : 1 3 4 7 2 9 2 15 11 5 4 4 1 5 11

u= 4, s=10, a=12 : 1 4 6 10 6 14 8 7 4 14 14 15 13 3 10

u= 4, s=11, a=12 : 1 5 8 13 10 4 14 14 12 8 9 11 10 1 9

u= 4, s=12, a=12 : 1 6 10 1 14 9 5 6 5 2 4 7 7 14 8

u= 4, s=13, a=12 : 1 7 12 4 3 14 11 13 13 11 14 3 4 12 7

u= 4, s=14, a=12 : 1 8 14 7 7 4 2 5 6 5 9 14 1 10 6

u= 7, s= 0, a= 9 : 1 15 1 13 11 15 2 9 5 5 10 13 7 2 8

u= 7, s= 1, a= 9 : 1 1 3 1 15 5 8 1 13 14 5 9 4 15 7

u= 7, s= 2, a= 9 : 1 2 5 4 4 10 14 8 6 8 15 5 1 13 6

u= 7, s= 3, a= 9 : 1 3 7 7 8 15 5 15 14 2 10 1 13 11 5

u= 7, s= 4, a= 9 : 1 4 9 10 12 5 11 7 7 11 5 12 10 9 4

u= 7, s= 5, a= 9 : 1 5 11 13 1 10 2 14 15 5 15 8 7 7 3

u= 7, s= 6, a= 9 : 1 6 13 1 5 15 8 6 8 14 10 4 4 5 2

u= 7, s= 7, a= 9 : 1 7 15 4 9 5 14 13 1 8 5 15 1 3 1

u= 7, s= 8, a= 9 : 1 8 2 7 13 10 5 5 9 2 15 11 13 1 15

u= 7, s= 9, a= 9 : 1 9 4 10 2 15 11 12 2 11 10 7 10 14 14

u= 7, s=10, a= 9 : 1 10 6 13 6 5 2 4 10 5 5 3 7 12 13

u= 7, s=11, a= 9 : 1 11 8 1 10 10 8 11 3 14 15 14 4 10 12

u= 7, s=12, a= 9 : 1 12 10 4 14 15 14 3 11 8 10 10 1 8 11

u= 7, s=13, a= 9 : 1 13 12 7 3 5 5 10 4 2 5 6 13 6 10

u= 7, s=14, a= 9 : 1 14 14 10 7 10 11 2 12 11 15 2 10 4 9

u= 8, s= 0, a= 8 : 1 2 1 4 6 2 15 8 12 12 7 4 10 15 9

u= 8, s= 1, a= 8 : 1 3 3 7 10 7 6 15 5 6 2 15 7 13 8

u= 8, s= 2, a= 8 : 1 4 5 10 14 12 12 7 13 15 12 11 4 11 7

u= 8, s= 3, a= 8 : 1 5 7 13 3 2 3 14 6 9 7 7 1 9 6

u= 8, s= 4, a= 8 : 1 6 9 1 7 7 9 6 14 3 2 3 13 7 5

u= 8, s= 5, a= 8 : 1 7 11 4 11 12 15 13 7 12 12 14 10 5 4

u= 8, s= 6, a= 8 : 1 8 13 7 15 2 6 5 15 6 7 10 7 3 3

u= 8, s= 7, a= 8 : 1 9 15 10 4 7 12 12 8 15 2 6 4 1 2

u= 8, s= 8, a= 8 : 1 10 2 13 8 12 3 4 1 9 12 2 1 14 1

u= 8, s= 9, a= 8 : 1 11 4 1 12 2 9 11 9 3 7 13 13 12 15

u= 8, s=10, a= 8 : 1 12 6 4 1 7 15 3 2 12 2 9 10 10 14

u= 8, s=11, a= 8 : 1 13 8 7 5 12 6 10 10 6 12 5 7 8 13

Page 65: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

65

u= 8, s=12, a= 8 : 1 14 10 10 9 2 12 2 3 15 7 1 4 6 12

u= 8, s=13, a= 8 : 1 15 12 13 13 7 3 9 11 9 2 12 1 4 11

u= 8, s=14, a= 8 : 1 1 14 1 2 12 9 1 4 3 12 8 13 2 10

u=11, s= 0, a= 5 : 1 8 1 7 6 8 9 5 3 3 13 7 4 9 12

u=11, s= 1, a= 5 : 1 9 3 10 10 13 15 12 11 12 8 3 1 7 11

u=11, s= 2, a= 5 : 1 10 5 13 14 3 6 4 4 6 3 14 13 5 10

u=11, s= 3, a= 5 : 1 11 7 1 3 8 12 11 12 15 13 10 10 3 9

u=11, s= 4, a= 5 : 1 12 9 4 7 13 3 3 5 9 8 6 7 1 8

u=11, s= 5, a= 5 : 1 13 11 7 11 3 9 10 13 3 3 2 4 14 7

u=11, s= 6, a= 5 : 1 14 13 10 15 8 15 2 6 12 13 13 1 12 6

u=11, s= 7, a= 5 : 1 15 15 13 4 13 6 9 14 6 8 9 13 10 5

u=11, s= 8, a= 5 : 1 1 2 1 8 3 12 1 7 15 3 5 10 8 4

u=11, s= 9, a= 5 : 1 2 4 4 12 8 3 8 15 9 13 1 7 6 3

u=11, s=10, a= 5 : 1 3 6 7 1 13 9 15 8 3 8 12 4 4 2

u=11, s=11, a= 5 : 1 4 8 10 5 3 15 7 1 12 3 8 1 2 1

u=11, s=12, a= 5 : 1 5 10 13 9 8 6 14 9 6 13 4 13 15 15

u=11, s=13, a= 5 : 1 6 12 1 13 13 12 6 2 15 8 15 10 13 14

u=11, s=14, a= 5 : 1 7 14 4 2 3 3 13 10 9 3 11 7 11 13

u=13, s= 0, a= 3 : 1 12 1 4 11 12 5 3 2 2 7 4 10 5 14

u=13, s= 1, a= 3 : 1 13 3 7 15 2 11 10 10 11 2 15 7 3 13

u=13, s= 2, a= 3 : 1 14 5 10 4 7 2 2 3 5 12 11 4 1 12

u=13, s= 3, a= 3 : 1 15 7 13 8 12 8 9 11 14 7 7 1 14 11

u=13, s= 4, a= 3 : 1 1 9 1 12 2 14 1 4 8 2 3 13 12 10

u=13, s= 5, a= 3 : 1 2 11 4 1 7 5 8 12 2 12 14 10 10 9

u=13, s= 6, a= 3 : 1 3 13 7 5 12 11 15 5 11 7 10 7 8 8

u=13, s= 7, a= 3 : 1 4 15 10 9 2 2 7 13 5 2 6 4 6 7

u=13, s= 8, a= 3 : 1 5 2 13 13 7 8 14 6 14 12 2 1 4 6

u=13, s= 9, a= 3 : 1 6 4 1 2 12 14 6 14 8 7 13 13 2 5

u=13, s=10, a= 3 : 1 7 6 4 6 2 5 13 7 2 2 9 10 15 4

u=13, s=11, a= 3 : 1 8 8 7 10 7 11 5 15 11 12 5 7 13 3

u=13, s=12, a= 3 : 1 9 10 10 14 12 2 12 8 5 7 1 4 11 2

u=13, s=13, a= 3 : 1 10 12 13 3 2 8 4 1 14 2 12 1 9 1

u=13, s=14, a= 3 : 1 11 14 1 7 7 14 11 9 8 12 8 13 7 15

u=14, s= 0, a= 2 : 1 14 1 10 6 14 3 2 9 9 4 10 13 3 15

u=14, s= 1, a= 2 : 1 15 3 13 10 4 9 9 2 3 14 6 10 1 14

u=14, s= 2, a= 2 : 1 1 5 1 14 9 15 1 10 12 9 2 7 14 13

