106
Doc No.: ABB LIMITED YN1G176789-D Segment : Responsible Deptt : Revision : Language: File Name : Power technology PTUA-PA 2 En document.doc.doc Prepared : Reviewed : Released : Page Pages 2004/02/22 SP 2004/02/26 VV 2004/02/26 VV 1 106 Contract No.: Derived From /Specification No: Replaces : Classify No: CS-1120(R&M)-415-9-SU- LOA-4225 Dated 03/07/09 CS-3120(R&M)-415-9 Vol II - - Document Title: Functional Design Specification of Class I & II Equipment Performance Calculations Customer: National Thermal Power Corporation Ltd. (A Government of India Enterprise) Project: Ramagundam Super Thermal Power Station Stage-I, (3 X 200 MW Units) 2 2004/06/ 18 Revised as per NTPC comments STS VV VV 1 2004/06/ 07 Revised as per NTPC comments STS VV VV - 2004/02/ 26 First Issue SP VV VV Rev. : Date : Description : Prepared : Reviewed: Released : We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. ABB Ltd.

FDS6

Embed Size (px)

DESCRIPTION

FDS6

Citation preview

Document Title:

Doc No.:

ABB LIMITEDYN1G176789-D

Segment :Responsible Deptt :Revision :

Language:File Name :

Power technologyPTUA-PA2EnFDS6.doc.doc

Prepared :

Reviewed :

Released :PagePages

2004/02/22 SP2004/02/26 VV2004/02/26 VV178

Contract No.:

Derived From /Specification No:Replaces :Classify No:

CS-1120(R&M)-415-9-SU-LOA-4225 Dated 03/07/09CS-3120(R&M)-415-9 Vol II --

Revision 1

Project :Language :

Page :

2Ramagundam STPS Stage-I DAS R&MEn8YN1G176789-D

Document Title:

Functional Design Specification

of

Class I & II Equipment Performance Calculations

Customer:

National Thermal Power Corporation Ltd.

(A Government of India Enterprise)

Project:

Ramagundam Super Thermal Power Station

Stage-I, (3 X 200 MW Units)

Renovation & Modernisation of DAS Package

Introduction:

This is the FDS (Functional Design Specification) document for the Plant performance calculation for NALCO Angul. The document contains the design and calculation methodology to be used by the performance calculation software. The calculation methodology employed here is based on the approach adopted for performance calculation of TNEB Mettur. The performance calculation application will be developed with a Visual Basic front end. MySQL will be used as the database for the application. The interface to be used for reading and writing process data to the Fix32 database of the DAS is Fix Real Time ODBC. This is a standard SQL ODBC interface available to Fix 32. A schematic for the architecture of the performance calculation software is given below:

Brief description of the solution:

The FIX ODBC product provides communication between MySQL and the FIX database. The FIX database can be configured to communicate based on an event, a time, or a combination of both.

The FIX ODBC product consists of

SQL Task

SQL Trigger (SQT) block

SQL Data (SQD) database block.

The SQL task performs the following functions:

Executes the SQT blocks that trigger.

Retrieves process data from the SQD blocks and inserts the data into the relational database.

Selects data from the relational database and writes the data back to the FIX database.

The SQL Trigger block defines:

Which SQL commands in the SQL Library Table are used to manipulate data. (The SQL commands to be executed shall be stored in the SQL library table in the MS ACCESS database)

The time or event that triggers the data transfer.

The SQL Data block defines:

The data that is collected and transferred.

The direction of the data transfer.

Communication Process:

The SQL Trigger block (SQT) triggers. The SQL task reads the SQL command name from the SQT block.

The SQL task retrieves the associated command from the SQL Library Table.

The SQL task reads the tag names specified in the SQL command from the SQL Data block (SQD) and reads the values associated with these tag names from the FIX database.

The SQL task executes the SQL command and inserts data into or selects data from the relational database.

If the SQL command is a SELECT command, the retrieved data is written to the FIX tag names defined in the SQD block

The MS ACCESS shall act as a temporary storage location. The calculations shall be performed in the VB front end and can also be viewed. The important performance parameters shall be displayed in the Operator stations.

Linking with the steam table routines:

Steam table routines are provided as a standard Visual Basic add-on module. The module contains standard built-in functions that takes properties such as temperature and pressure as input parameters and returns thermodynamic properties such as enthalpy, entropy, saturation temperature etc.

Class II tags:

The performance calculation module uses an internal set of tags which is independent of the Fix32 process tags. An installation of the performance calculation software (signifying an instance of the database) can handle the calculations for one unit. So each unit in the plant needs to have a separate installation of the package. Where process tags are created in the Fix32 database for the purpose of Class II calculations, the process tags (AVxxx) and performance tags (CVxxx) will have the corresponding unit number as prefix.

Bad quality points: If an input value for the calculation is found to be invalid, based on the percentage load at that time an interpolated value from the heat balance diagram will be substituted for the bad point.

Data validity: If the calculated value is found to deviate from the nominal value by more than a specified percentage, the calculated value shall be highlighted in red on the display screen.

Analog tag list:

Analog tag list:

S.NoParameterProcess tagClass II tag

1. Feed water flow(FF004 + FF007)/2AV001

2. Stage I PressureTP005AV002

3. Condensate pump discharge pressCP001AV008

4. Ext. temperature heater 6XT006AV009

5. Ext. pressure heater 6XP005AV010

6. HPH 6 FW temperature InFT013AV011

7. HPH 6 Drain TemperatureXT012AV012

8. Reheat spray flowFF006AV013

9. Deaerator pressureFP001AV014

10. Heater-3 Condensate outlet temperatureCT008AV029

11. Extraction temperature of heater 3XT003AV031

12. Extraction pressure of heater 3XP003AV032

13. Outlet temperature heater 2CT007AV033

14. Drain temperature heater 3XT010AV034

15. Heater 2 extraction temperatureXT002AV035

16. Heater 2 extraction pressureXP002AV036

17. Outlet temperature heater 1CT006AV037

18. Drain temperature heater 2XT009AV038

19. LPH-1 extraction pressureXP001AV040

20. Inlet temperature heater 1CT005AV041

21. LPH -1 drain tempXT008AV042

22. Hot reheat temperature IV inlet(RT007 + RT008)/2AV045

23. Hot reheat pressure IV inlet(RP005 + RP006)/2AV046

24. Gross generationGE001AV049

25. Condenser vacuum mm Hg AHP006AV050

26. Economiser outlet oxygen per cent(WA001+WA002)/2AV053

27. AH A gas out temperature(ST050 + ST051 + ST052) / 3AV054

28. AH A gas in temp(ST044 + ST045 + ST046) / 3AV055

29. AH B gas out temperature(ST053 + ST054 + S0T55)/3AV057

30. AH B gas in temp(ST047 + ST048 + ST049) / 3AV058

31. AH A sec air out temp(ST020 + ST021 + ST022)/3AV063

32. AH A secondary air in temperature(ST014 + ST015 + ST016) / 3AV064

33. AH B sec air out tempST024AV065

34. AH B secondary air in temperature(ST017 + ST018 + ST019) / 3AV066

35. HPH 5 extraction tempXT005AV067

36. HPH 5 extraction pressureXP004AV068

37. HPH 5 drain tempXT011AV069

38. HPH 5 FW inlet temp.FT012AV071

39. Main Steam Temperature after ESV(TT068 + TT069)/2AV072

40. Main Steam Pressure before ESV(TP003+TP004)/2AV073

41. HPT exhaust tempTT011AV074

42. HPT exhaust pressTP013AV075

43. Superheat Spray Flow(FF005 + FF008)/2AV076

44. Mill B PA flowSF002AV077

45. Mill C PA flowSF003AV078

46. Mill D PA flowSF004AV079

47. Mill E PA flowSF005AV080

48. Mill F PA flowSF006AV081

49. Mill A PA flowSF001AV082

50. Sec Air Flow LeftSF011AV083

51. Sec Air Flow RightSF012AV084

52. Feedwater flow through heaters(FF004 + FF007)/2 + FFOO5 + FF008AV085

53. Feedwater pressure (at BFP suction)FP005AV086

54. FW pressure at Econ inletFP005AV087

55. FW temperature at Econ inletFT009AV088

56. Deaerator extraction flow(XF001)AV090

57. Condensate flow to D/A from LPHCF001AV091

58. Condenser cooling water temperatureHT002AV092

59. Condensate flow rightHF002BAV093

60. Condenser B outlet tempCT002AV094

61. Condensate pump-A suction tempCT011AV096

62. Main steam pressure after ESV(TP003+TP004)/2AV097

63. SH Outlet Stm Temp (L)ST073AV098

64. SH Outlet Stm Temp (R)ST075AV099

65. SH Outlet Stm Pressure(SP001 + SP002)/2AV100

66. Reheater outlet steam temp leftRT013AV101

67. Reheater outlet steam temp rightRT016AV102

68. Reheater outlet steam pressureRP002AV103

69. Mill A coal flowSM001AV104

70. Mill B coal flowSM002AV105

71. Mill C coal flowSM003AV106

72. Mill D coal flowSM004AV107

73. Mill E coal flowSM005AV108

74. Mill F coal flowSM006AV109

75. Heavy oil supply flowSF007AV110

76. Heavy oil return flowSF008AV111

77. BFP Disch to Desuperheater Temp(FT005+FT006+FT007)/3AV114

78. Aux Steam PressureAF002AV115

79. Aux Steam TempAT003AV116

80. Aux Steam FlowMF003AV117

81. LPH 3 condensate inlet temp.CT007AV118

82. Gland cooler 2 condensate outlet temp.CT004AV119

83. Condenser flow, leftHF001BAV120

84. Condensate pump-B suction tempCT012AV122

85. Reheater inlet press(RP001 + RP004)/2AV135

86. Measured press drop in gas path across economiserSP014AV136

87. Econ temp outlet left of feedwaterFT010AV138

88. Econ temp outlet right of feedwaterFT011AV139

89. FD Fan A discharge temp(ST008 + ST009 + ST010)/3AV140

90. Mill A PA inlet tempST060AV149

91. Mill B PA inlet tempST061AV150

92. Mill C PA inlet tempST062AV151

93. Mill D PA inlet tempST063AV152

94. Mill E PA inlet tempST064AV153

95. Mill F PA inlet tempST065AV154

96. AH A gas out pressSP045AV156

97. AH B gas outlet pressSP046AV157

98. Gas pressure drop across AH ASP039AV159

99. Gas pressure drop across AH BSP040AV160

100. AH A Sec air press dropSP037AV163

101. AH B Sec air press dropSP038AV164

102. FD fan A Disch pressureSP006AV165

103. FD fan B Disch pressureSP007AV166

104. FD Fan B discharge temp(ST011 + ST012 + ST013)AV167

105. Gas temp before Econ(ST042 + ST043) / 2AV170

Constants:

