9
FARMACI Forskerne er opdelt efter fagområde. I farmaci skelnes der mellem Drug Transport & Delivery, Lægemiddelformulering og Lægemiddelstoftransport i ADME. Der udbydes også projekter fra fysik og kemi. Drug Transport & Delivery Annette Bauer-Brandl ………………………………………………………………………………… 3 Judith Kuntsche ………………………………………………………………………………………….. 4 Martin Brandl …………………………………………………………………………………………….. 5 Paul C. Stein ……………………………………………………………………………………………….. 6 Lægemiddelformulering René Holm …………………………………………………………………………………………………. 7 Lægemiddelstoftransport i ADME Bala Krishna Prabhala ……………………………………………………………………………….. 8 Carsten Uhd Nielsen …………………………………………………………………………………. 9 Vejledere fra andre fagområder Du kan finde beskrivelse af personens forskning i det pågældende katalog. Adam Cohen Simonsen ……………………………………………………………………………… Fysik Beate Klösgen …………………………………………………………………………………………….. Fysik Christine McKenzie ……………………………………………………………………………………. Kemi Erik Donovan Hedegård ……………………………………………………………………………. Kemi Himanshu Khandelia …………………………………………………………………………………. Kemi

FARMACI - sdu.dk

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

FARMACI Forskerne er opdelt efter fagområde. I farmaci skelnes der mellem Drug Transport & Delivery,

Lægemiddelformulering og Lægemiddelstoftransport i ADME. Der udbydes også projekter fra fysik og

kemi.

Drug Transport & Delivery

Annette Bauer-Brandl ………………………………………………………………………………… 3

Judith Kuntsche ………………………………………………………………………………………….. 4

Martin Brandl …………………………………………………………………………………………….. 5

Paul C. Stein ……………………………………………………………………………………………….. 6

Lægemiddelformulering

René Holm …………………………………………………………………………………………………. 7

Lægemiddelstoftransport i ADME

Bala Krishna Prabhala ……………………………………………………………………………….. 8

Carsten Uhd Nielsen …………………………………………………………………………………. 9

Vejledere fra andre fagområder

Du kan finde beskrivelse af personens forskning i det pågældende katalog.

Adam Cohen Simonsen ……………………………………………………………………………… Fysik

Beate Klösgen …………………………………………………………………………………………….. Fysik

Christine McKenzie ……………………………………………………………………………………. Kemi

Erik Donovan Hedegård ……………………………………………………………………………. Kemi

Himanshu Khandelia …………………………………………………………………………………. Kemi

Jacob Kongsted …………………………………………………………………………………………… Kemi

Poul Nielsen ……………………………………………………………………………………………….. Kemi

Stefan Vogel ………………………………………………………………………………………………… Kemi

Ulla Gro Nielsen …………………………………………………………………………………………. Kemi

email: [email protected]://www.sdu.dk/en/forskning/drug‐transport‐delivery

Example: Solid Phospholipid NanoparticlesFormulation of Nanoparticles for better uptake and better bioavailability of poorly available drug substances:Manufacture of Nanoparticles by  Spray Drying In vitro characterization of their properties:• Solid state structure• Solubility• Dissolution Rate• PermeabilityIn vivo bioavailability; IVIVC

Oral Drug Transport & Delivery

Figure 2: SEM micrograph of the SPLN Nanoparticles Figure 3: Nano Spray Dryer

Enabling Formulations: Development;

Preparation; understanding of in vivo performance

Oral dosage form

drug in gastro-intestine

drug in blood circulation

site of action

poorpermeability

non-specific distributionblood brain barrier

poor solubility

solid dispersionscrystals; co-crystalsdrug loaded

ion exchangers(mini)-tablets

partitioningpassive transport

solid state structuressolubilitysolvation

Basic StudiesChallenges Applied Examples

permeability assay

biomimeticbarriers

Oral Drug Dosage Forms (e.g. tablets, and capsules) are the most used drug formulations. However, there are a number of challenges for the drug substance to reach the target site (e.g. receptor). We address these challenges  through basic physico‐chemical experiments to characterize both the drug substances themselves and selected (model) drug formulations. Moreover, in order to confirm our understanding and to apply the knowledge, we use in vitro‐models to avoid animal tests.

