32
Flow cytometry on disaggregated tissues: Detecting cancer stem cell candidates in epithelial tumors Albert D. Donnenberg and Vera S. Donnenberg. University of Pittsburgh, Pittsburgh PA. This tutorial will review the cancer stem cell controversy: Does it make sense to think of clonogenic selfreplicating tumor cells as stem cells? Do clonogenic selfreplicating tumor cells have unique phenotypic markers that distinguish them from nontumorigenic tumorderived cells? Do clonogenic selfreplicating tumor cells share other tissue stem cell characteristics, such as the ability to persist in a dormant state and resist cytotoxic drugs and radiation? Must a cell be rare or multipotent to be considered a stem cell? What is the difference between a stem cell and a progenitor cell and does it matter when discussing cancer? What markers have been used to detect stem cells in normal and malignant epithelial tissues and do they define unique populations? This discussion will be accompanied by a technical tutorial in which we will provide practical suggestions for disaggregation of tumors and normal tissues into single cell suspensions. We will focus on avoiding some of the technical pitfalls encountered when performing multicolor flow cytometry on disaggregated tissues. Specifically, these include recognizing sources of bias in cell recovery, use of doublet discrimination, use of DAPI to detect and remove hypodiploid events, coping with autofluorescence, and optimal use of dump gates.

Flow cytometry on disaggregated tissues: Detecting … AVD tutorial FC...Flow cytometry on disaggregated tissues: Detecting cancer stem ... This tutorial will ... cycle, or balanced

Embed Size (px)

Citation preview

Flow cytometry on disaggregated tissues: Detecting cancer stem cell candidates in 

epithelial tumorsAlbert D. Donnenberg and Vera S. Donnenberg.  University of Pittsburgh, Pittsburgh PA.

This tutorial will review the cancer stem cell controversy: Does it make sense to think of clonogenic self‐replicating tumor cells as stem cells?  Do clonogenic self‐replicating tumor cells have unique phenotypic markers that distinguish them from nontumorigenic tumor‐derived cells?  Do clonogenic self‐replicating tumor cells share other tissue stem cell characteristics, such as the ability to persist in a dormant state and resist cytotoxic drugs and radiation?  Must a cell be rare or multipotent to be considered a stem cell?  What is the difference between a stem cell and a progenitor cell and does it matter when discussing cancer? What markers have been used to detect stem cells in normal and malignant epithelial tissues and do they define unique populations? This discussion will be accompanied by a technical tutorial in which we will provide practical suggestions for disaggregation of tumors and normal tissues into single cell suspensions.  We will focus on avoiding some of the technical pitfalls encountered when performing multi‐color flow cytometry on disaggregated tissues. Specifically, these include recognizing sources of bias in cell recovery, use of doublet discrimination, use of DAPI to detect and remove hypodiploid events, coping with autofluorescence, and optimal use of dump gates.  

Does it make sense to think of clonogenic self‐replicating epithelial tumor cells as stem cells?

• Like normal tissues, tumors are heterogeneous with respect to stromal cells, vascular cells, infiltrating immune cells and the epithelial cells themselves

• Depending on tumor grade, many of the tumor cells may be non‐clonogenic progeny of clonogenic cells

• Clonogenicity and self‐replication are primary attributes that we associate with normal stem cell behavior 

• The thought that in some cases, tumors may derive from mutated adult tissue stem cells (chronic myelogenous leukemia), even embryonic stem cells (developmental tumors) or germ cells is an additional link between clonogenic tumor cells and stem cells.

• Caveat:  A tumor cell does not have to derive from a mutated stem cell to acquire stem cell attributes.  Mutation and epigenetic reprogramming can produce any phenotype that offers selective advantage to the cancer cell.  

Do clonogenic self‐replicating tumor cells have unique phenotypic markers that distinguish them from nonclonogenic tumor‐derived cells?

• The answer has two parts:

• First, the majority of cells within a tumor are often not tumor cells per se.  They are stromal cells, immune cells, reactive cells, vascular cells, normal and dysplastic epithelial cells.  These cells are clearly non‐tumorigenic.  With the exception of normal and dysplastic epithelial cells within the tumor mass, they are easily distinguished from clonogenic tumor cells and can be eliminated in experimental preparations by cell sorting if necessary.

• Second, Yes.  A variety of markers have been proposed which enrich clonogenic tumor cells in an experimental preparation.  The caveat is that any marker that depletes the cells described above will “enrich” for clonogenicity.  Correctly designed experiments divide the epithelial component of the tumor into those positive and negative for the marker of interest.  CD44, CD133, CD90, CD117, CD34, CD49, aldehyde dehydrogenase activity and MDR activity (side population) have all been proposed to identify (sometimes exclusively) the clonogenic, self‐renewing tumor cell.  Caveat Emptor!  