S No.Description Process Tag

1. Blow down flowKN001

2. Relative humidity per centKN002

3. Atmospheric pressureKN003

4. Coal content carbon per centKN006

5. Coal content sulfur per centKN007

6. Coal content hydrogen per centKN008

7. Coal content oxygen per centKN009

8. Coal content nitrogen per centKN010

9. Coal content moistureKN011

10. Heating value of coalKN013

11. Heat loss refuseKN014

12. Heat loss radiationKN015

13. Heat loss unmeasuredKN016

14. Tube metal correction factorKN018

15. Number of tubes in condenser A first passKN020

16. Condenser cross sectional area for tubeKN021

17. Specific heat of flue gasKN025

18. Specific heat of circulating water for mean temp and salinityKN035

19. Number of tubes in first pass of condenser BKN036

20. Entered value = per cent oxygen by volume for gas at AH A outletKN037

21. Design rated value of wet gas flow through each air heaterKN039

22. Design pressure AH inlet PAKN040

23. Design temp AH inlet PAKN041

24. Design press AH outlet gasKN042

25. Design press AH inlet sec airKN043

26. Design temp AH inlet sec airKN044

27. AH entering gas temp in design rated conditionKN045

28. AH exit gas temp in design rated conditionKN046

29. Design rated PA flow through each air heater

KN047

30. Design PA out tempKN048

31. Design rated Sec air flow of each AHKN049

32. Design rated sec air outlet tempKN050

33. Design percent leakage of each air heater at rated conditionKN051

34. Design gas side pressure loss of AHKN052

35. Design PA side press loss of AHKN053

36. Sec air flow at MCR through each air heater

KN055

37. Number of tubes in condenser A second pass

KN056

38. Condenser surface area per tubeKN057

39. Number of tubes in second pass of condenser BKN058

40. Circulating water densityKN034

41. Entered value = per cent oxygen by volume for gas at AH B outletKN038

42. Blow down enthalpyKN032

43. Heating value of fuel oil

KN026

44. Heat added other than chemicalKN033

45. Cost of coalKN099

46. Number of hours in a shoftKN098

Class II tag list:

