14
Fast solvers for seismic imaging Matthias Taus Postdoctoral Associate, Department of Mathematics In collaboration with Leonardo Zepeda-Núñez, Russell J. Hewett, Laurent Demanet MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting May 31, 2017

Fast solvers for seismic imaging - MIT ERL Matthias... · 2017. 6. 5. · Fast solvers for seismic imaging Matthias Taus Postdoctoral Associate, Department of Mathematics In collaboration

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Fast solvers for seismic imagingMatthias TausPostdoctoral Associate,Department of MathematicsIn collaboration with Leonardo Zepeda-Núñez, Russell J. Hewett, Laurent Demanet

    MIT Earth Resources Laboratory2017 Annual Founding Members MeetingMay 31, 2017

  • Motivation[Slide text – ok to change size]

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 2

    • Inhomogeneous media

    • Point sources

    • High frequency

  • Model problem

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 3

    ��u� !2mu = f+A.B.C.

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    ! ... Frequency

    m ... Squared Slowness

    f ... Source term

  • Finite Element Methods (FEM):

    • Discontinuous wave speed

    • Point sources

    • Pollution error

    Discretization – existing techniques

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 4

    Finite Difference Methods:

    • Discontinuous wave speed

    • Point sources

    • Pollution error

    ku� uhkL2 C(!)(!h)

    ku� uhkL2 =?

    C(!) ! 1 as ! ! 1

    ku� uhkL2 C(!)(!h)2

    ku� uhkL2 ! 0

    C(!) ! 1 as ! ! 1

  • Discretization – new technique

    Hybridizable Discontinuous Galerkin Method (HDG)

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 5

    Standard FEM:• Discontinuous wave speed

    • Complicated meshes• Point sources

    • Pollution error

    ku� uhkL2 C(!)(!h)2HDG:• Discontinuous wave speed

    • Simple meshes• Point sources

    • Pollution error

    ku� uhkL2 C(!)(!h)2

    ku� uhkL2 ! 0

    C(!) ! 1 as ! ! 1 C(!) C as ! ! 1

    ku� uhkL2 C(!)(!h)2

  • Discretization – Simple Meshes

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 6

    Standard FEM: HDG:

    Improved integration rule:• Appropriate for discontinuous functions• Requires knowledge of discontinuities

    Simple mesh generation

  • Discretization – Point sourcesSingularity cancellation technique:

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 7

    xS ... location of singularity

    u(x) = ũ(x)� 12⇡

    log |x� xS |

    kũ� ũhkL2 C(!)(!h)2

  • Discretization – Pollution error

    Increase order of approximation:

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 8

    p = log(!)

    C(!) C as ! ! 1

  • Numerical Example: BP 2004 model

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 9

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

  • Numerical Example: 2nd order accuracy

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 10

  • Numerical Example: Pollution error

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 11

  • Fast algorithms: Existing techniques

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 12

    • Iterative methods: • Direct methods:

    • Preconditioned iterative methods: - Low-order discretizations- Smooth wave speeds

    O(!N)

    1D 2D 3D

    operations O(N) O(N32) O(N2)

    memory O(N) O(N logN) O(N43)

    O(N)

  • algorithm: Method of polarized traces

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 13O(N log↵ N)

    Solution: Method of Polarized Traces (PhD thesis by Leonardo Zepeda-Nunez)

    • Highly inhomogeneous (discontinuous) wave speeds

    • If and :

    O(p↵N)

    p = log(!) ! = O

    ✓1

    h

    ◆N =

    ⇣ ph

    ⌘d= !d logd !

    O(!d log↵+d !)

  • Summary

    MIT Earth Resources Laboratory2017 Annual Founding Members Meeting

    Slide 14

    Fast and accurate algorithm for wave propagation problems in geophysical applications

    • 2nd order accuracy and no pollution error in the presence of- Discontinuous wave speeds- Point sources

    • complexity using the method of polarized tracesO(!d log↵+d !)