Do clonogenic self‐replicating tumor cells share other tissue stem cell characteristics, such as the ability to persist in a dormant state and resist cytotoxic drugs and radiation?  

• The principal distinctions between stem and progenitor cells is that the former retain the ability to self‐renew throughout the life of the organism, and characteristically persist in a dormant state.  Dormancy means either out of cell‐cycle, or balanced with respect to proliferation and death or differentiation.  Dormancy is a characteristic of tumors which may persist in a subclinical state after therapy and reactivate at a later time.

• Normal tissue stem cells, and a subset of epithelial tumor cells share a battery of protective mechanisms.  In normal stem cells, the expression of multiple drug resistance transporters, detoxifying pathways, and other protective mechanisms is inducible.  At any given time some stem cells are positive and some negative, and negative cells can give rise to positive cells and vice versa.  These mechanisms contribute to the stability of the normal stem cell pool.  Caveat:  None of these mechanisms are unique to stem cells. SP+, ALDH+ and GSH+ cells serve important functions in differentiated tissues too.

• Cancer is dysregulation and the mechanisms which protect stem cells against toxic injury are hijacked to protect tumor as well.    

Must a cell be multipotent or rare to be considered a stem cell? 

• Self‐renewal and self‐protection are the major attributes of normal adult tissue stem cells and the degree of multipotency is specific to a given tissue.  Hematopoietic stem cells are self‐renewing and self‐protecting and give rise to 4 lineages, MSC give rise to more.  Breast stem cells are reported to be bipotent.  Memory B cells and T cells are quintessentially lineage committed, but self‐renew and self protect.  Cancer cells can be multipotent (e.g CML in blast crisis), but need not be.

• In normal tissues stem cells tend to be one the rare side.  Hematopoietic stem cells (CD34+/CD38‐) are less then 1% of bone marrow, BM‐MSC are even more scarce.  However, ADSC in the SVF of adipose tissue are quite prevalent ( 35% of non‐hematopoietic).  In well‐differentiated tumors clonogenic (tumorigenic) cells tend to be rare.  In poorly differentiated tumors  they can be very prevalent.  In extreme cases, virtually all tumor cells are clonogenic.  Are they stem cells?

What is the difference between a stem cell and a progenitor cell and does it matter when discussing cancer? 

Adult Stem Cells Progenitor Cells

Stationary (niche) Transiting

Resting Proliferating

Self renewing Limited self renewal

Some are protected (MDR, ALDH, GSH)

Limited protection

More rare More prevalent

Relatively undifferentiated Some lineage commitment

• In cancers the distinction is blurred, and sometimes obscured altogether.  In high grade malignancies, self‐renewal, self‐protection, high proliferative capacity and mobility are all present in the same stem/progenitor cell.  

What markers have been used to detect stem cells in normal and malignant epithelial tissues and do they define unique populations? 

• In breast, lung, and esophageal cancers we have experience with CD44, CD117, CD90, CD133, ABCG2 and ABCB1 used in conjunction with epithelial differentiation antigens cytokeratin, EpCAM, E‐Cadherin, MUC‐1.

• With the exception of metastatic pleural effusions, it is usually not possible to distinguish normal and malignant tissue on the basis of prevalence of these markers.

• There is a suggestion that discordant expression of these markers may uniquely identify clonogenic tumor cells. 

Technical Aspects

Technical pitfalls encountered when performing multi‐color flow cytometry on disaggregated tissues:

• Collection of viable tissue• Mechanics of tissue digestion• Sources of bias in cell recovery• Use of doublet discrimination• Use of DAPI to detect and remove hypodiploid events • Coping with autofluorescence• Optimal use of dump gates

Tissue Collection: keep it fresh

Tissue Collection

• Weigh tissues for yield calculations

• Reserve tissue for paraffin and frozen sections

• Maintain sterility.  Can dip nonsterile tissues in bleach and rinse in sterile PBS (esophagus, vertebral bodies, foreskin)

Immunohistochemical Detection of Antigens in Solid Tissues

Understanding histologic location of markers aids in interpretation of antigen localizationAllows extrapolation from normal to abnormal (tumor)One antigen/section (no co‐expression), fixed tissue