S No.Tag Description

1 CV001Main Steam Flow

2 CV002Calculated Throttle Steam Flow

3 CV003Per Cent Rated Load

4 CV004Fraction of Air That is Primary Air

5 CV005Fraction of Air that is Secondary Air-

6 CV006Feedwater Saturation Temperature in the Deaerator

7 CV007Feedwater Enthalpy (at BFP Suction)

8 CV008Superheat Spray Water Enthalpy

9 CV011HPH 6 Drain Cooler Approach

10 CV012HP Turbine Exhaust Flow

11 CV014Enthalpy of Feedwater Out of Heater 6

12 CV024Economiser performance of Heat Exchange

13 CV025Heater 6 extraction enthalpy

14 CV026Enthalpy of FW into Heater 6

15 CV027Enthalpy of heater 6 drain

16 CV028HPH 6 extraction flow

17 CV029HPH 6 drain Flow

18 CV034Excess Air Deviation

19 CV035Cold Reheat Flow

20 CV036Hot reheat flow

21 CV037Heater 5 drain flow

22 CV040Enthalpy of FW out of heater 5

23 CV042Heater 5 extraction flow

24 CV044Heater 3 condensate out enthalpy

25 CV048Low pressure heater 3 extraction enthalpy

26 CV049Heater 2 condensate out enthalpy

27 CV050Heater 3 drain enthalpy

28 CV051Heater 3 extraction flow

29 CV052Heater 3 drain flow

30 CV053Heater 2 extraction enthalpy

31 CV054Heater 1A condensate out enthalpy

32 CV055Heater 2 drain enthalpy

33 CV056Heater 2 extraction flow

34 CV057Heater 2 drain flow

35 CV058Temperature correction factor for circulating water in temperature

36 CV059Heater 1 condensate in enthalpy (Ideal)

37 CV061Circulating water velocity in condenser A tubes

38 CV062Condenser A basic heat transfer coefficient uncorrected

39 CV064Condenser A basic heat transfer coefficient corrected.

40 CV065High pressure heater 6 saturation temperature

41 CV066Condenser saturation temperature

42 CV067Heater 5 saturation temperature

43 CV069Heater 3 saturation temperature

44 CV070Heater 2 saturation temperature

45 CV071Condenser A terminal temperature difference

46 CV073Condenser cooling water

47 CV074Terminal temperature difference heater 6

48 CV075Condenser A temperature rise

49 CV076Terminal temperature difference heater 5

50 CV078Terminal temperature difference heater 3

51 CV079Terminal temperature difference heater 2

52 CV080Logarithmic mean temperature difference for condenser A

53 CV082Condensate enthalpy leaving condenser A

54 CV083Temperature deviation from design heater 6

55 CV084Steam energy removed in condenser A

56 CV085Temperature deviation from design heater 5

57 CV087Temperature deviation from design heater 3

58 CV088Temperature deviation from design heater 2

59 CV089Low pressure heater 1 extraction flow

60 CV090Enthalpy of main steam at HP turbine

61 CV091HP turbine exhaust enthalpy

62 CV092HP turbine exhaust ideal enthalpy

63 CV093HP turbine efficiency

64 CV094Enthalpy of hot reheat

65 CV095Enthalpy of IP turbine exhaust

66 CV096IP turbine exhaust enthalpy (Ideal)

67 CV097IP turbine efficiency

68 CV098Condenser A actual heat transfer coefficient

69 CV099Condenser A cleanliness factor

70 CV108Generator losses

71 CV109LP turbine exhaust enthalpy (Ideal)

72 CV110Condenser vacuum (Absolute)

73 CV111LP turbine exhaust enthalpy (Actual)

74 CV112LP turbine efficiency

75 CV117Dry gas per ton of fuel fired

76 CV118Heat loss due to dry gas

77 CV119Enthalpy of water vapor at exhaust gas temperature

78 CV120Enthalpy of water at ambient temperature

79 CV121Heat loss due to moisture in fuel

80 CV122Heat loss due to water combined from hydrogen

81 CV123Boiler efficiency

82 CV124Net generation

83 CV125Auxiliary power per cent

84 CV126Net turbine heat rate

85 CV127Reference Gross turbine heat rate

86 CV133Adjusted test gross turbine heat rate

87 CV136Gross unit heat rate

88 CV137Average boiler efficiency

89 CV138Boiler efficiency by input-output method

90 CV139Main Steam to Aux Steam Enthalpy

91 CV140BFP Discharge to Desuperheater Enthalpy

92 CV141Aux. Steam Enthalpy

93 CV142Aux. Steam Supply Flow

94 CV145High pressure heater 5 extraction enthalpy

95 CV146High pressure heater 5 drain enthalpy

96 CV147High pressure heater 5 FW inlet enthalpy

97 CV148High pressure heater 5 FW outlet enthalpy

98 CV149Heater 3 condensate inlet enthalpy

99 CV150Gland cooler 2 condensate outlet enthalpy

100 CV152Circulating water velocity in condenser B tubes

101 CV153Condenser B basic heat transfer coefficient uncorrected

102 CV154Condenser B basic heat transfer coefficient corrected

103 CV155Condenser B terminal temperature difference

104 CV156Condenser B temperature rise

105 CV157Low pressure heater 1 extraction enthalpy

106 CV158Low pressure heater 1 drain enthalpy

107 CV159Heater 1B condensate outlet enthalpy

108 CV160Condensate enthalpy leaving condenser B

109 CV161Steam energy removed in condenser B

110 CV162Condenser B actual heat transfer coefficient

111 CV163Condenser B cleanliness factor

112 CV164Heat loss due to moisture in air

113 CV166Gross turbine heat rate

114 CV169Net unit heat rate

115 CV170Boiler efficiency deviation

116 CV171Heater 1 saturation temperature

117 CV172Heater 1A terminal temp different

118 CV173Heater 1B terminal temp different

119 CV174Economizer press drop performance deviation

120 CV175Economizer temp rise performance deviation

121 CV176HPT Front Seal Leakage

122 CV177HPT Rear Seal Leakage

123 CV178HPT CV leakage

124 CV179Steam supplied from Front sealing of HPT to HPT exhaust

125 CV180Total HPT leakage

126 CV181Excess air percentage

127 CV182Excess air percentage standard

128 CV183IPT leak off thru control valve

129 CV184IPT leak off thru rear seals

130 CV185IPT leak off thru front seals

131 CV187Steam leakage into LPT

132 CV188IPT and LPT leakage

133 CV189HPT front seal leak off enthalpy

134 CV190HPT rear seal leak off enthalpy

135 CV191HPT CV seal leak off enthalpy

136 CV192HPT front seal to HPT exhaust steam enthalpy

137 CV193IPT front seal leak off enthalpy

138 CV194IPT rear seal leak off enthalpy

139 CV195IPT CV seal leak off enthalpy

140 CV196Steam leakage into LPT enthalpy

141 CV197LMTD for condenser B

142 CV198HPH-5 drain cooler approach

143 CV199Super heater Outlet Enthalpy

144 CV200Reheater outlet enthalpy

145 CV201Ton of dry air leakage in AHA per the quantity of wet flue gas per ton of fuel fired entering AH A

146 CV202Tone of dry air leakage in AH B per the quantity of wet flue gas per ton of fuel fired entering AH B

147 CV203Ton of moisture per ton of dry air (I.e., specific humidity of dry air)

148 CV204Ton of minimum air for complete combustion per ton of fuel fired

149 CV205Ton of Excess Air at AH Inlet Per Ton of Fuel Fired

150 CV206Ton of wet air leakage in AH A per the quantity of wet flue gas per ton of fuel fired entering AH A

151 CV207Tone of wet air leakage in AH B per the quantity of wet flue gas per ton of fuel fired entering AH B

152 CV208Ton of moisture in flue gas at AH inlet per ton of fuel fired

153 CV209Ton f wet gas at AH inlet per ton of fuel fired

154 CV210Percentage air leakage of AH A

155 CV211Percentage air leakage of AH B

156 CV212Fraction of the total air leakage of AH A coming from primary of air side

157 CV213Fraction of the total air leakage of AH A coming from secondary air side

158 CV214Fraction of the total air leakage of AH B coming from

Side

159 CV215Fraction of the total air leakage of AH B coming from secondary air side

160 CV216AH A gas out temperature corrected for no leakage

161 CV217AH B gas out temperature corrected for no leakage

162 CV218Gas side efficiency-AH A

163 CV219Gas side efficiency-AH B

164 CV220Fraction of mill A primary air which is heated in air heater

165 CV221Fraction of mill B primary air which is heated in air heater

166 CV222Fraction of mill C primary air which is heated in air heater

167 CV223Fraction of mill D primary air which is heated in air heater

168 CV224Fraction of mill E primary air which is heated in air heater

169 CV225Fraction of mill F primary air which is heated in air heater

170 CV226Fraction of total PA which is hot PA

171 CV229Test X ratio AH A

172 CV230Test X ratio AH B

173 CV231Corrected percentage air leakage of AH A for deviation from design pressure differential and from design air temperature

174 CV232Corrected percentage air leakage of AH B for deviation from design pressure differential and from design air temperature

175 CV233Ton of coal fired per hour

176 CV234Gas side pressure loss of AH A corrected for deviation from design flow and temperature

177 CV235Gas side pressure loss of AH B corrected for deviation from design flow and temperature

178 CV236Primary air side pressure loss of AH A corrected for deviation from design flow and temperatures

179 CV237Primary air side pressure loss of AH B corrected for deviation from design flow and temperatures

180 CV238PA flow through AH A

181 CV239PA flow through AH B

182 CV240Secondary air side pressure loss of AH A corrected for deviation from design flow and temperatures

183 CV241Secondary air side pressure loss of AH B corrected for deviation from design flow and temperatures

184 CV242Corrected gas temperature leaving AH A for deviation from design entering air temperature

185 CV243Corrected gas temperature leaving AH B for deviation from design entering air temperature

186 CV244Corrected gas temperature leaving AH A for deviation from design entering gas temperature

187 CV245Corrected gas temperature leaving AH B for deviation from design entering gas temperature

188 CV246Corrected gas temp leaving air heater A for deviation from design X ratio

189 CV247Corrected gas temp leaving air heater B for deviation from design X ratio

190 CV248Correction factor for gas out temp of AH A as a function of test X ratio

191 CV249Correction factor for gas out temp of AH B as a function of test X ratio

192 CV250Corrected gas temperature leaving air heater A for deviation from design entering flue gas flow

193 CV251Corrected gas temp leaving air heater B for deviation from design entering flue gas flow

194 CV252Correction factor for gas temp of AH A for deviation from design entering flue gas flow

195 CV253Correction factor for gas out temp of AH B for deviation from design entering flue gas flow

196 CV254Totally corrected gas temp leaving AH A

197 CV255Totally corrected gas temp leaving AH B

198 CV256AH A air leakage expressed as a percentage of design leakage

199 CV257AH B air leakage expressed as a percentage of design leakage

200 CV258Deviation of corrected exit gas temperature at AH A from design value of exit gas temperature

201 CV259Deviation of corrected exit gas temperature at AH B from design value of exit gas temperature

202 CV260AH A gas side pressure loss (corrected for deviation from design flow and temp) expressed as a percentage of design gas side press loss

203 CV261AH B gas side pressure loss (corrected for deviation from design flow and temp) expressed as a percentage of design gas side press loss

204 CV262AH A PA side pressure loss (corrected for deviation from design flow and temperature0 expressed as a percentage of the design rated value of PA side pressure loss

205 CV263AH B PA side pressure loss (corrected for deviation from design flow and temperature) expressed as a percentage of the design rated value of PA side pressure loss

206 CV264AH A sec air side pressure loss (corrected for deviation from design flow and temperature) expressed as a percentage of the design pressure loss

207 CV265AH B sec air side pressure loss (corrected for deviation from design flow and temperature) expressed as a percentage of the design pressure loss

208 CV266AH A sec air inlet pressure delete from

209 CV267AH B sec air inlet pressure

210 CV269Design temperature heater 6 outlet FW

211 CV270Design temperature heater 5 outlet FW

212 CV272Design temperature heater 3 condensate outlet

213 CV273Design temperature heater 2 condensate outlet

214 CV274Design temperature heater 1A condensate outlet

215 CV275Design temperature heater 1B Condensate outlet

216 CV276Temperature deviation from design heater 1A

217 CV277Temperature deviation from design heater 1B

218 CV278Economiser pressure drop in gas path with respect to load

219 CV279Economizer temperature rise as a function of load

Calculation details:

CV199

Superheater Outlet Enthalpy=Fn((AV098+AV099)/2 , AV100+KN003)

-SH Steam- FUNC OF P & TKCAL/KG

where

AV098SH Outlet Stm Temp (L)

AV099SH Outlet Stm Temp (R)

AV100SH Outlet Stm Pressure

KN003Atmospheric Pressure

------------------------------------------------------------------------------------------------------------------------

CV139

Main Steam to Aux Steam Enthalpy=CV199

-Same as Superheater Outlet EnthalpyKCAL/KG

Where

CV199Superheater Outlet Enthalpy

------------------------------------------------------------------------------------------------------------------------

CV140

BFP Discharge to Desuperheater Enthalpy= Fn(AV114)

- A function of temp compressed liquidKCAL/KG

Where

AV114BFP Disch to Desuperheater Temp

------------------------------------------------------------------------------------------------------------------------

CV141

Aux Steam Enthalpy=Fn(AV115+KN003, AV116)

SH steam A function of press and tempKCAL/KG

Where

AV115Aux Steam Pressure

KN003Atmospheric Pressure

AV116Aux Steam Temp

------------------------------------------------------------------------------------------------------------------------

CV142

Aux Steam Supply Flow=AV117*(CV141-CV140) / (CV139-CV140)

T/Hr

Where

AV117Aux Steam Flow

CV139Main Steam to Aux Steam Enthalpy

CV140BFP Discharge to Desuperheater Enthalpy

CV141Aux Steam Enthalpy

------------------------------------------------------------------------------------------------------------------------

CV001

Main Steam Flow=AV001-KN001-CV142+AV076

-Feedwater flow less Blowdown flow and auxiliary steam flow plus SH spray flowT/Hr

Where

AV001Feed Water flow

KN001Blowdown flow

CV142Aux steam Supply Flow

AV076Superheat Spray Flow

------------------------------------------------------------------------------------------------------------------------

CV002

Calculated Throttle Steam Flow

=Fn(AV002 + KN003) * FACTOR

-Throttle steam flow is a function of first stage shell press, adjusted for temperature and pressureT/Hr

Where

FACTOR = VOPER/VRATED

VOPER Specific volume of steam at operating conditions

=Fn (AV072,AV073 + KN003)

Where

AV072Main Steam Temperature after ESV

AV073Main Steam Pressure after ESV

KN003 Atmospheric pressure

AV002First stage pressure

Vrated

VRATED-Specific volume of Steam at 530 deg c & 130 kg/cm2=Fn(530,130+KN003)

------------------------------------------------------------------------------------------------------------------------

CV003

Per Cent Rated Load

=(CV001/611.635 )*100

-Ratio of Main steam flow to rated steam flow as a percentage.%

Where

CV001Main Steam Flow

611.635 Rated Steam Flow

------------------------------------------------------------------------------------------------------------------------

CV004Fraction of Air That is Primary Air =(AV077+AV078+AV079+AV080+AV081+AV082) / (AV077+AV078+AV079+AV080+AV081+AV082+AV083+AV084)

-PA flow divided by total air flow

Where

AV077Mill B PA flow

AV078Mill C PA flow

AV079Mill D PA flow

AV080Mill E PA flow

AV081Mill F PA flow

AV082Mill A PA flow

AV083Sec Air Flow Left

AV084Sec Air Flow Right

------------------------------------------------------------------------------------------------------------------------

CV005

Fraction of Air that is Secondary Air= 1.0 - CV004

- One minus PA fraction

Where

CV004PA fraction

------------------------------------------------------------------------------------------------------------------------

CV006

Feedwater Saturation Temperature in the Deaerator

- A function of deaerator pressure=Fn (AV014 + KN003)