ABB, 2015

Professor Annette Bauer‐Brandl

Research Group:‐ Drug Transport & Delivery ‐

Formulations and Biopharmaceutics

High Throughput Sceening

Based on our novel artificial barrier Permeapd ® that mimics different biological barriers we have developed a microtiterplate system fir for automated handling. 

Advantages:cost‐effective; easy to use; reproducible results; functional stability in presence of “aggressive” excipients

Uses:• in vitro measurement of permeability• Automated High throughput Screening of drug

permeability; data mining

Figure 1: Principle of the PermeaPad™ assay and examples of results; Jacobsen et al., 2020

We want to save the lives of animals by studying  drugs and formulations in detail using artificial experimental methods and data modelling.Our novel artificial barrier Permeapd ® mimics the permeability of different biological barriers. We develop models for biopharmaceutical property characterization  of drugs and drug formulations to select the most promising ones without the use of animals. 

Taken from SDU homepage at:: https://www.sdu.dk/en/om_sdu/fakulteterne/naturvidenskab/nyheder-2020/ny-medicin-uden-dyreforsoeg

In!vitro!testing:!passive!drug!absorption

Professor!!Martin!BrandlDrug!Transport!&!

Drug!Delivery!Systems

Oral!Drug!Delivery!Systems

Experimental!methods!portfolioParenteral!Drug!Delivery:!Nanoparticles

We!aim!at!designing!“smart”!delivery!systems!for!oral!drug!delivery!by!elucidating!the!mechanism!behind!improved!dissolution!and!absorptionrbehaviour.

We!aim!at!improving!parenteral!delivery!of!drugs!via!nanoparticles!!!

email:[email protected]:!http://www.sdu.dk/ansat/mmb

A: paracellular passive diffusion B: transcellular passive diffusion C + F: active transportG: transcytosisH: endocytosis

(from Våbenø, thesis Univ. Tromsø 2004, with permission)

Dispersion in aqueous medium

polymer

Micro- / Nanoparticles

(Super-)saturated Solution

Micelles Drug / Polymer-Complex

Impermeable top block

SemipermeablemembraneFrit

Channel flow

Cross-flow out

MEMBRANE

Solubilized API*

Truly supersaturated API(metastable)

Molecularly dissolved API

Amorphous API

Crystalline API

precipitation

dissolution

(re-) distribution according toaffinity of API to solubilizers

Drop of concentrationdue to precipitation

crys

talliz

atio

n

precipitation

dissolution

Enablingformulation

release

dissolutiondisinte-gration

disinte-gration

?

Amorphous solid dispersions

We!aim!at!developing!inrvitro!tools!for!the!prediction!of!drug!absorption!from!the!instestine.

Gastrointestinal pathways

From A. Holsæter thesis Univ. Tromsø with permission

Liposomal drug carrier

Transfer of lipophilic drug from liposomal drug carrier to model acceptoranalysed by flow field-flow fractionation

Biological compartments: as potential ”sinks” for lipophilic drugs

Lipoprotein plasma protein membrane of red blood cell

• Phospholipid!vesicle!based!permeation!assay• Siderbyrside!permeation!experiment• Drugrtransfer!and!drugrrelease!assays!by!flow!fieldrflow!

fractionation,!size!exclusion!fractionation• Liposome!preparation

• filter!extrusion• Vesicular!phospholipid!gels

• Particle size!analysis (micron!&!submicron)!• Aseptic!techniques• GMPrconform!manufacture!&!qualit assurance!of!

parenteral!drug!formulations

Phospholipid!VesiclerBased!Permeation!Assay

Updated: May 2015

Associate Professor Judith KuntscheTopic: Pharmaceutical Technology

E-mail: [email protected]: http://findresearcher.sdu.dk/portal/da/person/kuntsche

Lipid nanoparticles and liposomes

Parenteral drug delivery Cochleates

Flow field-flow fractionation

200 nm

Nanoemulsion

100 nm

Liposomes

220 nm

Solid lipid nanoparticles

Cubic nanoparticles

200 nm

Types of lipid nanoparticles(state of the lipid matrix)

• Can be prepared from physiologicalcompounds (e.g. glycerides, cholesterolesters, phospholipids).