u=14, s= 3, a= 2 : 1 2 7 4 3 14 6 8 3 6 4 13 4 12 12

u=14, s= 4, a= 2 : 1 3 9 7 7 4 12 15 11 15 14 9 1 10 11

u=14, s= 5, a= 2 : 1 4 11 10 11 9 3 7 4 9 9 5 13 8 10

u=14, s= 6, a= 2 : 1 5 13 13 15 14 9 14 12 3 4 1 10 6 9

Page 66: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

66

u=14, s= 7, a= 2 : 1 6 15 1 4 4 15 6 5 12 14 12 7 4 8

u=14, s= 8, a= 2 : 1 7 2 4 8 9 6 13 13 6 9 8 4 2 7

u=14, s= 9, a= 2 : 1 8 4 7 12 14 12 5 6 15 4 4 1 15 6

u=14, s=10, a= 2 : 1 9 6 10 1 4 3 12 14 9 14 15 13 13 5

u=14, s=11, a= 2 : 1 10 8 13 5 9 9 4 7 3 9 11 10 11 4

u=14, s=12, a= 2 : 1 11 10 1 9 14 15 11 15 12 4 7 7 9 3

u=14, s=13, a= 2 : 1 12 12 4 13 4 6 3 8 6 14 3 4 7 2

u=14, s=14, a= 2 : 1 13 14 7 2 9 12 10 1 15 9 14 1 5 1

B. 120 sequences in Class 2 have “1” as the first element of sequence

u= 1, s= 0, a= 0 : 1 1 4 1 9 7 11 1 8 2 12 13 4 6 2

u= 1, s= 1, a= 0 : 1 2 6 4 13 12 2 8 1 11 7 9 1 4 1

u= 1, s= 2, a= 0 : 1 3 8 7 2 2 8 15 9 5 2 5 13 2 15

u= 1, s= 3, a= 0 : 1 4 10 10 6 7 14 7 2 14 12 1 10 15 14

u= 1, s= 4, a= 0 : 1 5 12 13 10 12 5 14 10 8 7 12 7 13 13

u= 1, s= 5, a= 0 : 1 6 14 1 14 2 11 6 3 2 2 8 4 11 12

u= 1, s= 6, a= 0 : 1 7 1 4 3 7 2 13 11 11 12 4 1 9 11

u= 1, s= 7, a= 0 : 1 8 3 7 7 12 8 5 4 5 7 15 13 7 10

u= 1, s= 8, a= 0 : 1 9 5 10 11 2 14 12 12 14 2 11 10 5 9

u= 1, s= 9, a= 0 : 1 10 7 13 15 7 5 4 5 8 12 7 7 3 8

u= 1, s=10, a= 0 : 1 11 9 1 4 12 11 11 13 2 7 3 4 1 7

u= 1, s=11, a= 0 : 1 12 11 4 8 2 2 3 6 11 2 14 1 14 6

u= 1, s=12, a= 0 : 1 13 13 7 12 7 8 10 14 5 12 10 13 12 5

u= 1, s=13, a= 0 : 1 14 15 10 1 12 14 2 7 14 7 6 10 10 4

u= 1, s=14, a= 0 : 1 15 2 13 5 2 5 9 15 8 2 2 7 8 3

u= 2, s= 0, a=14 : 1 1 7 1 2 13 6 1 15 3 8 10 7 11 3

u= 2, s= 1, a=14 : 1 2 9 4 6 3 12 8 8 12 3 6 4 9 2

u= 2, s= 2, a=14 : 1 3 11 7 10 8 3 15 1 6 13 2 1 7 1

u= 2, s= 3, a=14 : 1 4 13 10 14 13 9 7 9 15 8 13 13 5 15

u= 2, s= 4, a=14 : 1 5 15 13 3 3 15 14 2 9 3 9 10 3 14

u= 2, s= 5, a=14 : 1 6 2 1 7 8 6 6 10 3 13 5 7 1 13

u= 2, s= 6, a=14 : 1 7 4 4 11 13 12 13 3 12 8 1 4 14 12

u= 2, s= 7, a=14 : 1 8 6 7 15 3 3 5 11 6 3 12 1 12 11

u= 2, s= 8, a=14 : 1 9 8 10 4 8 9 12 4 15 13 8 13 10 10

u= 2, s= 9, a=14 : 1 10 10 13 8 13 15 4 12 9 8 4 10 8 9

u= 2, s=10, a=14 : 1 11 12 1 12 3 6 11 5 3 3 15 7 6 8

u= 2, s=11, a=14 : 1 12 14 4 1 8 12 3 13 12 13 11 4 4 7

u= 2, s=12, a=14 : 1 13 1 7 5 13 3 10 6 6 8 7 1 2 6

Page 67: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

67

u= 2, s=13, a=14 : 1 14 3 10 9 3 9 2 14 15 3 3 13 15 5

u= 2, s=14, a=14 : 1 15 5 13 13 8 15 9 7 9 13 14 10 13 4

u= 4, s= 0, a=12 : 1 1 13 1 3 10 11 1 14 5 15 4 13 6 5

u= 4, s= 1, a=12 : 1 2 15 4 7 15 2 8 7 14 10 15 10 4 4

u= 4, s= 2, a=12 : 1 3 2 7 11 5 8 15 15 8 5 11 7 2 3

u= 4, s= 3, a=12 : 1 4 4 10 15 10 14 7 8 2 15 7 4 15 2

u= 4, s= 4, a=12 : 1 5 6 13 4 15 5 14 1 11 10 3 1 13 1

u= 4, s= 5, a=12 : 1 6 8 1 8 5 11 6 9 5 5 14 13 11 15

u= 4, s= 6, a=12 : 1 7 10 4 12 10 2 13 2 14 15 10 10 9 14

u= 4, s= 7, a=12 : 1 8 12 7 1 15 8 5 10 8 10 6 7 7 13

u= 4, s= 8, a=12 : 1 9 14 10 5 5 14 12 3 2 5 2 4 5 12

u= 4, s= 9, a=12 : 1 10 1 13 9 10 5 4 11 11 15 13 1 3 11

u= 4, s=10, a=12 : 1 11 3 1 13 15 11 11 4 5 10 9 13 1 10

u= 4, s=11, a=12 : 1 12 5 4 2 5 2 3 12 14 5 5 10 14 9

u= 4, s=12, a=12 : 1 13 7 7 6 10 8 10 5 8 15 1 7 12 8

u= 4, s=13, a=12 : 1 14 9 10 10 15 14 2 13 2 10 12 4 10 7

u= 4, s=14, a=12 : 1 15 11 13 14 5 5 9 6 11 5 8 1 8 6

u= 7, s= 0, a= 9 : 1 1 7 1 12 13 11 1 5 8 3 10 7 6 8

u= 7, s= 1, a= 9 : 1 2 9 4 1 3 2 8 13 2 13 6 4 4 7

u= 7, s= 2, a= 9 : 1 3 11 7 5 8 8 15 6 11 8 2 1 2 6

u= 7, s= 3, a= 9 : 1 4 13 10 9 13 14 7 14 5 3 13 13 15 5

u= 7, s= 4, a= 9 : 1 5 15 13 13 3 5 14 7 14 13 9 10 13 4

u= 7, s= 5, a= 9 : 1 6 2 1 2 8 11 6 15 8 8 5 7 11 3

u= 7, s= 6, a= 9 : 1 7 4 4 6 13 2 13 8 2 3 1 4 9 2

u= 7, s= 7, a= 9 : 1 8 6 7 10 3 8 5 1 11 13 12 1 7 1

u= 7, s= 8, a= 9 : 1 9 8 10 14 8 14 12 9 5 8 8 13 5 15

u= 7, s= 9, a= 9 : 1 10 10 13 3 13 5 4 2 14 3 4 10 3 14