Deg C

Where

AV014Deaerator pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV007

Feedwater Enthalpy (at BFP Suction)=Fn (CV006,AV086 + KN003)

- A function of saturation temperature and pressureKCAL/KG

Where

CV006Feedwater saturation temperature

AV086Feedwater pressure (at BFP suction)

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV008

Superheat Spray Water Enthalpy=Fn(AV088, AV087 + KN003)

- Function of FW Temp & press at Eco inletKCAL/KG

Where

AV087FW pressure at Econ inlet

AV088FW temperature at Econ inlet

KN003Atmospheric pressure

.------------------------------------------------------------------------------------------------------------------------

CV011

HPH 6 Drain Cooler Approach= AV012 - AV011

Deg C

Where

AV012HPH 6 Drain Temperature

AV011HPH 6 FW inlet temperature

------------------------------------------------------------------------------------------------------------------------

CV176

HPT Front Seal Leakage= Fn(CV001)

- HPT Front Seal leakage is a function of main steam flow.T/Hr

Where

CV001Main Steam Flow

------------------------------------------------------------------------------------------------------------------------

CV177

HPT Rear Seal Leakage= Fn(CV001)

-HPT Rear seal leakage is a function of main steam flow.T/Hr

Where

CV001Main Steam Flow

------------------------------------------------------------------------------------------------------------------------

CV178

HPT CV leakage=Fn(CV001)

-HPT CV leakage is a function of main steam flow.T/Hr

Where

CV001Main Steam Flow

------------------------------------------------------------------------------------------------------------------------

CV179

Steam supplied from Front sealings of HPT to HPT exhaust=Fn(CV001)

-This is function of main steam flowT/Hr

Where

CV001Main Steam Flow

------------------------------------------------------------------------------------------------------------------------

CV180

Total HPT leakage= CV176+CV177+CV178-CV179

-Total HPT leakage =HPT front seal leakage + HPT rear seal leakage +HPT CV leakage-HPT front seal leakage to HPT exhaust.T/Hr

------------------------------------------------------------------------------------------------------------------------

CV014Enthalpy of Feedwater Out of Heater 6=Fn(AV007,AV087+KN003)

-A function of feedwater temp and press out of heater 6. Compressed liquid.KCAL/KG

Where

AV007Heater 6 feedwater outlet temperature

AV087FW press at Econ inlet(pressure assumed constant after BFP discharge to economizer)

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV024

Economiser performance of Heat Exchange

=(AV170-GASOUT)*100 / (AV170-AV088)(%)

Where

AV170Gas temp before Econ

AV088Feedwater temp at Econ inlet

------------------------------------------------------------------------------------------------------------------------

CV025

Heater 6 extraction enthalpy=Fn(AV009,AV010+KN003)

-A function of extraction steam temperature and pressure - SH steam

KCAL/KG

Where

AV009Ext. temperature heater 6

AV010Ext. pressure heater 6

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV026

Enthalpy of FW into Heater 6=Fn(AV011, AV087 + KN003)

- A function of FW temperature & pressure into heater 6 - compressed liquid

KCAL/KG

Where

AV011Inlet temperature heater 6

AV087FW press at Econ inlet (pressure assumed constant after BFP discharge to economizer)

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV027

Enthalpy of heater 6 drain=Fn(AV012)

-A function of heater 6 drain temperature - saturated liquid.KCAL/KG

Where

AV012Heater 6 drain temperature

-------------------------------------------------------------------------------------------------------------------------

CV028 HPH-6 Extraction flow = AV085*(CV014-CV148)/(CV025-CV027) T/Hr.

Calculated by heat balance around heater 6.

CV014= Heater 6 F.W outlet Enthalpy

CV148 = Heater 5 F.W outlet Enthalpy

CV027= Heater 6 drain Enthalpy

CV025= Heater 6 ext. Enthalpy

-------------------------------------------------------------------------------------------------------------------------

CV029 HPH-6 Drain flow = HPH-6 Extraction flow = CV028 T/Hr

-------------------------------------------------------------------------------------------------------------------------

CV035

Cold Reheat Flow=CV012-CV028-AV090 T/Hr

-Equal to HP turbine exhaust flow minus HPH 6 extraction flow and deaerator extraction flow

Where

CV012HP turbine exhaust flow

CV028HPH 6 extraction flow

AV090Deaerator extraction flow

------------------------------------------------------------------------------------------------------------------------

CV036

Hot reheat flow=CV035+AV013

-The sum of cold reheat and the reheat spray flow.T/Hr

Where

CV035Cold Reheat flow

AV013Reheat spray flow

------------------------------------------------------------------------------------------------------------------------

CV145

High pressure heater 5 extraction enthalpy=Fn(AV067,AV068+KN003)

-A function of extraction temp and pressure - SH steamKCAL/KG

Where

AV067HPH 5 extraction temp

AV068HPH 5 extraction pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV146

High pressure heater 5 drain enthalpy=Fn(AV069)

-A function of drain temp; saturated liquid.KCAL/KG

Where

AV069HPH 5 drain temp

------------------------------------------------------------------------------------------------------------------------

CV147

High pressure heater 5 FW inlet enthalpy=Fn(AV071, AV087 + KN003)

-A function of FW inlet temp & press compressed liquidKCAL/KG

Where

AV071HPH 5 FW inlet temp.

AV087FW press at Econ inlet

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV148

High pressure heater 5 FW outlet enthalpy=Fn(AV011, AV087 + KN003)

-A function of temp & press compressed liquidKCAL/KG

Where

AV011HPH 5 FW outlet temp.

AV087FW press at Econ inlet

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV042

Heater 5 extraction flow

=((AV085*(CV148-CV147) + CV029*(CV146-CV027)) / (CV145-CV146)

-Calculated by a heat balance around Heater 5

T/Hr

Where

AV085Feedwater flow

CV148HPH 5 FW outlet enthalpy

CV147HPH 5 FW inlet enthalpy

CV029HPH 6 drain Flow

CV146HPH 5 drain enthalpy

CV027HPH 6 drain enthalpy

CV145HPH 5 extraction enthalpy

------------------------------------------------------------------------------------------------------------------------

CV037

Heater 5 drain flow=CV029+CV042T/Hr

-Heater 6 drain flow plus heater 5 ext. flow

Where

CV029Heater 6 drain flow

CV042Heater 5 ext. flow

-----------------------------------------------------------------------------------------------------------------------

CV040

Enthalpy of FW out of heater 5=CV026 KCAL/KG

-Equal to heater-6 FW inlet enthalpy

Where

CV026Heater 6 FW in Enthalpy

-----------------------------------------------------------------------------------------------------------------------

CV048

Low pressure heater 3 extraction enthalpy=Fn(AV031,AV032+KN003)

-A function of extraction temperature and pressureKCAL/KG

Where

AV031Extraction temperature of heater 3

AV032Extraction pressure of heater 3

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV049

Heater 2 condensate out enthalpy=Fn(AV033)

-A function of condensate temperature. Compressed liquid.KCAL/KG

Where

AV033Outlet temperature heater 2

------------------------------------------------------------------------------------------------------------------------

CV050

Heater 3 drain enthalpy=Fn(AV034)

-A function of drain temperature, saturated liquid.KCAL/KG

Where

AV034Drain temperature heater 3

------------------------------------------------------------------------------------------------------------------------

CV149

Heater 3 condensate inlet enthalpy=Fn(AV118)

-A function of condensate inlet temp compressed liquidKCAL/KG

Where

AV118LPH 3 condensate inlet temp.

CV053

Heater 2 extraction enthalpy=Fn(AV035,AV036+KN003)

-A function of extraction temperature and pressure.KCAL/KG

Where

AV035Heater 2 extraction temperature

AV036Heater 2 extraction pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV054

Heater 1 Condensate out enthalpy=Fn(AV037)

-A function of Condensate temperature. Compressed liquid.KCAL/KG

Where

AV037Outlet temperature heater 1.

------------------------------------------------------------------------------------------------------------------------

CV055

Heater 2 drain enthalpy

=Fn(AV038)

-A function of drain temperature. Saturated liquid.KCAL/KG

Where

AV038Drain temperature heater 2

----------------------------------------------------------------------------------------------------------------------

CV150

Gland cooler 2 condensate outlet enthalpy=Fn(AV119)

-A function of GC-2 condensate outlet temp. Compressed liquid.

KCAL/KG

Where

AV119Gland cooler 2 condensate outlet temp.

-----------------------------------------------------------------------------------------------------------------------

CV051

Heater 3 extraction flow

= AV091*(CV044-CV149) / (CV048-CV05))

-Calculated by a heat balance around heater 3T/Hr

Where

AV091Condensate flow

CV044Heater 3 Condensate out enthalpy

CV149Heater 3 Condensate in enthalpy

CV050Heater 3 drain enthalpy

CV048Heater 3 extraction enthalpy

------------------------------------------------------------------------------------------------------------------------

CV052

Heater 3 drain flow= CV051

= heater 3 extraction flowT/Hr

Where

CV051Heater 3 extraction flow

------------------------------------------------------------------------------------------------------------------------

CV056

Heater 2 extraction flow

=(CV052*(CV055-CV050)+(AV091-CV057) *(CV049-CV150)) /

(CV053-CV055)

-Calculated by a heat balance around heater 2T/Hr

Where

CV041Condensate flow

AV091Condensate flow

CV049Heater 2 condensate out enthalpy

CV052Heater 3 drain flow

CV055Heater 2 drain enthalpy

CV050Heater 3 drain enthalpy

CV053Heater 2 extraction enthalpy

CV057Heater 2 drain flow

CV150Gland cooler 2 condensate outlet enthalpy

------------------------------------------------------------------------------------------------------------------------

CV057

Heater 2 drain flow=CV052+CV056

-The sum of heater 3 drain flow and heater 2 extraction flowT/Hr

Where

CV052Heater 3 drain flow

CV056Heater 2 extraction flow

-----------------------------------------------------------------------------------------------------------------------

CV058Temperature correction factor for circulating water in temperature

=Fn(AV092)

Where

AV092Condenser cooling water temperature

-----------------------------------------------------------------------------------------------------------------------

CV059

Heater 1 condensate in enthalpy (Ideal)=Fn(AV041)

-A function of condensate temperature. Compressed liquid.KCAL/KG

Where

AV041Inlet temperature heater 1.