• Particle size in the nm-size rangefacilitates intravenous administration.

• Purposes:¾ solubilization of poorly water-soluble

drugs,¾ drug targeting (e.g. tumor targeting),¾ enhancement of drug absorption.

• Liposomes can encapsulate bothlipophilic (membrane) and hydrophilic(aqueous core) drugs.

• Lipid nanoparticles have a lipid matrix.

• Separation of molecules and particles in dependence on sizeby applying a cross flow in a thin separation channel.

• Broad size range of about 5 kDa – 1 µm and versatileseparation conditions, no stationary phase.

• Connection with different detectors for comprehensivecharacterization (MALLS, dRI, UV/Vis).

• Focus of research on¾ size determinations (also stability in e.g. serum),¾ quantification of co-existing colloidal structures (e.g.

micelles, nanoparticles, vesicles),¾ drug release and transfer studies.

Analysis of a mixture of polystyrene nanospheres

Theoretical mass ratio:83:13:2:2

Measured mass ratio:82:14:2:2

• Drug solubilization to facilitate intravenous administration(nanoemulsions in clinical use for, e.g. diazepam, propofol andetomidate) -> rapid drug release and no distinct alteration ofdrugs pharmacokinetic profile.

• Drug targeting due to passive accumulation of nanoparticlesin tissues with disturbed endothelia (e.g. solid tumors).

• Focus of research on¾ comprehensive physicochemical characterization (colloidal

structures, morphology, size and size distribution),¾ stability in physiological media (e.g. serum),¾ understanding of the mechanism of drug release and

redistribution at the molecular level.

• Cochleates are cylindrical particles composed of tightly packedphospholipid membranes.

• They are formed by the addition of calcium ions to negativelycharges liposomes, e.g. phosphatidylserine vesicles.

• Due to the tightly packed lipid structure, cochleate cylinderspossess a considerably high physical stability which makesthem very interesting for drug delivery.

• Focus of research on¾ preparation of cochleates and similar lipid particles from

naturally derived lipids (e.g. lower purity),¾ optimization of composition and production parameters

including scaling up, lyophilization and sterilization and¾ drug incorporation and release.

Cochleate formation and morphology

Søren Kristensen (PhD project)

DOPS

PS from soybean lecithin

Redistribution of a hydrophobic model drug (pTHPP) from liposomes to serum

Michelle Toftrup Broholm (MSc project)

Fractionation of pTHPP-loadedliposomes and serum components

Redistribution of pTHPP from liposomesto serum components

Professor  René Holm

Topics: Physical pharmacy and advantaged drug delivery

Long acting injectables

The world is our labBachelor and master could be linked up to ongoing research projects, where examples are provided above.

Master thesis can also be conducted in cooperation with another university, e.g. in Belgium, US, UK, Ireland, Switzerland, where you will be a part of the research conducted at that institution. 

Industrial projects, can be set up in both Danish and international companies, e.g. ‐ Pharmaceutical engineering and modelling ‐ Formulation design‐ Biopharmaceutics‐ Pharmaceutical processes 

Specific project to be defined in cooperation with the company

Preformulation

Lipid based formulations

Long acting injectables provide patients with amore effective treatment when compared to dailyoral administration. Depending on the molecule anumber of different formulation strategies can beapplied – we conduct active research in all ofthem, including formulation evaluation, in vitrodissolution method development andmanufacturing.

Lipid based formulations have been appliedcommercially in a number of products – using the lipidssolubilizing power and the body’s physiology to make arobust formulation. We conduct research in lipid basedformulations with focus on hard to formulatecompounds and combination of approaches, i.e. lipidsuspensions, lipid formulations with crystallizationenhancers, use of liquid crystals to enable oralabsorption of biomolecules.

email: [email protected]: https://portal.findresearcher.sdu.dk/da/persons/ren%C3%A9‐holm

Understanding the formulation system throughwell designed characterisation is the best way tomake a robust formulation.

