19
Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Embed Size (px)

Citation preview

Page 1: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Extensible Simulation of Planets and Comets

Natalie Wiser-OrozcoDr. Keith Evan Schubert

Dr. Ernesto GomezDr. Richard J. Botting

July 22, 2009

Page 2: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Exoplanet Discovery

● Dr. Paul Kalas (UC Berkeley) confirms that Fomalhaut b orbits it's parent star

1.

● Increased frequency of discoveries of this nature.

● Questions that arise as a result.

Page 3: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Movement of Objects In Space

● Carl Sundman 3-body

● Qiu-Dong Wang n-body

● Solar system stability

Page 4: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Simulation of Objects In Space

● Computational power

● Existing simulators focus on ● Pre-determined sets of bodies● Specific algorithm or method

● Extensible Simulator ● Arbitrary number of bodies● Choose different numerical methods and

gravitational functions.

Page 5: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Overview Of The Extensible Simulator

● Numerical Methods and Gravitational Functions

● Project Structure and Management

● Visualizations

● Cameras

● Bodies

● Heuristics

● Results and Future Work

Page 6: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Numerical Methods

● Taylor Series – derivatives of original function

● Runge-Kutta – finite difference approximations

● Extrapolation – very accurate, inefficient

● Multistep – needs help of a single-step method

● Multivalue – easy to change step size

Page 7: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Gravitational Solutions

● Law of Universal Gravitation (Newton)● General Relativity (Einstein)● Quantum Gravity (String Theory, M Theory)● Solar Wind● Different classes of numerical techniques

Particle-Particle Particle-Mesh Particle-Particle/Particle-Mesh (P3M) Particle-Multi-Mesh(PM2)

Page 8: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Simulation Flexibility

• No one technique handles all

• Try different techniques on the same data

• Extensible Simulator allows for any

technique

• Limited only by what is implemented,

therefore limitless.

Page 9: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Project Management

● Fashioned after well known Integrated Development Environments (IDEs)• Projects• Body Configuration

Files

Page 10: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Project Functions

● Project Functions Create/Edit New Project

Add/Edit Body Configuration Files

Choose Gravitational Function/Numerical

Method

Calculate / Simulate

Page 11: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Simulation Screen-shots

Page 12: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Visualization and Heuristics

● Application Programming Interface

● Cameras

● Bodies

● Scene Navigation

● Heuristics

● Body Scaling

Page 13: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Application Programming Interface

● Base Body and Camera objects

● Body and Camera wrapper objects

● Manager objects

● Work together to help the simulation run smoothly

Page 14: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Scene Navigation

● Built in navigation

● Extensible navigation via

camera implementation

Page 15: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Body Scaling

Page 16: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Results

• Error analysis yielded accuracy to an average of 2 significant digits

• Aim of research:• Extensibility of numerical methods, gravitational

functions, cameras and bodies• Appeal to all levels of knowledge• Convey ideas and discoveries with confident

results

Page 17: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Facilitate Future Research

● Programmatic Video Capture

● Additional Numeric Methods

● Additional Dynamics Equations

● GPGPU Integration

● Other general improvements

Page 18: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

References1. Paul Kalas et al. Optical Images of an Exosolar Planet 25 Light-Years from Earth Science (322):1345-1348, November 20082. Michael T. Heath. Scientific Computing, An Introductory Survey. McGraw-Hill, Second Edition, 2002.3. E. Saar I. Suisalu A. Klypin A. Melott, J. Einasto and S. Shandarin. Cluster analysis of the nonlinear evolution of large scale

structure in an axion/gravitino/photino dominated universe. Physical Review Letters, (51):935, 1983.4. Srinivas Aluru. Greengard’s n-body algorithm is not order n. SIAM Journal on Scientific Computing, 17(3), May 1996. 5. A.W. Appel. An efficient program for many- body simulation. SIAM J. Sci. Stat. Comput., (6):85–103, 1985. 6. J. S. Bagla. Cosmological N-Body simulation: Techniques, Scope and Status. Current Science, 88:1088–1100, April 2005.7. J. Barnes. A modified tree code: Don’t laugh; it runs. J. Comput. Phys., (87):161–170, 1990.8. J. Barnes and P. Hut. A hierarchical o(n log n) force-calculation algorithm. Nature, (324):446–449, 1986.9. M. Davis, G. Efstathiou, C. Frenk, and S.D.M. White. The evolution of large-scale structure in a universe dominated by cold dark

matter. ApJ, (292):371–394, 1985.10. D. J. D. Earn and J. A. Sellwood. The Optimal N-Body Method for Stability Studies of Galaxies. The Astrophysical Journal,

451:533–+, October 1995.11. Sergio Gelato, David F. Chernoff, and Ira Wasserman. An adaptive hierarchical particle-mesh code with isolated boundary

conditions. ApJ, May 1997.12. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys., (73):325–348, 1987. 13. Randall Splinter. A nested grid particle-mesh code for high resolution simulations of gravitational instability in cosmology.

MNRAS, (281), 1996.14. K.F. Sundman. M´emoire sur le probl`eme des trois corps. Acta Math., (36):105–179, 1913.15. Qiu-Dong Wang. The global solution of the n-body problem. Celestial Mechanics and Dynamical Astronomy, 50(1):73–88, 1991.16. M.S. Warren and J.K. Salmon. Astrophysical n-body simulations using hierarchical tree data structures. In Proc. Supercomputing

’92, pages 570– 576, 1992.17. M.S. Warren and J.K. Salmon. A parallel hashed oct-tree n-body algorithm. In Proc. Supercomputing ’93, pages 1–12, 1993.18. Dr. Bernd Wirsing. Supercomputer simulations explain the formation of galaxies and quasars in the universe, June 2005.19. F. Zhao and L. Johnsson. The parallel multipole method on the connection machine. SIAM. J. Sci. Stat. Comput., (12):1420–

1437, 1991.

Page 19: Extensible Simulation of Planets and Comets Natalie Wiser-Orozco Dr. Keith Evan Schubert Dr. Ernesto Gomez Dr. Richard J. Botting July 22, 2009

Q & A

• Code is open source and can be found here:

http://code.google.com/p/extensiblesimulationofplanetsandcomets/