------------------------------------------------------------------------------------------------------------------------

CV061

Circulating water velocity in condenser A tubes M/S

=1/2 ((AV093)/ (KN021*KN020*3600) + (AV093) / (KN021*KN056*3600))

Where

AV093Circulating water flow right

KN021Condenser cross sectional area for tube

KN020Number of tubes in condenser A first pass

3600Conversion from m/hr to m/s

KN056Number of tubes in condenser A second pass

------------------------------------------------------------------------------------------------------------------------

CV062

Condenser A basic heat transfer coefficient uncorrected

=2290.5* (CV061)1/2

-A function of velocity

KCAL/HR/SQM/Deg C

Where

CV061Circulating water velocity through condenser A

------------------------------------------------------------------------------------------------------------------------

CV064

Condenser A basic heat transfer coefficient corrected =(CV062*CV058*KN018)

KCAL/HR/SQM/Deg C

Where

CV062Uncorrected heat transfer coefficient for condenser A

CV058Temperature correction factor

KN018Tube metal correction factor.

-----------------------------------------------------------------------------------------------------------------------

CV065

High pressure heater 6 saturation temperature=Fn(AV010+KN003)

-A function of extraction pressure to the heater.DEG C

Where

AV010Extraction pressure heater 6

KN003Atmospheric pressure

-----------------------------------------------------------------------------------------------------------------------

CV110

Condenser vacuum=AV050*1.359 E-3

-Condenser absolute pressureKG/SC

Where

AV050Condenser vacuum mm Hg A

1.359 E-3Conversion from mm Hg to KG/SC

------------------------------------------------------------------------------------------------------------------------

CV066

Condenser saturation temperature=Fn(CV110)

-A function of condenser vacuumDEG C

Where

CV110Condenser vacuum

------------------------------------------------------------------------------------------------------------------------

CV067

Heater 5 saturation temperature=Fn(AV068+KN003)

-A function of extraction pressure to the heater.DEG C

Where

AV068Heater 5 extraction pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------CV069

Heater 3 saturation temperature=Fn(AV032+KN003)

-A function of extraction pressure to the heaterDEG C

Where

AV032Heater 3 extraction pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV070

Heater 2 saturation temperature=Fn(AV036+KN003)

-A function of extraction pressure to the heater.DEG C

Where

AV036Heater 2 extraction pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV071

Condenser B terminal temperature difference=CV066-AV094

Approach to saturation for condensate in condenser A DEG C

Where

CV066Condenser saturation temperature

AV094Condenser B outlet temperature

CV073

Condenser cooling range=CV066-AV092

Difference between condenser saturation temperature and CW inlet temperature DEG C

Where

CV066Condenser saturation temperature

AV092Condenser cooling water temperature

------------------------------------------------------------------------------------------------------------------------

CV074

Terminal temperature difference heater 6=CV065-AV007

-The approach to saturation for the condensate leaving the heaterDEG C

Where

CV065Heater 6 saturation temperature

AV007Heater 6 outlet temperature

-----------------------------------------------------------------------------------------------------------------------

CV075

Condenser B temperature rise=AV094-AV092

DEG C

Where

AV094Condenser B CW outlet temperature

AV092Cooling water temperature

---------------------------------------------------------------------------------------------------------------------

CV076

Terminal temperature difference heater 5=CV067-AV011

-The approach to saturation for the condensate leaving the heater.DEG C

Where

CV067Heater 5 saturation temperature

AV011FW inlet temperature heater 6

Note: When contact status of XZ503 OR FZ507 OR FZ506 are closed, CV076 = 0

--------------------------------------------------------------------------------------------------------------------

CV078

Terminal temperature difference heater 3=CV069-AV029

-The approach to saturation for the condensate leaving the heater.DEG C

Where

CV069Heater 3 saturation temperature

AV029Heater 3 outlet temperature

Note: When contact status of XZ502 closed, CV078 = 0

------------------------------------------------------------------------------------------------------------------------

CV079

Terminal temperature difference heater 2=CV070-AV033

-The approach to the saturation for the condensate leaving the heater.DEG C

Where

CV070Heater 2 saturation temperature

AV033Heater 2 outlet temperature

Note: When contact status of XZ501 closed, CV079 = 0

------------------------------------------------------------------------------------------------------------------------

CV080

logarithmic mean temperature difference for condenser B

=((CV066-AV092) - (CV066-AV094)) / In{(CV066-AV092) / (CV066-AV094)}

DEG C

Where

CV066Condenser saturation temp

AV094Cooling water at Condenser B outlet Temp

AV092Condenser cooling water temp.

------------------------------------------------------------------------------------------------------------------------

CV082

Condensate enthalpy leaving condenser A=Fn(AV096)

-A function of condensate temperature leaving condenser AKCAL/KG

Where

AV096Condensate pump suction temperature

---------------------------------------------------------------------------------------------------------------------

CV269

Design temperature heater 6 outlet FW=Fn(AV049)

DEG C

Where

AV049Gross generation

---------------------------------------------------------------------------------------------------------------------

CV083

Temperature deviation from design heater 6=CV269-AV007

-Difference between design and actual outlet temperatureDEG C

Where

CV269Design temperature heater 6 FW outlet

AV007Heater 6 outlet temperature

-----------------------------------------------------------------------------------------------------------------------

CV084

Steam energy removed in condenser AKCAL/KG

= AV093*KN034*KN035*(AV094 AV092)

Where

AV093CW flow for condenser A

KN034CW density

KN035Specific heat of CW for mean temp and salinity

AV094Cond A CW out temp

AV092Cond CW in temp

------------------------------------------------------------------------------------------------------------------------

CV270

Design temperature heater 5 outlet FW=Fn(AV049)

DEG C

Where

AV049Gross generation

------------------------------------------------------------------------------------------------------------------------

CV085

Temperature deviation from design heater 5=CV270-AV011

Difference between design and actual outlet temperatureDEG C

Where

CV270Design temperature heater 5 FW outlet

AV011Heater 6 inlet temperature

------------------------------------------------------------------------------------------------------------------------

CV272

Design temperature heater 3 condensate outlet=Fn(AV049)

DEG C

Where

AV049Gross generation

-----------------------------------------------------------------------------------------------------------------------

CV087

Temperature deviation from design heater 3=CV272-AV029

- Difference between design and actual outlet temperatureDEG C

Where

CV272Design temperature heater 3 condensate outlet

AV029Heater 3 outlet temperature

------------------------------------------------------------------------------------------------------------------------

CV273

Design temperature heater 2 condensate outlet=Fn(AV049)

DEG C

Where

AV049Gross generation

------------------------------------------------------------------------------------------------------------------------

CV088

Temperature deviation from design heater 2=CV273-AV033

-Difference between design and actual outlet temperatureDEG C

Where

CV273Design temperature heater 2 condensate outlet

AV033Heater 2 outlet temperature

---------------------------------------------------------------------------------------------------------------------

CV157

Low pressure heater 1 extraction enthalpy

=Fn(AV040+KN003, Dryness Fraction)

-A function of extraction pressure and dryness fractionKCAL/KG

Where

AV040LPH-1 extraction pressure

KN003Atmospheric pressure

Dryness fraction = The quality of extraction steam will be from :BHEL curves based on load. Fn(AV049)

-----------------------------------------------------------------------------------------------------------------------

CV158

Low pressure heater 1 drain enthalpy=Fn(AV042)

-A function of drain temp saturated liquidKCAL/KG

Where

AV042LPH -1 drain temp

-----------------------------------------------------------------------------------------------------------------------

CV159

Heater 1B condensate outlet enthalpy=Fn(AV121)

-A function of condensate temp compressed liquidKCAL/KG

Where

AV121Outlet temp heater 1B.