u= 7, s=10, a= 9 : 1 11 12 1 7 3 11 11 10 8 13 15 7 1 13

u= 7, s=11, a= 9 : 1 12 14 4 11 8 2 3 3 2 8 11 4 14 12

u= 7, s=12, a= 9 : 1 13 1 7 15 13 8 10 11 11 3 7 1 12 11

u= 7, s=13, a= 9 : 1 14 3 10 4 3 14 2 4 5 13 3 13 10 10

u= 7, s=14, a= 9 : 1 15 5 13 8 8 5 9 12 14 8 14 10 8 9

u= 8, s= 0, a= 8 : 1 1 10 1 5 4 6 1 12 9 14 7 10 11 9

u= 8, s= 1, a= 8 : 1 2 12 4 9 9 12 8 5 3 9 3 7 9 8

u= 8, s= 2, a= 8 : 1 3 14 7 13 14 3 15 13 12 4 14 4 7 7

u= 8, s= 3, a= 8 : 1 4 1 10 2 4 9 7 6 6 14 10 1 5 6

u= 8, s= 4, a= 8 : 1 5 3 13 6 9 15 14 14 15 9 6 13 3 5

u= 8, s= 5, a= 8 : 1 6 5 1 10 14 6 6 7 9 4 2 10 1 4

u= 8, s= 6, a= 8 : 1 7 7 4 14 4 12 13 15 3 14 13 7 14 3

u= 8, s= 7, a= 8 : 1 8 9 7 3 9 3 5 8 12 9 9 4 12 2

Page 68: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

68

u= 8, s= 8, a= 8 : 1 9 11 10 7 14 9 12 1 6 4 5 1 10 1

u= 8, s= 9, a= 8 : 1 10 13 13 11 4 15 4 9 15 14 1 13 8 15

u= 8, s=10, a= 8 : 1 11 15 1 15 9 6 11 2 9 9 12 10 6 14

u= 8, s=11, a= 8 : 1 12 2 4 4 14 12 3 10 3 4 8 7 4 13

u= 8, s=12, a= 8 : 1 13 4 7 8 4 3 10 3 12 14 4 4 2 12

u= 8, s=13, a= 8 : 1 14 6 10 12 9 9 2 11 6 9 15 1 15 11

u= 8, s=14, a= 8 : 1 15 8 13 1 14 15 9 4 15 4 11 13 13 10

u=11, s= 0, a= 5 : 1 1 4 1 14 7 6 1 3 12 2 13 4 11 12

u=11, s= 1, a= 5 : 1 2 6 4 3 12 12 8 11 6 12 9 1 9 11

u=11, s= 2, a= 5 : 1 3 8 7 7 2 3 15 4 15 7 5 13 7 10

u=11, s= 3, a= 5 : 1 4 10 10 11 7 9 7 12 9 2 1 10 5 9

u=11, s= 4, a= 5 : 1 5 12 13 15 12 15 14 5 3 12 12 7 3 8

u=11, s= 5, a= 5 : 1 6 14 1 4 2 6 6 13 12 7 8 4 1 7

u=11, s= 6, a= 5 : 1 7 1 4 8 7 12 13 6 6 2 4 1 14 6

u=11, s= 7, a= 5 : 1 8 3 7 12 12 3 5 14 15 12 15 13 12 5

u=11, s= 8, a= 5 : 1 9 5 10 1 2 9 12 7 9 7 11 10 10 4

u=11, s= 9, a= 5 : 1 10 7 13 5 7 15 4 15 3 2 7 7 8 3

u=11, s=10, a= 5 : 1 11 9 1 9 12 6 11 8 12 12 3 4 6 2

u=11, s=11, a= 5 : 1 12 11 4 13 2 12 3 1 6 7 14 1 4 1

u=11, s=12, a= 5 : 1 13 13 7 2 7 3 10 9 15 2 10 13 2 15

u=11, s=13, a= 5 : 1 14 15 10 6 12 9 2 2 9 12 6 10 15 14

u=11, s=14, a= 5 : 1 15 2 13 10 2 15 9 10 3 7 2 7 13 13

u=13, s= 0, a= 3 : 1 1 10 1 15 4 11 1 2 14 9 7 10 6 14

u=13, s= 1, a= 3 : 1 2 12 4 4 9 2 8 10 8 4 3 7 4 13

u=13, s= 2, a= 3 : 1 3 14 7 8 14 8 15 3 2 14 14 4 2 12

u=13, s= 3, a= 3 : 1 4 1 10 12 4 14 7 11 11 9 10 1 15 11

u=13, s= 4, a= 3 : 1 5 3 13 1 9 5 14 4 5 4 6 13 13 10

u=13, s= 5, a= 3 : 1 6 5 1 5 14 11 6 12 14 14 2 10 11 9

u=13, s= 6, a= 3 : 1 7 7 4 9 4 2 13 5 8 9 13 7 9 8

u=13, s= 7, a= 3 : 1 8 9 7 13 9 8 5 13 2 4 9 4 7 7

u=13, s= 8, a= 3 : 1 9 11 10 2 14 14 12 6 11 14 5 1 5 6

u=13, s= 9, a= 3 : 1 10 13 13 6 4 5 4 14 5 9 1 13 3 5

u=13, s=10, a= 3 : 1 11 15 1 10 9 11 11 7 14 4 12 10 1 4

u=13, s=11, a= 3 : 1 12 2 4 14 14 2 3 15 8 14 8 7 14 3

u=13, s=12, a= 3 : 1 13 4 7 3 4 8 10 8 2 9 4 4 12 2

u=13, s=13, a= 3 : 1 14 6 10 7 9 14 2 1 11 4 15 1 10 1

u=13, s=14, a= 3 : 1 15 8 13 11 14 5 9 9 5 14 11 13 8 15

u=14, s= 0, a= 2 : 1 1 13 1 8 10 6 1 9 15 5 4 13 11 15

u=14, s= 1, a= 2 : 1 2 15 4 12 15 12 8 2 9 15 15 10 9 14

u=14, s= 2, a= 2 : 1 3 2 7 1 5 3 15 10 3 10 11 7 7 13

Page 69: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

69

u=14, s= 3, a= 2 : 1 4 4 10 5 10 9 7 3 12 5 7 4 5 12

u=14, s= 4, a= 2 : 1 5 6 13 9 15 15 14 11 6 15 3 1 3 11

u=14, s= 5, a= 2 : 1 6 8 1 13 5 6 6 4 15 10 14 13 1 10

u=14, s= 6, a= 2 : 1 7 10 4 2 10 12 13 12 9 5 10 10 14 9

u=14, s= 7, a= 2 : 1 8 12 7 6 15 3 5 5 3 15 6 7 12 8

u=14, s= 8, a= 2 : 1 9 14 10 10 5 9 12 13 12 10 2 4 10 7

u=14, s= 9, a= 2 : 1 10 1 13 14 10 15 4 6 6 5 13 1 8 6

u=14, s=10, a= 2 : 1 11 3 1 3 15 6 11 14 15 15 9 13 6 5

u=14, s=11, a= 2 : 1 12 5 4 7 5 12 3 7 9 10 5 10 4 4

u=14, s=12, a= 2 : 1 13 7 7 11 10 3 10 15 3 5 1 7 2 3

u=14, s=13, a= 2 : 1 14 9 10 15 15 9 2 8 12 15 12 4 15 2

u=14, s=14, a= 2 : 1 15 11 13 4 5 15 9 1 6 10 8 1 13 1

C. 120 sequences in Class 3 have “1” as the first element of sequence u= 1, s= 0, a= 0 : 1 1 2 14 2 13 4 9 13 12 4 2 11 6 8

