15
Field Gradients – Uses in NMR BCMB/CHEM 8190 May 2, 2005

Field Gradients – Uses in NMRtesla.ccrc.uga.edu/courses/BioNMR2005/lectures/may2.pdf · 2018. 7. 10. · Pulsed Field Gradients – How they Work i i B 0 (z) B’ z B 0 time G(z)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Field Gradients – Uses in NMR

    BCMB/CHEM 8190May 2, 2005

  • Pulsed Field Gradients – NMR Applications

    • Coherence selection using pulsed field gradients. J. R. Tolman & J. H. Prestegard, Concepts in Magnetic Resonance, 7, 247-262 (1995).

    • Water suppression (WATERGATE), M. Piotto, V. Saudek & V. Sklenar, J. Biomol. NMR, 2, 661-665 (1992).

    • Diffusion measurements. Altieri, Hinton & Byrd, J. Am. Chem. Soc., 117, 7566-7567 (1995).

    • NMR Imaging, Levitt, “Spin Dynamics”, pp 325-335 (2002).

    • Echo Planar Spectroscopic Imaging, Concepts in Magnetic Resonance, 13, 213-237 (2001).

  • Pulsed Field Gradients – How they Work

    i

    iB0(z)

    B’

    z

    B0

    time

    G(z)

    Magnetization vectors precess at different rates depending on G(z) and γ for each volume element. They dephase - net Mx, My = 0

  • Effects of Gradients can be RefocussedApplication: Water Suppression

    90x 90-y 180y 90-y

    x y

    z

    ωa ωbx y

    ωaωb

    zG1 G1

    Resonance notaffected by 90refocuses

    x y

    z

    ωb

    ωa

    x yωb

    ωa

    zResonance affected by 90dephases (H2O)

    x yωa

    ωb

    z

    x y

    z

    ωa

    ωb

    x y

    z

    ωb

    ωa

  • 1D 1H Water-Suppressed Spectrum Pf-Rubredoxin in 1H2O

    ppm-2024681012

  • Coherence Selection Using Pulse Field Gradients

    • H(r) = -Σkγk [B0 + Bz(r)]Ikz(in radians s-1 and neglecting chemical shifts)

    • Effects on product operators for a z gradient:

    • Ikz -γk Bz(z) Ikz τ Ikz

    • Ik+ -γk Bz(z) Ikz τ exp[i γk Bz(z) τ ] Ik+

    • Ik- -γk Bz(z) Ikz τ exp[-i γk Bz(z) τ ] Ik-

    • For linear gradients Bz(z) = Gz z• Observables are integrals over z – zero for Ik+ , Ik-

    B’

    z

    B0

  • 1H(I)

    15N(S)90-x 180y 90y

    90y

    τ τ

    t1/2 t1/2 ττ decouple180x 90-x 180x

    180y 90-x 180x

    t2

    GG1

    -G1G2

    Gradient Selected HSQC

    σmn(t2) = Integralz {σmn(t1) exp[iγN2G1z] exp[-iγHG2z]}

    = Integralz {σmn(t1) exp[i(γN2G1z- γHG2z)]}

    σmn(t2) finite only if γN2G1 = γHG2All 1Q proton transverse magnetization eliminated

  • Translational Diffusion Constants for Macromolecules

    • Determine aggregate size• Determine protein-protein interactions• Screen for bound ligands

    • = nDt where D = kT/(6πηr)• Key: if molecule moves, field is different,

    magnetization doesn’t refocus

    r

  • 90x 180y

    gz gzδ δ

    Δ

    •ln[S/S0] = -γ2g2Dδ2(Δ - δ/3)

    Stejskal and Tanner Pulse Sequencefor Diffusion Measurement

  • Diffusion Measurement Continued

    • Measurements are limited by natural T2• Improved sequence uses z storage

    (Altieri, Hinton and Byrd, 1995)

    ln(S/S0)

    g2

    Large molecule

    Small molecule

  • "for their discoveries concerning magnetic resonance imaging"

    Paul C. Lauterbur Sir Peter Mansfield

    The Nobel Prize in Physiology or Medicine 2003

  • Simple Imaging Strategy

    • During gradient spins in each volume element have their own precession frequency

    • Can get a 1D image of sample – used in gradient shimming

    High positive frequency

    Zero frequency

    High negative frequency

  • Simple 2D Image• For 2D imaging use gradients in different directions (x, z)

    in different evolution periods (t1, t2)

    90x

    Gz

    Gx

    t1 t2

    z

    x

    ν1

    ν2

  • Echo Planar Imaging – Speeding up Acquisitions

    90x

    Gz t2 t2 t2 t2 t2

    t1

    dw-1 dw-2 dw-3 dw-4 dw-5

    • t2 will have spatial image (needs to be reversed in even dw)• t1 can sample a number of different properties • t1 could have a gradient in another dimension – 2D map• t1 could sample chemical shift dispersion - MRSI

  • (MRSI)Magnetic Resonance

    Spectroscopy Imaging

    Prostate CancerB- Spectral GridC- MRSI Array

    Swanson et al. Cancer

    Investigation19, 510-523 (2001)