-----------------------------------------------------------------------------------------------------------------------

CV089

Low pressure heater 1 extraction flow

=(( AV093-CV057)*((CV054+CV159) / 2))-CV059)) /(CV157-CV158 )

T/Hr

Where

AV093Condensate flow right

CV057Heater 2 drain flow

CV054Heater 1A condensate outlet enthalpy

CV159Heater 1B condensate outlet enthalpy

CV059Heater 1condensate inlet enthalpy

CV158Heater 1 drain enthalpy

CV157Heater 1 extraction enthalpy

Note: When contact status of CZ512 & CZ513 are closed, CV089 = 0

------------------------------------------------------------------------------------------------------------------------

CV090

Enthalpy of main steam at HP turbine=Fn(AV072,AV073+KN003)

-A function of temperature and pressure at CV inletKCAL/KG

Where

AV072Main steam temp after ESV

AV073Main steam press after ESV

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV091

HP turbine exhaust enthalpy=Fn(AV074,AV075+KN003)

-A function of temperature and pressureKCAL/KG

Where

AV074HPT exhaust temp

AV075HPT exhaust press

KN003Atmospheric pressure

-----------------------------------------------------------------------------------------------------------------------

CV092

HP turbine exhaust ideal enthalpy

=Fn(AV072,AV073+KN003, AV075+KN003)

-The enthalpy of main steam after isentropic expansion through the HP turbine

KCAL/KG

Where

AV072Main steam temp after ESV

AV073Main steam pressure after ESV

AV075HPT exhaust pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV093

HP turbine efficiency=(CV090-CV091) / (CV090-CV092) *100

-The ratio of the actual change in enthalpy across the HP turbine compared to the theoretical change (at constant entropy), expressed as a percentage)%

Where

CV090Enthalpy of main steam at CV inlet

CV091HP turbine exhaust enthalpy

CV092HP turbine exhaust enthalpy (Ideal)

------------------------------------------------------------------------------------------------------------------------

CV094

Enthalpy of hot reheat steam=Fn(AV045,AV046+KN003)

-A function of temperature and pressure of steam leaving the reheat section of the boilerKCAL/KG

Where

AV045Hot reheat temperature IV inlet

AV046Hot reheat pressure IV inlet

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV095

Enthalpy of IP turbine exhaust=CV053

-A function of temperature and pressure. This is equal to the enthalpy of extraction steam to LPH-2

KCAL/KG

Where

CV053LPH 2 extraction enthalpy

-----------------------------------------------------------------------------------------------------------------------

CV096

IP turbine exhaust enthalpy (Ideal)

=Fn(AV045,AV046+KN003,AV036+KN003)

-A function of temperature and inlet and exhaust pressure. It is the enthalpy of steam after isentropic (constant entropy) expansion through the IP turbine)KCAL/KG

Where

AV045Hot reheat temperature IV inlet

AV046Hot reheat pressure IV inlet

AV036LPH 2 extraction pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV097

IP turbine efficiency=((CV094-CV095/CV094-CV096))*100

-The ratio of the actual change in enthalpy to the theoretical change in enthalpy if expansion was isentropic, expressed as a percentage.%

Where

CV094Enthalpy of hot reheat at IV inlet

CV095IP turbine exhaust enthalpy

CV096IP turbine exhaust enthalpy (Ideal)

Note: when contact status of XZ501 is closed CV097=0

----------------------------------------------------------------------------------------------------------------------

CV098

Condenser A actual heat transfer coefficient

= CV084 / (CV080*KN057*(KN020+KN056))

KCAL/HR/SQ M/DEG C

Where

CV084Steam energy removed in condenser A

CV080Log mean temperature for condenser

KN057Condenser surface area per tube

KN020No. of condenser tubes in condenser A

KN056No. of tubes in condenser A second pass

Note: When the contact status of HZ500/ HZ501 is closed, CV098=0.

--------------------------------------------------------------------------------------------------------------------

CV099

Condenser A cleanliness factor=(CV098/CV064)*100 %

Where

CV098Condenser A actual heat transfer coefficient

CV064Condenser A basic heat transfer coefficient corrected.

------------------------------------------------------------------------------------------------------------------------

CV183

IPT leak off thru control valves=Fn(CV001)

-IPT leak off thru control valves is a function of main steam flowT/Hr

Where :

CV001Main steam flow

-----------------------------------------------------------------------------------------------------------------------

CV184

IPT leak off thru rear seals=Fn(CV001)

-IPT leak off thru rear seals is a function of main steam flow.T/Hr

Where

CV001Main steam flow

------------------------------------------------------------------------------------------------------------------------

CV185

IPT leak off thru front seals=Fn(CV001)

-IPT leak off thru front seals is a function of main steam flow.T/Hr

Where

CV001Main steam flow

CV187

Steam leakage into LPT=Fn(CV001)

-Steam leakage into LPT is a function of main steam flowT/Hr

Where

CV001Main steam flow

-----------------------------------------------------------------------------------------------------------------------

CV188

IPT and LPT leakage=CV183+CV184+CV185-CV187

Where

CV183IPT leakoff thru control valves

CV184IPT leakoff thru rear seals

CV185IPT leakoff thru front seals

CV187Steam leakage into LPT

CV108

Generator variable losses=Fn(AV049

-A function of gross generationMW

Where

AV049Gross generation

----------------------------------------------------------------------------------------------------------------------

CV109

LP turbine exhaust enthalpy (Ideal)=Fn(AV035,AV036 + KN003, CV110)

-A function of temperature inlet and inlet and outlet pressure.KCAL/KG

Where

AV035LPH 2 extraction temperature

AV036LPH 2 extraction pressure

CV110Condenser vacuum (In absolute)

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV189

HPT front seal leakoff enthalpy=Fn(CV001)

-HPT front seal leakoff enthalpy is a function of main steam flow.

Where

CV001Main steam flow

-----------------------------------------------------------------------------------------------------------------------

CV190

HPT rear seal leakoff enthalpy=Fn(CV001)

-HPT rear seal leakoff enthalpy is a function of main steam flow

Where

CV001Main steam flow

-----------------------------------------------------------------------------------------------------------------------

CV191

HPT CV seal leakoff enthalpy=Fn(CV001)

-HPT CV seal leakoff enthalpy is a function of main steam flow

Where

CV001Main steam flow

------------------------------------------------------------------------------------------------------------------------

CV192

HPT front seal to HPT exhaust steam enthalpy=Fn(CV001)

-HPT front seal to HPT exhaust steam enthalpy is a function of main steam flow

Where

CV001Main steam flow

-----------------------------------------------------------------------------------------------------------------------

CV193

IPT front seal leakoff enthalpy=Fn(CV001)

-IPT front seal leakoff enthalpy is a function of main steam flow

Where

CV001Main steam flow

---------------------------------------------------------------------------------------------------------------------

CV194

IPT rear seal leakoff enthalpy=Fn(CV001)

-IPT rear seal leakoff enthalpy is a function of main steam flow.

BHEL drg MS-0105-HW-03020.

Where

CV001Main steam flow

----------------------------------------------------------------------------------------------------------------------

CV195

IPT CV seal leakoff enthalpy=Fn(CV001)

-IPT CV seal leakoff enthalpy is a function of main steam flow

Where

CV001Main steam flow

-----------------------------------------------------------------------------------------------------------------------

CV196

Steam leakage into LPT enthalpy=Fn(CV001)

-Steam leakage into LPT enthalpy is a function of main steam flow

Where

CV001Main steam flow

**CV105

LP turbine exhaust flow

=CV036-CV042-CV051 - CV056 - CV089 - AV090 - CV188

-Hot reheat flow minus all extractions of IP and LP turbine sections.T/Hr

Where

CV036Hot reheat flow

CV042Heater 5 extraction flow

CV051Heater 3 extraction flow

CV056Heater 2 extraction flow

CV089Heater 1 extraction flow

AV090Deaerator extraction flow

CV188IPT and LPT leakage

Note :

1) The above equation is valid when the contact status of XZ505 is open

(contact status to be checked at site)

---------------------------------------------------------------------------------------------------------------------------------

**CV111

LP turbine exhaust enthalpy (Actual)

= steam-extract-leaks-gener / CV105

steam = CV001*CV090 + CV036*CV094 - CV035*CV091

Where

CV001Main steam flow

CV090Main steam enthalpy

CV036Hot reheat flow

CV094Hot reheat enthalpy

CV035Cold reheat flow

CV091HPT exhaust enthalpy

Extract = CV028*CV025 + CV042*CV145 + CV051*CV048 + CV056*CV053 + CV089*CV157 + AV090*HXDEA

Where

CV028HPH 6 extraction flow

CV025HPH 6 extraction enthalpy

CV042HPH 5 extraction flow

CV145HPH 5 extraction enthalpy

CV051LPH 3 extraction flow

CV048LPH 3 extraction enthalpy

CV056LPH 2 extraction flow

CV053LPH 2 extraction enthalpy

CV089LPH 1 extraction flow

CV157LPH 1 extraction enthalpy

AV090Deaerator extraction flow

If the contact status of XZ505 is open, then HXDEA = CV145.

GENER=(AV049+CV108 + KN031)860.076

Where

AV049Gross generation

CV108Generator variable losses

KN031Generation fixed losses

860.076Conversion from MW to KCAL/Hr

CV105Low pressure turbine exhaust flow

LEAKS = CV176*CV189 + CV177*CV190 + CV178*CV191 - CV179*CV192 + CV185*CV193 + CV184*CV194 + CV183*CV195 - CV187*CV196

Where

CV176HPT leak off thru front seals

CV177HPT leak off thru rear seals

CV178HPT leak off thru control valves

CV179Steam supplied from front sealing of HPT to HPT exhaust

CV185IPT leak off thru front seal

CV184IPT leak off thru rear seals

CV183IPT leak off thru control valves

CV187Steam leakage into LPT

CV189HPT front seal leak off enthalpy

CV190HPT rear seal leak off enthalpy

CV191HPT CV seal leak off enthalpy

CV192HPT front seal to HPT exhaust steam enthalpy

CV193IPT front seal leak off enthalpy

CV194IPT rear seal leak off enthalpy

CV195IPT CV seal leak off enthalpy

CV196Steam leakage into LPT enthalpy

**Process TAGS are not available in the database the same to be checked & incorporated at site along with relevant calculation.

-----------------------------------------------------------------------------------------------------------------------------

**CV112

LP turbine efficiency=((CV095-CV111) / (CV095-CV109))*100)

-The ratio of the energy used to the energy theoretically available expressed as a percentage.%

Where

CV095IP turbine exhaust enthalpy

CV109LP turbine exhaust enthalpy(Ideal)

CV111LP turbine exhaust enthalpy(Actual)

Note : the contact status to be checked at site CV112 = 0.