u= 1, s= 1, a= 0 : 1 2 4 2 6 3 10 1 6 6 14 13 8 4 7

u= 1, s= 2, a= 0 : 1 3 6 5 10 8 1 8 14 15 9 9 5 2 6

u= 1, s= 3, a= 0 : 1 4 8 8 14 13 7 15 7 9 4 5 2 15 5

u= 1, s= 4, a= 0 : 1 5 10 11 3 3 13 7 15 3 14 1 14 13 4

u= 1, s= 5, a= 0 : 1 6 12 14 7 8 4 14 8 12 9 12 11 11 3

u= 1, s= 6, a= 0 : 1 7 14 2 11 13 10 6 1 6 4 8 8 9 2

u= 1, s= 7, a= 0 : 1 8 1 5 15 3 1 13 9 15 14 4 5 7 1

u= 1, s= 8, a= 0 : 1 9 3 8 4 8 7 5 2 9 9 15 2 5 15

u= 1, s= 9, a= 0 : 1 10 5 11 8 13 13 12 10 3 4 11 14 3 14

u= 1, s=10, a= 0 : 1 11 7 14 12 3 4 4 3 12 14 7 11 1 13

u= 1, s=11, a= 0 : 1 12 9 2 1 8 10 11 11 6 9 3 8 14 12

u= 1, s=12, a= 0 : 1 13 11 5 5 13 1 3 4 15 4 14 5 12 11

u= 1, s=13, a= 0 : 1 14 13 8 9 3 7 10 12 9 14 10 2 10 10

u= 1, s=14, a= 0 : 1 15 15 11 13 8 13 2 5 3 9 6 14 8 9

u= 2, s= 0, a=14 : 1 1 3 12 3 10 7 2 10 8 7 3 6 11 15

u= 2, s= 1, a=14 : 1 2 5 15 7 15 13 9 3 2 2 14 3 9 14

u= 2, s= 2, a=14 : 1 3 7 3 11 5 4 1 11 11 12 10 15 7 13

u= 2, s= 3, a=14 : 1 4 9 6 15 10 10 8 4 5 7 6 12 5 12

u= 2, s= 4, a=14 : 1 5 11 9 4 15 1 15 12 14 2 2 9 3 11

u= 2, s= 5, a=14 : 1 6 13 12 8 5 7 7 5 8 12 13 6 1 10

u= 2, s= 6, a=14 : 1 7 15 15 12 10 13 14 13 2 7 9 3 14 9

u= 2, s= 7, a=14 : 1 8 2 3 1 15 4 6 6 11 2 5 15 12 8

u= 2, s= 8, a=14 : 1 9 4 6 5 5 10 13 14 5 12 1 12 10 7

u= 2, s= 9, a=14 : 1 10 6 9 9 10 1 5 7 14 7 12 9 8 6

Page 70: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

70

u= 2, s=10, a=14 : 1 11 8 12 13 15 7 12 15 8 2 8 6 6 5

u= 2, s=11, a=14 : 1 12 10 15 2 5 13 4 8 2 12 4 3 4 4

u= 2, s=12, a=14 : 1 13 12 3 6 10 4 11 1 11 7 15 15 2 3

u= 2, s=13, a=14 : 1 14 14 6 10 15 10 3 9 5 2 11 12 15 2

u= 2, s=14, a=14 : 1 15 1 9 14 5 1 10 2 14 12 7 9 13 1

u= 4, s= 0, a=12 : 1 1 5 8 5 4 13 3 4 15 13 5 11 6 14

u= 4, s= 1, a=12 : 1 2 7 11 9 9 4 10 12 9 8 1 8 4 13

u= 4, s= 2, a=12 : 1 3 9 14 13 14 10 2 5 3 3 12 5 2 12

u= 4, s= 3, a=12 : 1 4 11 2 2 4 1 9 13 12 13 8 2 15 11

u= 4, s= 4, a=12 : 1 5 13 5 6 9 7 1 6 6 8 4 14 13 10

u= 4, s= 5, a=12 : 1 6 15 8 10 14 13 8 14 15 3 15 11 11 9

u= 4, s= 6, a=12 : 1 7 2 11 14 4 4 15 7 9 13 11 8 9 8

u= 4, s= 7, a=12 : 1 8 4 14 3 9 10 7 15 3 8 7 5 7 7

u= 4, s= 8, a=12 : 1 9 6 2 7 14 1 14 8 12 3 3 2 5 6

u= 4, s= 9, a=12 : 1 10 8 5 11 4 7 6 1 6 13 14 14 3 5

u= 4, s=10, a=12 : 1 11 10 8 15 9 13 13 9 15 8 10 11 1 4

u= 4, s=11, a=12 : 1 12 12 11 4 14 4 5 2 9 3 6 8 14 3

u= 4, s=12, a=12 : 1 13 14 14 8 4 10 12 10 3 13 2 5 12 2

u= 4, s=13, a=12 : 1 14 1 2 12 9 1 4 3 12 8 13 2 10 1

u= 4, s=14, a=12 : 1 15 3 5 1 14 7 11 11 6 3 9 14 8 15

u= 7, s= 0, a= 9 : 1 1 8 2 8 10 7 12 10 3 7 8 11 6 5

u= 7, s= 1, a= 9 : 1 2 10 5 12 15 13 4 3 12 2 4 8 4 4

u= 7, s= 2, a= 9 : 1 3 12 8 1 5 4 11 11 6 12 15 5 2 3

u= 7, s= 3, a= 9 : 1 4 14 11 5 10 10 3 4 15 7 11 2 15 2

u= 7, s= 4, a= 9 : 1 5 1 14 9 15 1 10 12 9 2 7 14 13 1

u= 7, s= 5, a= 9 : 1 6 3 2 13 5 7 2 5 3 12 3 11 11 15

u= 7, s= 6, a= 9 : 1 7 5 5 2 10 13 9 13 12 7 14 8 9 14

u= 7, s= 7, a= 9 : 1 8 7 8 6 15 4 1 6 6 2 10 5 7 13

u= 7, s= 8, a= 9 : 1 9 9 11 10 5 10 8 14 15 12 6 2 5 12

u= 7, s= 9, a= 9 : 1 10 11 14 14 10 1 15 7 9 7 2 14 3 11

u= 7, s=10, a= 9 : 1 11 13 2 3 15 7 7 15 3 2 13 11 1 10

u= 7, s=11, a= 9 : 1 12 15 5 7 5 13 14 8 12 12 9 8 14 9

u= 7, s=12, a= 9 : 1 13 2 8 11 10 4 6 1 6 7 5 5 12 8

u= 7, s=13, a= 9 : 1 14 4 11 15 15 10 13 9 15 2 1 2 10 7

u= 7, s=14, a= 9 : 1 15 6 14 4 5 1 5 2 9 12 12 14 8 6

u= 8, s= 0, a= 8 : 1 1 9 15 9 7 10 5 7 14 10 9 6 11 12

u= 8, s= 1, a= 8 : 1 2 11 3 13 12 1 12 15 8 5 5 3 9 11

u= 8, s= 2, a= 8 : 1 3 13 6 2 2 7 4 8 2 15 1 15 7 10

u= 8, s= 3, a= 8 : 1 4 15 9 6 7 13 11 1 11 10 12 12 5 9

u= 8, s= 4, a= 8 : 1 5 2 12 10 12 4 3 9 5 5 8 9 3 8

Page 71: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

71

u= 8, s= 5, a= 8 : 1 6 4 15 14 2 10 10 2 14 15 4 6 1 7

u= 8, s= 6, a= 8 : 1 7 6 3 3 7 1 2 10 8 10 15 3 14 6

u= 8, s= 7, a= 8 : 1 8 8 6 7 12 7 9 3 2 5 11 15 12 5

u= 8, s= 8, a= 8 : 1 9 10 9 11 2 13 1 11 11 15 7 12 10 4

u= 8, s= 9, a= 8 : 1 10 12 12 15 7 4 8 4 5 10 3 9 8 3

u= 8, s=10, a= 8 : 1 11 14 15 4 12 10 15 12 14 5 14 6 6 2

u= 8, s=11, a= 8 : 1 12 1 3 8 2 1 7 5 8 15 10 3 4 1

u= 8, s=12, a= 8 : 1 13 3 6 12 7 7 14 13 2 10 6 15 2 15

u= 8, s=13, a= 8 : 1 14 5 9 1 12 13 6 6 11 5 2 12 15 14

u= 8, s=14, a= 8 : 1 15 7 12 5 2 4 13 14 5 15 13 9 13 13

u=11, s= 0, a= 5 : 1 1 12 9 12 13 4 14 13 2 4 12 6 11 3

u=11, s= 1, a= 5 : 1 2 14 12 1 3 10 6 6 11 14 8 3 9 2

u=11, s= 2, a= 5 : 1 3 1 15 5 8 1 13 14 5 9 4 15 7 1

u=11, s= 3, a= 5 : 1 4 3 3 9 13 7 5 7 14 4 15 12 5 15

u=11, s= 4, a= 5 : 1 5 5 6 13 3 13 12 15 8 14 11 9 3 14

u=11, s= 5, a= 5 : 1 6 7 9 2 8 4 4 8 2 9 7 6 1 13

u=11, s= 6, a= 5 : 1 7 9 12 6 13 10 11 1 11 4 3 3 14 12

u=11, s= 7, a= 5 : 1 8 11 15 10 3 1 3 9 5 14 14 15 12 11

