66
Fig. 1-CO, p. 1

Fig. 1-CO, p. 1

Embed Size (px)

DESCRIPTION

Fig. 1-CO, p. 1. Fig. 1-1, p. 3. Total Water. Salt water 97.5%. Fresh water 2.5%. Fresh Water. Surface and atmospheric water 0.4%. Permafrost 0.8%. Glaciers 68.7%. Surface and Atmospheric Water. Groundwater 30.1%. Freshwater lakes 67.4%. Biota 0.8%. Rivers1.6%. Wetlands 8.5%. - PowerPoint PPT Presentation

Citation preview

Page 1: Fig. 1-CO, p. 1

Fig. 1-CO, p. 1

Page 2: Fig. 1-CO, p. 1

Fig. 1-1, p. 3

Page 3: Fig. 1-CO, p. 1

Fig. 1-1, p. 3

Total Water

Salt water 97.5%

Fresh water 2.5%

Fresh Water

Glaciers 68.7%

Permafrost 0.8%

Surface and atmospheric water 0.4%

Surface and Atmospheric WaterGroundwater

30.1%Freshwater lakes 67.4%

Biota 0.8%

Rivers1.6%

Wetlands 8.5%

Soil moisture 12.2%

Atmosphere 9.5%

Page 4: Fig. 1-CO, p. 1

Fig. 1-2a, p. 3

Page 5: Fig. 1-CO, p. 1

Fig. 1-2a, p. 3

Mid-Atlantic Ridge

Ocean’s deepest spot

Earth’s highest mountain

Pacific Ocean Basin, Earth’s largest feature

Page 6: Fig. 1-CO, p. 1

Fig. 1-2a, p. 3

Mid-Atlantic Ridge

Ocean’s deepest spot

Earth’s highest mountain

Pacific Ocean Basin, Earth’s largest feature

Stepped Art

Page 7: Fig. 1-CO, p. 1
Page 8: Fig. 1-CO, p. 1

Fig. 1-3, p. 4

Page 9: Fig. 1-CO, p. 1

Fig. 1-4a, p. 5

Page 10: Fig. 1-CO, p. 1

Fig. 1-4b, p. 5

Page 11: Fig. 1-CO, p. 1

Fig. 1-5, p. 6

Page 12: Fig. 1-CO, p. 1

Fig. 1-5, p. 6

Curiosity

A question arises about an event or situation: Why and how does this happen? Why are things this way?

Law Observations, measurements

Theories can evolve into larger constructs: laws. Laws explain events in nature that occur with unvarying uni-formity under identical conditions. Laws summarize experimental observations.

Our senses are brought to bear: What is happening? Under what circumstances? When? How does it operate? Does there appear to be a dependable cause-and-effect relationship at work?

Theory HypothesisPatterns emerge. If one or more of the relationships hold, the hypothesis becomes a theory, an explanation for the observations that is accepted by most researchers.

A tentative explanation is proposed. Controlled experiments are planned to prove or disprove potential cause-and-effect relationships. A good hypothesis can predict future occurrences under similar circumstances.

ExperimentsTests are undertaken in nature or in the laboratory. These tests permit manipulating and controlling the conditions under which observations are made.

Page 13: Fig. 1-CO, p. 1

Fig. 1-5, p. 6

Curiosity

A question arises about an event or situation: Why and how does this happen? Why are things this way?

Stepped Art

TheoryPatterns emerge. If one or more of the relationships hold, the hypothesis becomes a theory, an explanation for the observations that is accepted by most researchers.

ExperimentsTests are undertaken in nature or in the laboratory. These tests permit manipulating and controlling the conditions under which observations are made.

HypothesisA tentative explanation is proposed. Controlled experiments are planned to prove or disprove potential cause-and-effect relationships. A good hypothesis can predict future occurrences under similar circumstances.

Observations, measurements

Our senses are brought to bear: What is happening? Under what circumstances? When? How does it operate? Does there appear to be a dependable cause-and-effect relationship at work?

Law

Theories can evolve into larger constructs: laws. Laws explain events in nature that occur with unvarying uni-formity under identical conditions. Laws summarize experimental observations.

Page 14: Fig. 1-CO, p. 1

Fig. 1-6, p. 7

Page 15: Fig. 1-CO, p. 1

Fig. 1-7, p. 8

Page 16: Fig. 1-CO, p. 1

Fig. 1-7, p. 8

Parallel rays from sun

Shadow of pole

Vertical pole at Alexandria

1/50 circle

785

km

(491

mi)