------------------------------------------------------------------------------------------------------------------------------

CV205Ton of Excess Air at AH Inlet Per Ton of Fuel Fired=54.88*(KN006/100)+20.56*(KN007/100)+ 129.25* (KN008/100) -16.29*(KN009/100)+4.90*(KN010/100)* ((AV053/100) / (1-4.78*AV053/100))

T/T

Where

KN006Coal content carbon per cent

KN007Coal content sulfur per cent

KN008Coal content hydrogen per cent

KN009Coal content oxygen per cent

KN010Coal content nitrogen per cent

AV053Economiser outlet oxygen per cent

------------------------------------------------------------------------------------------------------------------------

CV204 Ton of minimum air for complete combustion per ton of fuel firedT/T

=11.51*(KN006/100)+4.35*(KN007/100)+34.30* (KN008/100)-4.35*(KN009/100)

Where

KN006Coal content carbon percent

KN007Coal content sulfur content

KN008Coal content hydrogen per cent

KN009Coal content oxygen per cent

------------------------------------------------------------------------------------------------------------------------

CV181

Excess air percentage=(CV205/CV204)*100 %

Where

CV205Ton of excess air per ton of fuel

CV204Kg of minimum air required for complete combustion per KG of fuel.

------------------------------------------------------------------------------------------------------------------------

CV182

Excess air percentage standard=Fn(AV049)

-Excess air percentage standard is a function of load.%

Where

AV049Gross generation

------------------------------------------------------------------------------------------------------------------------

CV034

Excess Air Deviation=CV181-CV182%

Where

CV181Excess air percentage

CV182Excess air % standard

------------------------------------------------------------------------------------------------------------------------

CV117

Dry gas per ton of fuel fired=WAEX+WGMA

Where

WAEX=t of excess air/t of fuel

=(54.88*KN006/100.+20.56*KN007/100. + 129.25 * KN008/100. - 16.29 * KN009/100. + 4.90*KN010)/100.) * ((AV053/100)/(1-(4.78*AV053/100))

WGMA =T of dry gas/T of fuel in minimum air supply for complete combustion condition.

=12.482xKN006/100. + 5.301*KN007/100. + 26.260*KN008/100. - 3.309*KN009/100. + KN010/100.

Where

KN006Coal content carbon

KN007Coal content sulfur

KN008Coal content hydrogen

KN009Coal content oxygen

KN010Coal content nitrogen

AV053Economiser outlet oxygen

--------------------------------------------------------------------------------------------------------------------

**CV118

Heat loss due to dry gas

=CV117*KN025(AHGOT-AHPAIT * CV004- CV005*AHSAIT)

KCAL/KG

Where

CV117Dry gas/ fuel fired

KN025Specific heat of flue gas

AV054AH A gas out temperature

AV057AH B gas out temperature

AV060AH A PA in temperature**

AV062AH B PA in temperature**

CV004Fraction of air that is primary air

CV005Fraction of air that is secondary air

AV064AH A secondary air in temperature**

AV066AH B secondary air in temperature**

Note: a) when contact status of SZ517 OR SZ524 is closed the following equation are applicable

AHGOT = AV057, AHPAIT= AV062, AHSPAIT=AV066

b) When contact status of SZ519 OR SZ525 is closed the following equation are applicable

AHGOT = AV054, AHPAIT= AV060, AHSPAIT=AV064

c) When both above note are applicable, CV118=0

d) When none of above notes is applicable the following equations shall be used.

AHGOT = (AV054+AV057)/2, AHPAIT= (AV060+AV062)/2, AHSPAIT=(AV064+AV066)/2

**Process TAGS are not available in the database the same to be checked & incorporated at site along with relevant calculation.

------------------------------------------------------------------------------------------------------------------------

CV119

Enthalpy of water vapor at exhaust gas temperature

=Fn ((AV054+AV057) / 2, KN003))

-A function of temperature and pressure saturated steamKCAL/KG

Where

AV054AH A outlet gas temperature

AV057AH B outlet gas temperature

KN003Atmospheric pressure

Note: The above equation is valid when contact status of SZ524 AND SZ525 are open.

--------------------------------------------------------------------------------------------------------------------

**CV120

Enthalpy of water at ambient temperature =CV004*HPA + CV005*HS A

-A function of inlet air temperature compressed liquidKCAL/KG

HPA= Fn(AV060 + AV062) / 2

HS A= Fn(AV064 + AV066) / 2

Where

AV060AH A PA inlet temperature**

AV062 AH B PA inlet temperature**

AV064AH A SA inlet temperature

AV066AH B SA inlet temperature

CV004Fraction of air that is primary air

CV005Fraction of air that is secondary air

**Process TAGS are not available in the database the same to be checked & incorporated at site along with relevant calculation.

------------------------------------------------------------------------------------------------------------------------

**CV121

Heat loss due to moisture in fuel=KN011/100. * (CV119-CV120)

-The coal moisture content times the difference in enthalpy of the exhaust gas and liquid water at ambient.KCAL/KG

Where

KN011Coal content moisture

CV119Enthalpy of water vapor at exhaust gas temperature

CV120Enthalpy of water at ambient.

**Process TAGS are not available in the database the same to be checked & incorporated at site along with relevant calculation.

----------------------------------------------------------------------------------------------------------------------

**CV122

Heat loss due to water combined from hydrogen

=9.* KN008/100.*(CV119 - CV120)

-A function of moisture and the difference in enthalpy of water at ambient and at exhaust gas temperature

KCAL/KG

Where

KN008Coal content hydrogen

CV119Exhaust gas water vapor enthalpy

CV120Enthalpy of water at ambient.

------------------------------------------------------------------------------------------------------------------------

CV203

Ton of moisture per ton of dry air (i.e., specific humidity of dry air)

=(KN002* PSAT/100)/(1.608*(KN003-KN002 * PSAT/100))

-Specific humidity is a function of relative humidity, temperature and atmospheric pressure

Where

KN002Relative humidity per cent

KN003Atmospheric pressure kg/sc

PSATSaturation pressure of water vapor at ambient temp

PSATf ((AV140+AV167) / 2)

AV140FD Fan A discharge temp

AV167FD Fan B discharge temp

Note:

a) When contact status of SZ506 AND SZ507 are open the above equation is valid

b) When contact status of SZ506 is open AND SZ507 is close, CV203=Fn (KN002, AV140)

c) When contact status of SZ506 is close AND SZ507 is open, CV203=Fn (KN002, AV167)

-----------------------------------------------------------------------------------------------------------------------

CV164

Heat loss due to moisture in air

=(CV204+CV205)*(CV203*0.477*(TG -TEMP) KCAL/KG

Where

CV204Min air for complete combustion

CV205Excess air per ton of fuel

CV203Water vapor content of combustion air (specific humidity)

0.477Specific heat of water vaporKCAL/KG/Deg C

TG = (AV054+AV057) / 2.

Notes :

1) When the contact status of SZ507 is closed, Temp=AV140

2) When the contact status of SZ506 is closed, Temp =AV167

4) If both the status of SZ506 and SZ507 are closed, CV164=0

3) If both the status of SZ506 and SZ507 are open Temp = (AV140+AV167) / 2

4) TG = (AV054+AV057) / 2. (since the contact status of AH-A GAS O/L Damper and AH-B gas O/L Damper not given in database hence AVG. taken)

AV140Forced draft fan A disch temp

AV167Forced draft fan B disch temp

AV054Gas temp after air heater A

AV057Gas temp after air heater B

----------------------------------------------------------------------------------------------------------------------

CV123

Boiler efficiency -Heat loss method%

=100.*((1-(CV118+CV121 + CV122 + CV164) / KN013)) -(KN014+KN015+KN016)

Where

CV118Heat loss- dry gas

CV121Heat loss- moisture in fuel

CV122Heat loss- combined from hydrogen

KN013Heating value of coal

KN014Heat loss refuse

KN015Heat loss radiation

KN016Heat loss unmeasured

CV164Heat loss due to moisture in air

------------------------------------------------------------------------------------------------------------------------

CV124

Net generation=AV049-AV056

-Gross generation less auxiliary powerMW

Where

AV049Gross generation

AV056Auxiliary power

-----------------------------------------------------------------------------------------------------------------------

CV125

Auxiliary power per cent= (AV056/AV049) * 100.

-The per cent of gross generation used for auxiliary power.%

Where

AV056Auxiliary power

AV049Gross power

-----------------------------------------------------------------------------------------------------------------------

CV126

Net turbine heat rate

=((CV001*(CV090- CV008) + CV035 * (CV094-CV091) + AV013* (CV094-CV008)) / CV124

-The total heat added to the cycle divided by net generation.KCAL/ KWH

Where

CV001Main steam flow

CV090Enthalpy of main steam

CV035Cold reheat flow

CV091Enthalpy of cold reheat

CV124Net generation

AV013Reheat spray flow

CV094Hot reheat enthalpy

CV008Superheat spray water enthalpy

-----------------------------------------------------------------------------------------------------------------------------CV127

Reference Gross turbine heat rate=Fn(AV049)

-See curveKCAL KWH

Where

AV049Gross generation

-----------------------------------------------------------------------------------------------------------------------

CV166

Gross turbine heat rate=CV126 * CV124/AV049

KCAL/KWH

Where

CV126Net turbine heat rate

CV124Net generation

AV049Gross generation

----------------------------------------------------------------------------------------------------------------------

CV133

Adjusted gross turbine heat rate

=CV166*(1-CV128/100.) * (1. + CV129/100.) * (1. + CV130/100.) * (1. + CV131/100.)* (1+CV167/100) KCAL/KWH

Where

CV128Heat rate deviation main steam temperature

CV129Heat rate deviation reheat steam temp

CV130Heat rate deviation main steam press

CV131Heat rate deviation condenser vacuum

CV167Heat rate deviation Reheater press drop

CV166Gross turbine heat rate

------------------------------------------------------------------------------------------------------------------------

CV200

Reheater outlet enthalpy=Fn((AV101+AV102),AV103+KN003)