u=11, s= 8, a= 5 : 1 9 13 3 14 8 7 10 2 14 9 10 12 10 10

u=11, s= 9, a= 5 : 1 10 15 6 3 13 13 2 10 8 4 6 9 8 9

u=11, s=10, a= 5 : 1 11 2 9 7 3 4 9 3 2 14 2 6 6 8

u=11, s=11, a= 5 : 1 12 4 12 11 8 10 1 11 11 9 13 3 4 7

u=11, s=12, a= 5 : 1 13 6 15 15 13 1 8 4 5 4 9 15 2 6

u=11, s=13, a= 5 : 1 14 8 3 4 3 7 15 12 14 14 5 12 15 5

u=11, s=14, a= 5 : 1 15 10 6 8 8 13 7 5 8 9 1 9 13 4

u=13, s= 0, a= 3 : 1 1 14 5 14 7 10 15 7 9 10 14 11 6 2

u=13, s= 1, a= 3 : 1 2 1 8 3 12 1 7 15 3 5 10 8 4 1

u=13, s= 2, a= 3 : 1 3 3 11 7 2 7 14 8 12 15 6 5 2 15

u=13, s= 3, a= 3 : 1 4 5 14 11 7 13 6 1 6 10 2 2 15 14

u=13, s= 4, a= 3 : 1 5 7 2 15 12 4 13 9 15 5 13 14 13 13

u=13, s= 5, a= 3 : 1 6 9 5 4 2 10 5 2 9 15 9 11 11 12

u=13, s= 6, a= 3 : 1 7 11 8 8 7 1 12 10 3 10 5 8 9 11

u=13, s= 7, a= 3 : 1 8 13 11 12 12 7 4 3 12 5 1 5 7 10

u=13, s= 8, a= 3 : 1 9 15 14 1 2 13 11 11 6 15 12 2 5 9

u=13, s= 9, a= 3 : 1 10 2 2 5 7 4 3 4 15 10 8 14 3 8

u=13, s=10, a= 3 : 1 11 4 5 9 12 10 10 12 9 5 4 11 1 7

u=13, s=11, a= 3 : 1 12 6 8 13 2 1 2 5 3 15 15 8 14 6

u=13, s=12, a= 3 : 1 13 8 11 2 7 7 9 13 12 10 11 5 12 5

u=13, s=13, a= 3 : 1 14 10 14 6 12 13 1 6 6 5 7 2 10 4

u=13, s=14, a= 3 : 1 15 12 2 10 2 4 8 14 15 15 3 14 8 3

Page 72: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

72

u=14, s= 0, a= 2 : 1 1 15 3 15 4 13 8 4 5 13 15 6 11 9

u=14, s= 1, a= 2 : 1 2 2 6 4 9 4 15 12 14 8 11 3 9 8

u=14, s= 2, a= 2 : 1 3 4 9 8 14 10 7 5 8 3 7 15 7 7

u=14, s= 3, a= 2 : 1 4 6 12 12 4 1 14 13 2 13 3 12 5 6

u=14, s= 4, a= 2 : 1 5 8 15 1 9 7 6 6 11 8 14 9 3 5

u=14, s= 5, a= 2 : 1 6 10 3 5 14 13 13 14 5 3 10 6 1 4

u=14, s= 6, a= 2 : 1 7 12 6 9 4 4 5 7 14 13 6 3 14 3

u=14, s= 7, a= 2 : 1 8 14 9 13 9 10 12 15 8 8 2 15 12 2

u=14, s= 8, a= 2 : 1 9 1 12 2 14 1 4 8 2 3 13 12 10 1

u=14, s= 9, a= 2 : 1 10 3 15 6 4 7 11 1 11 13 9 9 8 15

u=14, s=10, a= 2 : 1 11 5 3 10 9 13 3 9 5 8 5 6 6 14

u=14, s=11, a= 2 : 1 12 7 6 14 14 4 10 2 14 3 1 3 4 13

u=14, s=12, a= 2 : 1 13 9 9 3 4 10 2 10 8 13 12 15 2 12

u=14, s=13, a= 2 : 1 14 11 12 7 9 1 9 3 2 8 8 12 15 11

u=14, s=14, a= 2 : 1 15 13 15 11 14 7 1 11 11 3 4 9 13 10

D. 120 sequences in Class 4 have “1” as the first element of sequence

u= 1, s= 0, a= 0 : 1 1 4 9 4 11 10 8 5 9 10 1 9 5 7

u= 1, s= 1, a= 0 : 1 2 6 12 8 1 1 15 13 3 5 12 6 3 6

u= 1, s= 2, a= 0 : 1 3 8 15 12 6 7 7 6 12 15 8 3 1 5

u= 1, s= 3, a= 0 : 1 4 10 3 1 11 13 14 14 6 10 4 15 14 4

u= 1, s= 4, a= 0 : 1 5 12 6 5 1 4 6 7 15 5 15 12 12 3

u= 1, s= 5, a= 0 : 1 6 14 9 9 6 10 13 15 9 15 11 9 10 2

u= 1, s= 6, a= 0 : 1 7 1 12 13 11 1 5 8 3 10 7 6 8 1

u= 1, s= 7, a= 0 : 1 8 3 15 2 1 7 12 1 12 5 3 3 6 15

u= 1, s= 8, a= 0 : 1 9 5 3 6 6 13 4 9 6 15 14 15 4 14

u= 1, s= 9, a= 0 : 1 10 7 6 10 11 4 11 2 15 10 10 12 2 13

u= 1, s=10, a= 0 : 1 11 9 9 14 1 10 3 10 9 5 6 9 15 12

u= 1, s=11, a= 0 : 1 12 11 12 3 6 1 10 3 3 15 2 6 13 11

u= 1, s=12, a= 0 : 1 13 13 15 7 11 7 2 11 12 10 13 3 11 10

u= 1, s=13, a= 0 : 1 14 15 3 11 1 13 9 4 6 5 9 15 9 9

u= 1, s=14, a= 0 : 1 15 2 6 15 6 4 1 12 15 15 5 12 7 8

u= 2, s= 0, a=14 : 1 1 7 2 7 6 4 15 9 2 4 1 2 9 13

u= 2, s= 1, a=14 : 1 2 9 5 11 11 10 7 2 11 14 12 14 7 12

u= 2, s= 2, a=14 : 1 3 11 8 15 1 1 14 10 5 9 8 11 5 11

u= 2, s= 3, a=14 : 1 4 13 11 4 6 7 6 3 14 4 4 8 3 10

u= 2, s= 4, a=14 : 1 5 15 14 8 11 13 13 11 8 14 15 5 1 9

u= 2, s= 5, a=14 : 1 6 2 2 12 1 4 5 4 2 9 11 2 14 8

Page 73: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

73

u= 2, s= 6, a=14 : 1 7 4 5 1 6 10 12 12 11 4 7 14 12 7

u= 2, s= 7, a=14 : 1 8 6 8 5 11 1 4 5 5 14 3 11 10 6

u= 2, s= 8, a=14 : 1 9 8 11 9 1 7 11 13 14 9 14 8 8 5

u= 2, s= 9, a=14 : 1 10 10 14 13 6 13 3 6 8 4 10 5 6 4

u= 2, s=10, a=14 : 1 11 12 2 2 11 4 10 14 2 14 6 2 4 3

u= 2, s=11, a=14 : 1 12 14 5 6 1 10 2 7 11 9 2 14 2 2

u= 2, s=12, a=14 : 1 13 1 8 10 6 1 9 15 5 4 13 11 15 1

u= 2, s=13, a=14 : 1 14 3 11 14 11 7 1 8 14 14 9 8 13 15

u= 2, s=14, a=14 : 1 15 5 14 3 1 13 8 1 8 9 5 5 11 14

u= 4, s= 0, a=12 : 1 1 13 3 13 11 7 14 2 3 7 1 3 2 10

u= 4, s= 1, a=12 : 1 2 15 6 2 1 13 6 10 12 2 12 15 15 9

u= 4, s= 2, a=12 : 1 3 2 9 6 6 4 13 3 6 12 8 12 13 8

u= 4, s= 3, a=12 : 1 4 4 12 10 11 10 5 11 15 7 4 9 11 7

u= 4, s= 4, a=12 : 1 5 6 15 14 1 1 12 4 9 2 15 6 9 6

u= 4, s= 5, a=12 : 1 6 8 3 3 6 7 4 12 3 12 11 3 7 5

u= 4, s= 6, a=12 : 1 7 10 6 7 11 13 11 5 12 7 7 15 5 4

u= 4, s= 7, a=12 : 1 8 12 9 11 1 4 3 13 6 2 3 12 3 3

u= 4, s= 8, a=12 : 1 9 14 12 15 6 10 10 6 15 12 14 9 1 2

u= 4, s= 9, a=12 : 1 10 1 15 4 11 1 2 14 9 7 10 6 14 1

u= 4, s=10, a=12 : 1 11 3 3 8 1 7 9 7 3 2 6 3 12 15

u= 4, s=11, a=12 : 1 12 5 6 12 6 13 1 15 12 12 2 15 10 14

u= 4, s=12, a=12 : 1 13 7 9 1 11 4 8 8 6 7 13 12 8 13

u= 4, s=13, a=12 : 1 14 9 12 5 1 10 15 1 15 2 9 9 6 12

u= 4, s=14, a=12 : 1 15 11 15 9 6 1 7 9 9 12 5 6 4 11