We look into a number of important formulationfundaments, e.g. characterisation of cyclodextrincomplexation, stability of suspensions oremulsions as a function of stabiliser, solubilityenhancement, measurement of solid solubilities,biophysical investigations on biomolecules informulation relevant buffers etc. all linking towardsnovel and innovative formulations where wedevelop a deep scientific insight.

We change absorption – ADME:

We run research project:Currently, Bachelor or Master Thesis projects could relate to:

- Ibuprofen transport in PC-3 cancer cells– findingthe ibuprofen transporter

- Modulation of efflux transporter activity in cellcultures using pharmaceutical excipients

- Impact of mucus on drug transport andtransporters

- Transporters and SLCs function in hyperosmoticenvironment

- Nutrient transporters in prostate cancer – impactof pH and osmolarity

- Identifying transporters of acamprosate in renalcells

- Novel materials for formulation of drug deliverysystems (Ulla Gro Nielsen and Rasmus BlaaholmNielsen)

Want to see the world?: It is possible to make MasterThesis projects at pharmaceutical companies in Denmark or abroad or at universities abroad. Such projects are not necessarily transporter-related research.

We use or modulate drug transporters:

Solute Carriers (SLCs) and ATP-binding cassette (ABC) transporters affect the ADME properties of many drug substances:

Figure 2: ATP-dependent efflux via P-gp or proton-coupled influx of substrates via PAT1 in an epithelial cell.

Drug transporters may facilitate or limit drug absorption, may facilitate or limit drug distribution, metabolism or excretion, and may transport drug metabolites. Thus cause dose-dependent drug absorption and drug-drug interactions (DDIs) due to effects on ADME properties.

We use in vitro models:Our research use cell cultures cultured at the FKF cell culture facility by Maria Pedersen:

The movement of drug substances in the body may be described by a number of different processes:

Absorption (A), e.g. from the intestineDistribution (D), e.g. into the brainMetabolism (M), e.g. in the liverExcretion (E), e.g. via the kidneyTogether these processes define the exposure of the body to a drug substance, often expressed as the plasma-concentration-time profile:

Figure 1: Vigabatrin plasma concentration in rats after oral administration (Nøhr et al. EJPS, 2015)

Epithelial cell cultures Intestinal Caco-2 cells Renal MDCK cellsProstate cancers PC-3 cell

Modified cell culturesMDCK MRP2 cellsMDCK MDR1 cells

Expression systems for transporters

To quantify drug substance transport we need Assay development Specific inhibitors

To quantify transporters we usePCRWestern Blotting

To Knock-down transporters we use siRNA approaches

E-mail: [email protected]://www.sdu.dk/ansat/cun

p p y

d t ffl i P t l d i fl f

ansport we neeeeeeeed

se

Drug transporters in ADME GroupProfessor Carsten Uhd Nielsen

Maria Pedersen, Ahmed Al-Ali, Rasmus Blaaholm Nielsen & Bala Krishna Prabhala

Solute carriers and efflux transportersaffect permeability, ADME and bioavailability

Transportomics in ADME Asst. Professor Bala [email protected]

Synthesis of novel peptide/peptide-peptoidhybrid (solid phase and in solution) substrates for the delivery of antibiotics in to cells. (In collaboration with Roskilde University and University of Copenhagen)

Generation of gene knockouts of pathogenic bacteria crossing intestinal and blood brain barriers for the identification of biomarkers using metabolomics (Collaboration with BMB, Center for biosustainability, DTU).

Formulation of lipophilic drugs in exosomes and cellular vesicles for topical delivery of drugs. (In collaboration with JAIST, Japan, University of Washington, USA and University fo Copenhagen).

Identification of novel substrates for bacterial SLC transporters (In collaboration with University of Copenhagen).

Database development of drugtransporters, (In collaboration withUniversity of Cambridge and TeknikInstitute Coventry University UK)

Understanding the metabolome andproteome of skin under normal andcarcinogenic conditions (In collaborationwith University of Washington, USA,Odense University Hospital and RoskildeUniversity

Soria et al. 2017

Manuscript under preparation

Kelly et al. 2013

Prabhala et al. 2017

Neo4J Zhao et al. 2014