Where

AV101Reheater outlet steam temp left

AV102Reheater outlet steam temp right

AV103Reheater outlet steam pressure

KN003Atmospheric pressure

-----------------------------------------------------------------------------------------------------------------------

CV138

Boiler efficiency by input-output method

={{ (AV001-KN001)* (CV199-CV008) + AV076*(CV199-CV008) + CV035*(CV200-CV091) +(AV013 (CV200-(KN032-CV008) + KN001*CV008) } / {KN013*(AV104+AV105 + AV106 + AV107 + AV108 + AV109) + ((AV110 -AV111) / 1000) * KN026 + (KN033 / 1000) }} 100 %

Where

AV001Feedwater flow

KN001Blowdown flow

CV199Superheater outlet enthalpy

CV008Superheater spray water enthalpy = Economiser inlet enthalpy

AV076Superheat spray water flow

CV035Cold reheat flow

CV200Reheater outlet enthalpy

CV091HP turbine exhaust enthalpy

AV013Reheat spray flow

KN032Blow down enthalpy

KN013Heating value of coal

AV104Mill A coal flow

AV105Mill B coal flow

AV106Mill C coal flow

AV107Mill D coal flow

AV108Mill E coal flow

AV109Mill F coal flow

AV110Heavy oil supply flow

AV111Heavy oil return flow

KN026Heating value of fuel oil

KN033Heat added other than chemical

------------------------------------------------------------------------------------------------------------------------

CV137

Average boiler efficiency

-Heat loss and input/output method=(CV123+CV138) / 2%

Where

CV123Boiler efficiency by heat loss method

CV138Boiler efficiency by input/output method

------------------------------------------------------------------------------------------------------------------------

CV136

Gross unit heat rate= (CV166/CV137) * 100

-Net heat rate adjusted for gross generationKCAL/KWH

Where

CV166 Gross turbine heat rate

CV137Boiler efficiency (Average of heat loss and input/output methods)

------------------------------------------------------------------------------------------------------------------------

CV169

Net unit heat rate=CV136 * AV049/CV124

KCAL/KWH

Where

CV136Gross unit heat rate

AV049Gross generation

CV124Net generation

-----------------------------------------------------------------------------------------------------------------------

CV152

Circulating water velocity in condenser B tubes

=1/2((AV120/KN021*KN036*3600)+( AV120/KN021*KN058*3600)) M/S

Where

AV120Condenser flow, left

KN021Condenser cross section area per tube

KN036Number of tubes condenser B first pass

3600Conversion from m/hr to m/s

KN058Number of tubes condenser B Second pass

------------------------------------------------------------------------------------------------------------------------

CV153

Condenser B basic heat transfer coefficient uncorrected2290.5 * (CV152)1/2

-A function of velocityKCAL/HR/SQM/DEG C

Where

CV152Circulating water velocity through condenser B

------------------------------------------------------------------------------------------------------------------------

CV154

Condenser B basic heat transfer coefficient corrected

=CV152*CV058*KN018 KCAL/HR/SQM/DEG C

Where

CV153Uncorrected heat transfer coefficient for condenser B

CV058Temperature correction factor

KN018Tube metal correction factor

------------------------------------------------------------------------------------------------------------------------

CV155

Condenser B terminal temperature difference=CV066 - AV095

DEG C

Where

CV066Condenser saturation temp

AV095Condenser B outlet temp

Note: When HZ503 contact status closed, CV155=0.

------------------------------------------------------------------------------------------------------------------------

CV156

Condenser B temperature rise=AV095-AV092

DEG C

Where

AV095Condenser B outlet temp

AV092Cooling water temp

Note: When the contact status of HZ501 is closed, CV156=0.

------------------------------------------------------------------------------------------------------------------------

CV160

Condensate enthalpy leaving condenser B=Fn(AV122)

-A function of condensate temp leaving condenser BKCAL/KG

Where

AV122Condensate suction pump temp

-----------------------------------------------------------------------------------------------------------------------

CV161

Steam energy removed in condenser B

= AV120*KN034*KN035 * (AV095-AV092)

KCAL/HR

Where

AV120condenser flow, left

KN034Circulating water density

KN035Specific heat of circulating water for mean temp and salinity

AV092Condenser cooling water temp

AV095Circulating water at condenser B outlet temp

------------------------------------------------------------------------------------------------------------------------

CV197

Logarithmic mean temperature for condenser B

=((CV066-AV092)-(CV066-AV095))/ln ((CV066-AV092)/(CV066-AV095))

DEG C

Where

CV066Condenser saturation temp

AV092Condenser cooling water temp

AV095Cooling water at condenser B outlet temp

Note : When contact status of HZ501 is closed, CV197=0.

-----------------------------------------------------------------------------------------------------------------------

CV162

Condenser B actual heat transfer coefficient

=CV161/(CV197*KN057*(KN036 + KN058)

KCAL/HR/SQM/DEG C

Where

CV161Steam energy removed in condenser B

CV197LMTD for condenser B

KN057Condenser surface area per tube

KN036Number of tubes in first pass of condenser B

KN058Number of tubes in second pass of condenser B

Note : When contact status of HZ501 is closed, CV162=0.

------------------------------------------------------------------------------------------------------------------------

CV163

condenser B cleanliness factor=CV162/CV154 * 100%

Where

CV162Condenser B actual heat transfer rate

CV154Condenser B basic heat transfer rate corrected.

-----------------------------------------------------------------------------------------------------------------------

CV170

Boiler efficiency deviation between heat loss and input/output method

=ABS (CV123-CV138)

-Percentage deviation of heat loss method and input/output method%

Where

CV123Boiler efficiency by heat loss method

CV138Boiler efficiency by input/output method

ABSAbsolute value

------------------------------------------------------------------------------------------------------------------------

CV171

Heater 1 saturation temperature=Fn(AV040+KN003)

-A function of extraction pressure to the heaterDeg C

Where

AV040Heater 1 extraction pressure

KN003Atmospheric pressure

------------------------------------------------------------------------------------------------------------------------

CV172

Heater 1A terminal temp difference=CV171-AV037

-The approach to the saturation for the condensate leaving the heater.Deg C

Where

CV171Heater 1 saturation temp

AV037Heater 1A condensate temp out

------------------------------------------------------------------------------------------------------------------------

CV173

Heater 1B terminal temp difference=CV171-AV121

-The approach to the saturation for the condensate leaving the heater.Deg C

Where

CV171Heater 1 saturation temp

AV121Heater 1B condensate temp out

Note : When contact status of CZ512 and CZ513 are closed, CV162=0.

-----------------------------------------------------------------------------------------------------------------------

CV278

Economiser pressure drop in gas path with respect to loadFn(AV049)

KG/SC

Where

AV049Gross generation

-----------------------------------------------------------------------------------------------------------------------

CV174

Economiser press drop performance deviation

={(AV136-CV278) / CV278} *100

-See curve%

Where

CV278Economiser press drop in gas path with respect to load

AV136Measured press drop in gas path across economiser

------------------------------------------------------------------------------------------------------------------------

CV279

Economiser temperature rise as a function of load=Fn(AV049)

DEG C

Where

AV049Gross generation

------------------------------------------------------------------------------------------------------------------------

CV175

Economiser temp rise performance deviation

=CV279-((AV138+AV139)/2- AV088))

-See curveDEG C

Where

CV279Econ temp rise as a function of load

AV138Econ temp outlet left of feedwater

AV139Econ temp outlet right of feedwater

AV088Econ temp inlet of feedwater

-----------------------------------------------------------------------------------------------------------------------

CV198

HPH-5 drain cooler approach=AV069-AV071

DEG C

Where

AV069HPH-5 drain temperature

AV071HPH-5 CNDS in temp

Note: When contact status of XZ503 OR FZ507 OR FZ506 are closed, CV198 = 0

-----------------------------------------------------------------------------------------------------------------------

CV201Ton of dry air leakage in AH A per the quantity of wet flue gas per ton of fuel fired entering AH A= (54.88*KN006/100 + 20.56 * KN007/100 + 129.25 * KN008/100-16.29 * KN009/100+4.90 * KN010/100) * (KN037/100/((1-4.78*KN037/100)-(AV053/100)*(1-4.78*AV053/100))

Where

KN037Entered value = per cent oxygen by volume for gas at AH A outlet

AV053Per cent oxygen by volume for gas at AH inlet

KN006Coal content carbon per cent

KN007Coal content sulper per cent

KN008Coal content hydrogen per cent

KN009Coal content oxygen per cent

KN010Coal content nitrogen per cent

Note: When contact status of SP573 is ON, CV201=0.

-----------------------------------------------------------------------------------------------------------------------

CV202Ton of dry air leakage in AH B per the quantity of wet flue gas per ton of fuel fired entering AH B

= (( 54.88 * KN006/100 + 20.56 * KN007/100 + 129.25 * KN008/100 16.29 * KN009/100 + 4.90 * KN010/100) * (KN038/100) / ((1-4.78 * KN038/100) (AV053/100) * (1-.78 * AV053/100))

Where

KN038Entered value = per cent oxygen by volume for gas at AH B outlet

AV053Percent oxygen by volume for gas at AH inlet

KN006Coal content carbon per cent

KN007Coal content sulfur per cent

KN008Coal content hydrogen per cent

KN009Coal content oxygen per cent

KN010Coal content nitrogen per cent

Note: When contact status of SP574 is ON, CV202=0

----------------------------------------------------------------------------------------------------------------------

CV206Ton of wet air leakage in AH A per the quantity of wet flue gas per ton of fuel fired entering AH A=CV201*(1+CV203)T

Where

CV201Ton of dry air leakage in AH A per the quantity of wet flue gas per ton of fuel fired entering AH A

CV203Ton of moisture per ton of dry air (i.e., specific humidity per ton)

-----------------------------------------------------------------------------------------