u= 7, s= 0, a= 9 : 1 1 7 12 7 11 4 5 14 12 4 1 12 14 13

u= 7, s= 1, a= 9 : 1 2 9 15 11 1 10 12 7 6 14 12 9 12 12

u= 7, s= 2, a= 9 : 1 3 11 3 15 6 1 4 15 15 9 8 6 10 11

u= 7, s= 3, a= 9 : 1 4 13 6 4 11 7 11 8 9 4 4 3 8 10

u= 7, s= 4, a= 9 : 1 5 15 9 8 1 13 3 1 3 14 15 15 6 9

u= 7, s= 5, a= 9 : 1 6 2 12 12 6 4 10 9 12 9 11 12 4 8

u= 7, s= 6, a= 9 : 1 7 4 15 1 11 10 2 2 6 4 7 9 2 7

u= 7, s= 7, a= 9 : 1 8 6 3 5 1 1 9 10 15 14 3 6 15 6

u= 7, s= 8, a= 9 : 1 9 8 6 9 6 7 1 3 9 9 14 3 13 5

u= 7, s= 9, a= 9 : 1 10 10 9 13 11 13 8 11 3 4 10 15 11 4

u= 7, s=10, a= 9 : 1 11 12 12 2 1 4 15 4 12 14 6 12 9 3

u= 7, s=11, a= 9 : 1 12 14 15 6 6 10 7 12 6 9 2 9 7 2

u= 7, s=12, a= 9 : 1 13 1 3 10 11 1 14 5 15 4 13 6 5 1

u= 7, s=13, a= 9 : 1 14 3 6 14 1 7 6 13 9 14 9 3 3 15

u= 7, s=14, a= 9 : 1 15 5 9 3 6 13 13 6 3 9 5 15 1 14

u= 8, s= 0, a= 8 : 1 1 10 5 10 6 13 12 3 5 13 1 5 3 4

Page 74: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

74

u= 8, s= 1, a= 8 : 1 2 12 8 14 11 4 4 11 14 8 12 2 1 3

u= 8, s= 2, a= 8 : 1 3 14 11 3 1 10 11 4 8 3 8 14 14 2

u= 8, s= 3, a= 8 : 1 4 1 14 7 6 1 3 12 2 13 4 11 12 1

u= 8, s= 4, a= 8 : 1 5 3 2 11 11 7 10 5 11 8 15 8 10 15

u= 8, s= 5, a= 8 : 1 6 5 5 15 1 13 2 13 5 3 11 5 8 14

u= 8, s= 6, a= 8 : 1 7 7 8 4 6 4 9 6 14 13 7 2 6 13

u= 8, s= 7, a= 8 : 1 8 9 11 8 11 10 1 14 8 8 3 14 4 12

u= 8, s= 8, a= 8 : 1 9 11 14 12 1 1 8 7 2 3 14 11 2 11

u= 8, s= 9, a= 8 : 1 10 13 2 1 6 7 15 15 11 13 10 8 15 10

u= 8, s=10, a= 8 : 1 11 15 5 5 11 13 7 8 5 8 6 5 13 9

u= 8, s=11, a= 8 : 1 12 2 8 9 1 4 14 1 14 3 2 2 11 8

u= 8, s=12, a= 8 : 1 13 4 11 13 6 10 6 9 8 13 13 14 9 7

u= 8, s=13, a= 8 : 1 14 6 14 2 11 1 13 2 2 8 9 11 7 6

u= 8, s=14, a= 8 : 1 15 8 2 6 1 7 5 10 11 3 5 8 5 5

u=11, s= 0, a= 5 : 1 1 4 14 4 6 10 3 15 14 10 1 14 15 7

u=11, s= 1, a= 5 : 1 2 6 2 8 11 1 10 8 8 5 12 11 13 6

u=11, s= 2, a= 5 : 1 3 8 5 12 1 7 2 1 2 15 8 8 11 5

u=11, s= 3, a= 5 : 1 4 10 8 1 6 13 9 9 11 10 4 5 9 4

u=11, s= 4, a= 5 : 1 5 12 11 5 11 4 1 2 5 5 15 2 7 3

u=11, s= 5, a= 5 : 1 6 14 14 9 1 10 8 10 14 15 11 14 5 2

u=11, s= 6, a= 5 : 1 7 1 2 13 6 1 15 3 8 10 7 11 3 1

u=11, s= 7, a= 5 : 1 8 3 5 2 11 7 7 11 2 5 3 8 1 15

u=11, s= 8, a= 5 : 1 9 5 8 6 1 13 14 4 11 15 14 5 14 14

u=11, s= 9, a= 5 : 1 10 7 11 10 6 4 6 12 5 10 10 2 12 13

u=11, s=10, a= 5 : 1 11 9 14 14 11 10 13 5 14 5 6 14 10 12

u=11, s=11, a= 5 : 1 12 11 2 3 1 1 5 13 8 15 2 11 8 11

u=11, s=12, a= 5 : 1 13 13 5 7 6 7 12 6 2 10 13 8 6 10

u=11, s=13, a= 5 : 1 14 15 8 11 11 13 4 14 11 5 9 5 4 9

u=11, s=14, a= 5 : 1 15 2 11 15 1 4 11 7 5 15 5 2 2 8

u=13, s= 0, a= 3 : 1 1 10 15 10 11 13 2 8 15 13 1 15 8 4

u=13, s= 1, a= 3 : 1 2 12 3 14 1 4 9 1 9 8 12 12 6 3

u=13, s= 2, a= 3 : 1 3 14 6 3 6 10 1 9 3 3 8 9 4 2

u=13, s= 3, a= 3 : 1 4 1 9 7 11 1 8 2 12 13 4 6 2 1

u=13, s= 4, a= 3 : 1 5 3 12 11 1 7 15 10 6 8 15 3 15 15

u=13, s= 5, a= 3 : 1 6 5 15 15 6 13 7 3 15 3 11 15 13 14

u=13, s= 6, a= 3 : 1 7 7 3 4 11 4 14 11 9 13 7 12 11 13

u=13, s= 7, a= 3 : 1 8 9 6 8 1 10 6 4 3 8 3 9 9 12

u=13, s= 8, a= 3 : 1 9 11 9 12 6 1 13 12 12 3 14 6 7 11

u=13, s= 9, a= 3 : 1 10 13 12 1 11 7 5 5 6 13 10 3 5 10

u=13, s=10, a= 3 : 1 11 15 15 5 1 13 12 13 15 8 6 15 3 9

Page 75: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

75

u=13, s=11, a= 3 : 1 12 2 3 9 6 4 4 6 9 3 2 12 1 8

u=13, s=12, a= 3 : 1 13 4 6 13 11 10 11 14 3 13 13 9 14 7

u=13, s=13, a= 3 : 1 14 6 9 2 1 1 3 7 12 8 9 6 12 6

u=13, s=14, a= 3 : 1 15 8 12 6 6 7 10 15 6 3 5 3 10 5

u=14, s= 0, a= 2 : 1 1 13 8 13 6 7 9 12 8 7 1 8 12 10

u=14, s= 1, a= 2 : 1 2 15 11 2 11 13 1 5 2 2 12 5 10 9

u=14, s= 2, a= 2 : 1 3 2 14 6 1 4 8 13 11 12 8 2 8 8

u=14, s= 3, a= 2 : 1 4 4 2 10 6 10 15 6 5 7 4 14 6 7

u=14, s= 4, a= 2 : 1 5 6 5 14 11 1 7 14 14 2 15 11 4 6

u=14, s= 5, a= 2 : 1 6 8 8 3 1 7 14 7 8 12 11 8 2 5

u=14, s= 6, a= 2 : 1 7 10 11 7 6 13 6 15 2 7 7 5 15 4

u=14, s= 7, a= 2 : 1 8 12 14 11 11 4 13 8 11 2 3 2 13 3

u=14, s= 8, a= 2 : 1 9 14 2 15 1 10 5 1 5 12 14 14 11 2

u=14, s= 9, a= 2 : 1 10 1 5 4 6 1 12 9 14 7 10 11 9 1

u=14, s=10, a= 2 : 1 11 3 8 8 11 7 4 2 8 2 6 8 7 15

u=14, s=11, a= 2 : 1 12 5 11 12 1 13 11 10 2 12 2 5 5 14

u=14, s=12, a= 2 : 1 13 7 14 1 6 4 3 3 11 7 13 2 3 13

u=14, s=13, a= 2 : 1 14 9 2 5 11 10 10 11 5 2 9 14 1 12

u=14, s=14, a= 2 : 1 15 11 5 9 1 1 2 4 14 12 5 11 14 11

E. 120 sequences in Class 5 have “1” as the first element of sequence

u= 1, s= 0, a= 0 : 1 1 2 13 5 4 7 4 12 14 5 3 12 1 6

u= 1, s= 1, a= 0 : 1 2 4 1 9 9 13 11 5 8 15 14 9 14 5

u= 1, s= 2, a= 0 : 1 3 6 4 13 14 4 3 13 2 10 10 6 12 4

u= 1, s= 3, a= 0 : 1 4 8 7 2 4 10 10 6 11 5 6 3 10 3

u= 1, s= 4, a= 0 : 1 5 10 10 6 9 1 2 14 5 15 2 15 8 2

u= 1, s= 5, a= 0 : 1 6 12 13 10 14 7 9 7 14 10 13 12 6 1