Center of Earth

1/50 circle ~7°

Vertical well at Syene

~7°

Page 17: Fig. 1-CO, p. 1

Fig. 1-8a, p. 9

Page 18: Fig. 1-CO, p. 1

Fig. 1-8b, p. 9

Page 19: Fig. 1-CO, p. 1

Box 1-1a, p. 10

Page 20: Fig. 1-CO, p. 1

Box 1-1a, p. 10

Parallel Thule

NORTHERN OCEANEUROPE

Borysthenes

Byzantium

Rhodes

Alexandria ASIA Ganges

Tropic line Libya

MeroeIndia

ATLANTIC OCEANMer

idia

n o

f th

e P

illa

rs o

f H

ercu

les

Mer

idia

n

of

the

Ale

xan

dri

a

Mer

idia

n o

f th

e In

du

s

Mer

idia

n o

f th

e G

ang

es

Page 21: Fig. 1-CO, p. 1

Box 1-1b, p. 10

Page 22: Fig. 1-CO, p. 1

Box 1-1b, p. 10

North Pole

60°N

30°N

Latitude0°

Equator

30°S

South Pole

Page 23: Fig. 1-CO, p. 1

Box 1-1c, p. 10

Page 24: Fig. 1-CO, p. 1

Box 1-1c, p. 10

North Pole

Prime meridian

Longitude

60°W0°

South Pole

Page 25: Fig. 1-CO, p. 1

Box 1-1d, p. 10

Page 26: Fig. 1-CO, p. 1

Box 1-1d, p. 10

North Pole

60°N

30°N

0 \c2;

30°W 0° 30°S60°W

30°E

South Pole

Page 27: Fig. 1-CO, p. 1

Fig. 1-9, p. 11

Page 28: Fig. 1-CO, p. 1

Fig. 1-9, p. 11

PHILIPPINESM I C R O N E S I A

Marshall Is. Hawaiian Is.

Gilbert Is.M E L A N E S I A P O L Y N E S I A

INDONESIANEW

GUINEA

Solomon Is.

Ellice Is. Marquesas Is.Samoa

Is.Fiji Is. Cook Is.New Hebrides

Tonga Is.A U S T R A L I A

New Caledonia Tropic of

Capricorn

Easter Is.

NEW ZEALAND

Equator

Tropic of

Cancer

P A C I F I C

O C E A NM

aria

na

Is.

Society Is.

Caroline Is.

Page 29: Fig. 1-CO, p. 1

Fig. 1-10, p. 12

Page 30: Fig. 1-CO, p. 1

Fig. 1-11, p. 13

Page 31: Fig. 1-CO, p. 1

Fig. 1-12, p. 14

Page 32: Fig. 1-CO, p. 1

Fig. 1-13, p. 14

Page 33: Fig. 1-CO, p. 1

Fig. 1-14a, p. 15

Page 34: Fig. 1-CO, p. 1

Fig. 1-14b, p. 15

400 300 200 100 0 Feet

360 270 180 90 0 Meters

Page 35: Fig. 1-CO, p. 1

Fig. 1-14c, p. 15

Page 36: Fig. 1-CO, p. 1

Fig. 1-14d, p. 15

Page 37: Fig. 1-CO, p. 1

Fig. 1-15, p. 16

Page 38: Fig. 1-CO, p. 1

Fig. 1-16, p. 17

Page 39: Fig. 1-CO, p. 1

Fig. 1-17a, p. 18

Page 40: Fig. 1-CO, p. 1

Fig. 1-17b, p. 18

Page 41: Fig. 1-CO, p. 1

Fig. 1-17b, p. 18

Magellan killed 27 April 1521

Rio de Janeiro 15 December 1519Voyage began 20 September 1519

Voyage ended 6 September 1522 Straits of Magellan 15 October 1520

Page 42: Fig. 1-CO, p. 1

Fig. 1-18, p. 19

Page 43: Fig. 1-CO, p. 1

Fig. 1-19, p. 20

Page 44: Fig. 1-CO, p. 1

Fig. 1-20a, p. 21

Page 45: Fig. 1-CO, p. 1

Fig. 1-20b, p. 21

Page 46: Fig. 1-CO, p. 1

Fig. 1-21, p. 22

Page 47: Fig. 1-CO, p. 1

Fig. 1-22, p. 23

Page 48: Fig. 1-CO, p. 1

Fig. 1-23, p. 23

Page 49: Fig. 1-CO, p. 1

Fig. 1-24, p. 24

Page 50: Fig. 1-CO, p. 1

Fig. 1-25, p. 25

Page 51: Fig. 1-CO, p. 1

Fig. 1-26, p. 26

Page 52: Fig. 1-CO, p. 1

Fig. 1-27, p. 26

Page 53: Fig. 1-CO, p. 1

Fig. 1-28, p. 27

Page 54: Fig. 1-CO, p. 1

Fig. 1-29a, p. 29

Page 55: Fig. 1-CO, p. 1

Fig. 1-29b, p. 29

Page 56: Fig. 1-CO, p. 1

Fig. 1-29c, p. 29

Page 57: Fig. 1-CO, p. 1

Fig. 1-30, p. 30

Page 58: Fig. 1-CO, p. 1

Fig. 1-30, p. 30

Beam of sound waves travels to bottom and is reflected back to ship

Depth = V (T/2)

Page 59: Fig. 1-CO, p. 1

Fig. 1-31, p. 30

Page 60: Fig. 1-CO, p. 1

Fig. 1-32, p. 31

Page 61: Fig. 1-CO, p. 1

Fig. 1-33, p. 31

Page 62: Fig. 1-CO, p. 1

Fig. 1-34a, p. 32

Page 63: Fig. 1-CO, p. 1

Fig. 1-34b, p. 32

Page 64: Fig. 1-CO, p. 1

Fig. 1-35, p. 33

Page 65: Fig. 1-CO, p. 1

Table 1-1a, p. 34

Page 66: Fig. 1-CO, p. 1

Table 1-1b, p. 35