u= 1, s= 6, a= 0 : 1 7 14 1 14 4 13 1 15 8 5 9 9 4 15

u= 1, s= 7, a= 0 : 1 8 1 4 3 9 4 8 8 2 15 5 6 2 14

u= 1, s= 8, a= 0 : 1 9 3 7 7 14 10 15 1 11 10 1 3 15 13

u= 1, s= 9, a= 0 : 1 10 5 10 11 4 1 7 9 5 5 12 15 13 12

u= 1, s=10, a= 0 : 1 11 7 13 15 9 7 14 2 14 15 8 12 11 11

u= 1, s=11, a= 0 : 1 12 9 1 4 14 13 6 10 8 10 4 9 9 10

u= 1, s=12, a= 0 : 1 13 11 4 8 4 4 13 3 2 5 15 6 7 9

u= 1, s=13, a= 0 : 1 14 13 7 12 9 10 5 11 11 15 11 3 5 8

u= 1, s=14, a= 0 : 1 15 15 10 1 14 1 12 4 5 10 7 15 3 7

u= 2, s= 0, a=14 : 1 1 3 10 9 7 13 7 8 12 9 5 8 1 11

u= 2, s= 1, a=14 : 1 2 5 13 13 12 4 14 1 6 4 1 5 14 10

Page 76: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

76

u= 2, s= 2, a=14 : 1 3 7 1 2 2 10 6 9 15 14 12 2 12 9

u= 2, s= 3, a=14 : 1 4 9 4 6 7 1 13 2 9 9 8 14 10 8

u= 2, s= 4, a=14 : 1 5 11 7 10 12 7 5 10 3 4 4 11 8 7

u= 2, s= 5, a=14 : 1 6 13 10 14 2 13 12 3 12 14 15 8 6 6

u= 2, s= 6, a=14 : 1 7 15 13 3 7 4 4 11 6 9 11 5 4 5

u= 2, s= 7, a=14 : 1 8 2 1 7 12 10 11 4 15 4 7 2 2 4

u= 2, s= 8, a=14 : 1 9 4 4 11 2 1 3 12 9 14 3 14 15 3

u= 2, s= 9, a=14 : 1 10 6 7 15 7 7 10 5 3 9 14 11 13 2

u= 2, s=10, a=14 : 1 11 8 10 4 12 13 2 13 12 4 10 8 11 1

u= 2, s=11, a=14 : 1 12 10 13 8 2 4 9 6 6 14 6 5 9 15

u= 2, s=12, a=14 : 1 13 12 1 12 7 10 1 14 15 9 2 2 7 14

u= 2, s=13, a=14 : 1 14 14 4 1 12 1 8 7 9 4 13 14 5 13

u= 2, s=14, a=14 : 1 15 1 7 5 2 7 15 15 3 14 9 11 3 12

u= 4, s= 0, a=12 : 1 1 5 4 2 13 10 13 15 8 2 9 15 1 6

u= 4, s= 1, a=12 : 1 2 7 7 6 3 1 5 8 2 12 5 12 14 5

u= 4, s= 2, a=12 : 1 3 9 10 10 8 7 12 1 11 7 1 9 12 4

u= 4, s= 3, a=12 : 1 4 11 13 14 13 13 4 9 5 2 12 6 10 3

u= 4, s= 4, a=12 : 1 5 13 1 3 3 4 11 2 14 12 8 3 8 2

u= 4, s= 5, a=12 : 1 6 15 4 7 8 10 3 10 8 7 4 15 6 1

u= 4, s= 6, a=12 : 1 7 2 7 11 13 1 10 3 2 2 15 12 4 15

u= 4, s= 7, a=12 : 1 8 4 10 15 3 7 2 11 11 12 11 9 2 14

u= 4, s= 8, a=12 : 1 9 6 13 4 8 13 9 4 5 7 7 6 15 13

u= 4, s= 9, a=12 : 1 10 8 1 8 13 4 1 12 14 2 3 3 13 12

u= 4, s=10, a=12 : 1 11 10 4 12 3 10 8 5 8 12 14 15 11 11

u= 4, s=11, a=12 : 1 12 12 7 1 8 1 15 13 2 7 10 12 9 10

u= 4, s=12, a=12 : 1 13 14 10 5 13 7 7 6 11 2 6 9 7 9

u= 4, s=13, a=12 : 1 14 1 13 9 3 13 14 14 5 12 2 6 5 8

u= 4, s=14, a=12 : 1 15 3 1 13 8 4 6 7 14 7 13 3 3 7

u= 7, s= 0, a= 9 : 1 1 8 10 14 7 13 7 3 2 14 15 3 1 6

u= 7, s= 1, a= 9 : 1 2 10 13 3 12 4 14 11 11 9 11 15 14 5

u= 7, s= 2, a= 9 : 1 3 12 1 7 2 10 6 4 5 4 7 12 12 4

u= 7, s= 3, a= 9 : 1 4 14 4 11 7 1 13 12 14 14 3 9 10 3

u= 7, s= 4, a= 9 : 1 5 1 7 15 12 7 5 5 8 9 14 6 8 2

u= 7, s= 5, a= 9 : 1 6 3 10 4 2 13 12 13 2 4 10 3 6 1

u= 7, s= 6, a= 9 : 1 7 5 13 8 7 4 4 6 11 14 6 15 4 15

u= 7, s= 7, a= 9 : 1 8 7 1 12 12 10 11 14 5 9 2 12 2 14

u= 7, s= 8, a= 9 : 1 9 9 4 1 2 1 3 7 14 4 13 9 15 13

u= 7, s= 9, a= 9 : 1 10 11 7 5 7 7 10 15 8 14 9 6 13 12

u= 7, s=10, a= 9 : 1 11 13 10 9 12 13 2 8 2 9 5 3 11 11

u= 7, s=11, a= 9 : 1 12 15 13 13 2 4 9 1 11 4 1 15 9 10

Page 77: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

77

u= 7, s=12, a= 9 : 1 13 2 1 2 7 10 1 9 5 14 12 12 7 9

u= 7, s=13, a= 9 : 1 14 4 4 6 12 1 8 2 14 9 8 9 5 8

u= 7, s=14, a= 9 : 1 15 6 7 10 2 7 15 10 8 4 4 6 3 7

u= 8, s= 0, a= 8 : 1 1 9 7 3 10 4 10 14 15 3 2 14 1 11

u= 8, s= 1, a= 8 : 1 2 11 10 7 15 10 2 7 9 13 13 11 14 10

u= 8, s= 2, a= 8 : 1 3 13 13 11 5 1 9 15 3 8 9 8 12 9

u= 8, s= 3, a= 8 : 1 4 15 1 15 10 7 1 8 12 3 5 5 10 8

u= 8, s= 4, a= 8 : 1 5 2 4 4 15 13 8 1 6 13 1 2 8 7

u= 8, s= 5, a= 8 : 1 6 4 7 8 5 4 15 9 15 8 12 14 6 6

u= 8, s= 6, a= 8 : 1 7 6 10 12 10 10 7 2 9 3 8 11 4 5

u= 8, s= 7, a= 8 : 1 8 8 13 1 15 1 14 10 3 13 4 8 2 4

u= 8, s= 8, a= 8 : 1 9 10 1 5 5 7 6 3 12 8 15 5 15 3

u= 8, s= 9, a= 8 : 1 10 12 4 9 10 13 13 11 6 3 11 2 13 2

u= 8, s=10, a= 8 : 1 11 14 7 13 15 4 5 4 15 13 7 14 11 1

u= 8, s=11, a= 8 : 1 12 1 10 2 5 10 12 12 9 8 3 11 9 15

u= 8, s=12, a= 8 : 1 13 3 13 6 10 1 4 5 3 3 14 8 7 14

u= 8, s=13, a= 8 : 1 14 5 1 10 15 7 11 13 12 13 10 5 5 13

u= 8, s=14, a= 8 : 1 15 7 4 14 5 13 3 6 6 8 6 2 3 12

u=11, s= 0, a= 5 : 1 1 12 13 15 4 7 4 2 9 15 8 2 1 11

u=11, s= 1, a= 5 : 1 2 14 1 4 9 13 11 10 3 10 4 14 14 10

u=11, s= 2, a= 5 : 1 3 1 4 8 14 4 3 3 12 5 15 11 12 9

u=11, s= 3, a= 5 : 1 4 3 7 12 4 10 10 11 6 15 11 8 10 8

u=11, s= 4, a= 5 : 1 5 5 10 1 9 1 2 4 15 10 7 5 8 7

u=11, s= 5, a= 5 : 1 6 7 13 5 14 7 9 12 9 5 3 2 6 6

u=11, s= 6, a= 5 : 1 7 9 1 9 4 13 1 5 3 15 14 14 4 5

u=11, s= 7, a= 5 : 1 8 11 4 13 9 4 8 13 12 10 10 11 2 4

u=11, s= 8, a= 5 : 1 9 13 7 2 14 10 15 6 6 5 6 8 15 3

u=11, s= 9, a= 5 : 1 10 15 10 6 4 1 7 14 15 15 2 5 13 2

u=11, s=10, a= 5 : 1 11 2 13 10 9 7 14 7 9 10 13 2 11 1

u=11, s=11, a= 5 : 1 12 4 1 14 14 13 6 15 3 5 9 14 9 15

u=11, s=12, a= 5 : 1 13 6 4 3 4 4 13 8 12 15 5 11 7 14

u=11, s=13, a= 5 : 1 14 8 7 7 9 10 5 1 6 10 1 8 5 13

u=11, s=14, a= 5 : 1 15 10 10 11 14 1 12 9 15 5 12 5 3 12

u=13, s= 0, a= 3 : 1 1 14 7 8 10 4 10 9 5 8 12 9 1 6

u=13, s= 1, a= 3 : 1 2 1 10 12 15 10 2 2 14 3 8 6 14 5

u=13, s= 2, a= 3 : 1 3 3 13 1 5 1 9 10 8 13 4 3 12 4

u=13, s= 3, a= 3 : 1 4 5 1 5 10 7 1 3 2 8 15 15 10 3

u=13, s= 4, a= 3 : 1 5 7 4 9 15 13 8 11 11 3 11 12 8 2

u=13, s= 5, a= 3 : 1 6 9 7 13 5 4 15 4 5 13 7 9 6 1

u=13, s= 6, a= 3 : 1 7 11 10 2 10 10 7 12 14 8 3 6 4 15

Page 78: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

78

u=13, s= 7, a= 3 : 1 8 13 13 6 15 1 14 5 8 3 14 3 2 14

u=13, s= 8, a= 3 : 1 9 15 1 10 5 7 6 13 2 13 10 15 15 13

u=13, s= 9, a= 3 : 1 10 2 4 14 10 13 13 6 11 8 6 12 13 12

u=13, s=10, a= 3 : 1 11 4 7 3 15 4 5 14 5 3 2 9 11 11

u=13, s=11, a= 3 : 1 12 6 10 7 5 10 12 7 14 13 13 6 9 10

u=13, s=12, a= 3 : 1 13 8 13 11 10 1 4 15 8 8 9 3 7 9

u=13, s=13, a= 3 : 1 14 10 1 15 15 7 11 8 2 3 5 15 5 8

u=13, s=14, a= 3 : 1 15 12 4 4 5 13 3 1 11 13 1 12 3 7

u=14, s= 0, a= 2 : 1 1 15 4 12 13 10 13 5 3 12 14 5 1 11

u=14, s= 1, a= 2 : 1 2 2 7 1 3 1 5 13 12 7 10 2 14 10

u=14, s= 2, a= 2 : 1 3 4 10 5 8 7 12 6 6 2 6 14 12 9

u=14, s= 3, a= 2 : 1 4 6 13 9 13 13 4 14 15 12 2 11 10 8

u=14, s= 4, a= 2 : 1 5 8 1 13 3 4 11 7 9 7 13 8 8 7

u=14, s= 5, a= 2 : 1 6 10 4 2 8 10 3 15 3 2 9 5 6 6

u=14, s= 6, a= 2 : 1 7 12 7 6 13 1 10 8 12 12 5 2 4 5

u=14, s= 7, a= 2 : 1 8 14 10 10 3 7 2 1 6 7 1 14 2 4

u=14, s= 8, a= 2 : 1 9 1 13 14 8 13 9 9 15 2 12 11 15 3

u=14, s= 9, a= 2 : 1 10 3 1 3 13 4 1 2 9 12 8 8 13 2

u=14, s=10, a= 2 : 1 11 5 4 7 3 10 8 10 3 7 4 5 11 1

u=14, s=11, a= 2 : 1 12 7 7 11 8 1 15 3 12 2 15 2 9 15

u=14, s=12, a= 2 : 1 13 9 10 15 13 7 7 11 6 12 11 14 7 14

u=14, s=13, a= 2 : 1 14 11 13 4 3 13 14 4 15 7 7 11 5 13

u=14, s=14, a= 2 : 1 15 13 1 8 8 4 6 12 9 2 3 8 3 12=

Page 79: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

79

Bibilography

[1] G. Gong, "New designs for signal sets with low cross correlation,

balance property, and large linear span : GF(p) case,” IEEE trans.

Inform. Theory, vol. 48, pp. 2847-2867, Nov. 2002.

[2] S. W. Golomb and H. Taylor, "Two-dimensional synchronization patterns

for minimum ambiguity,” IEEE trans. Inform. Theory, vol. IT-28, pp.

263-272, July 1982.

[3] R. Galiardi, J, Robbins, and H. Taylor, " Acquisition sequence in PPM

communications,” IEEE trans. Inform. Theory, vol. IT-33, pp. 738-744,

1987.

[4] R. A. Games, "An algebraic constructions of sonar sequences using M-

sequences,” SLAM J. Algebraic Discrete Methods, vol. 8, pp. 753-761,

Oct. 1987.

[5] O. Moreno, R. A. Games, and H. Taylor, "Sonar sequences from Costas

arrays and the best known sonar sequences with up to 100 symbols,”

IEEE trans. Inform. Theory, vol. 39, pp. 1985-1989, Nov. 1993.

[6] S. W. Golomb , "Algebraic constructions for Costas arrays,” J.

Combinatorial Theory, ser. A, vol. 37, pp. 13-21, 1984.

Page 80: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

80

[7] G. Gong, "Theory and applications of q-ary interleaved sequences,”

IEEE trans. Inform. Theory, vol. 41, pp. 400-411, Mar. 1995.

[8] L. D. Baumert, Cyclic Difference Sets (Lecture Notes in Mathematics).

Bering, Germany : Springer-Verlag, 1971, vol. 182.

[9] S. W. Golomb, Shift Resister Sequences, revised ed. Laguna Hills, CA :

Aegean Park, 1982, p. 39.

[10] Marshall Jr. Hall, “A survey of difference sets,” Proc. Amer. Math. Soc.,

vol. 7, pp. 975-986, 1956.

[11] R.A. Scholtz and L.R. Welch, “GMW sequences,” IEEE Trans. Inform.

Theory, vol. IT-30, pp.548-553, Sept, May 1984.

[12] S. W. Golomb, “Construction of signals with favorable correlation

properties,” in Survey in Combinatorics, A.D.Keedwell, Editor; LMS

Lecture Note Series 166, Cambridge University Press, pp. 1-40, 1991.

[13] S. W. Golomb and Hong-Yeop Song, "A Conjecture on the existence of

cyclic Hadamard difference sets," Journal of Statistical Planning and

Inferences, vol. 62, pp. 39-41, July 1997.

[14] S. W. Golomb and G. Gong, Sequence Design for Good Correlation,

Cambridge University Press, 2005.

[15] J.-H. Kim, On the Hadamard Sequences, PhD Thesis, Dept. of

Page 81: Existence of Modular Sonar Sequences of Twin-Prime Product …coding.yonsei.ac.kr/pdf/thesis/masters/m037.pdf · 2016-08-25 · 5 Abstract Existence of Modular Sonar Sequences of

81

Electronics Engineering, Yonsei University, Fed. 2002.

[16] Hong Y. Song and Solomon W. Golomb, "On the Existence of cyclic

Hadamard difference sets," IEEE Transactions on Information Theory,

vol. 40, no. 4, pp. 1266-1268, July 1994.

[17] M. k. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Sperd

Spectrum Communications Handbook, Computer Science Press,

Rockville, MD, 1985; revised edition, McGraw-Hill, 1994.