Donnenberg et al, Clinical Cytometry 2010

Presenter
Presentation Notes
Immunohistochemical confirmation of cytokeratin, ERa, CD44, CD90 and sonic hedgehog expression in serial sections from a breast adenocarcinoma and normal breast tissue (40X objective). Tumor tissue specimens are from the case shown in Figures 2 and 3. Normal breast is from a reduction mammoplasty. This tumor was ER positive (95%), PR negative (0)%) invasive ductal carcinoma grade 3 with ductal carcinoma in situ (DCIS) admixed with an invasive component. The tumor is uniformly cytokeratin+. The specificity of cytokeratin staining can be seen in the normal tissue specimen where it marks ductal cells. Ki67 nuclear staining, indicative of proliferation, was prominent in the tumor, but also seen in scattered ductal cells of the normal breast tissue. CD44 expression was membrane-associated, limited to stromal cells and few CTK+ tumor cells, and was prominent in the normal breast stroma. CD90 staining was cytoplasmic and was highly expressed in the tumor, but limited to basal cells in normal breast tissue. SHH staining was prevalent through the tumor tissues but was localized to ductal cells in normal tissue.

• Simultaneously detect multiple parameters on rare cells without pre‐enrichment

• Understand heterogeneity of tumor and normal tissue

• Identify and sort tumorigenic/clonogenic cells 

• Quantify metastatic tumorigenic cells

• Determine whether tumorigenic cells circulate

• Isolate and purify these cells for further studies

Why to do flow cytometry on solid tissues?

Tissue Digestion

Collagenase DNAse digestion

Mince tissue

1 hour

100 mesh screen

1 hour

Collagenase DNAse digestion

Ficoll ‐Hypaque gradient

Stain surface markers for 

Flow Cytometry©VSD 2006 Collagenase 

DNAse digestion

Mince tissue

1 hour

100 mesh screen

1 hour

Collagenase DNAse digestion

Ficoll ‐Hypaque gradient

©VSD 2006

Use enzymatic and mechanical disaggregation; include DNAse with collagenases

Examine microscopically: Count  cells, check viability by trypan blue exclusion, check for undigested cell clumps

Donnenberg et al. International Drug Discovery 2009Zimmerlin L, et al Methods in Molecular Biology: Flow Cytometry Protocols. 2010 In press

Presenter
Presentation Notes
Single cell suspensions were prepared by mincing tissues with paired scalpels and subsequently digested with type I collagenase (0.4% in RPMI 1640 medium, Cat. No. C-0130, Sigma Chemicals, St. Louis MO) and DNase (350 KU/mL, Sigma Chemicals, St. Louis MO, Cat. No. D-5025) and disaggregated through 100 mesh stainless steel screens. Rib sections were flushed with heparinized PBS for recovery of BM cells. Viable tissue cells and blood were concentrated and separated from erythrocytes and debris on a Ficoll-Hypaque gradient (Histopaque 1077, Sigma Chemicals). Erythrocytes were lysed using an ammonium chloride lysing solution (Beckman-Coulter, Cat No. IM3630d).

Cell recoveries from Fat, NB, BrCA, NL, NSCLCa

Tissue Cells/Gram Viability

Normal Breast 8.89 ± 1.67 x 105 71.3 ± 0.6%

AdenoCa Breast 72.0 ± 28.6 x 105 66.2 ± 6.3%

Normal Lung 32.9 ± 4.57 x 105 62.8 ± 15%

NSC Ca Lung 226 ± 60.3 x 105 72.8 ± 3.2%

Whole Adipose 2.98 ± 0.87 x 105 57.6 ± 6.8%

Multiparameter Staining

9‐10 color flow cytometry (3‐laser CyAn and Gallios cytometers): 

Surface markers: EpCAM/HEA, CD44, CD90, CD133, CD117

Lineage (hematopoietic): CD14, CD33, Glycophorin, CD45, CD31

Intracellular markers: Cytokeratinnuclear stain – DAPItranscription factors

DAPI: (200ug/ml: 8ul of stock to 5million cells in 200uL: [8ug/mL])

This dataset: 13‐16 parameters

Multiparameter Staining Design

Remove Sources of ArtifactDoublets :FS  pulse height vs FS areaDNA content cell debris/apoptotic cells <2N DNA (nuclear stain – DAPI, log scale)Clean denominator “healthy cell scatter of all populations”

Classifiers:  Known expression identifies populations of interestCD45, CD31 and hematopoietic lineage CD14, CD33, GlyAintracellular cytokeratin, extracellular HEA/EpCAM/CD326 

Outcomes: Measurement made on populations of interestKnow something about them but may not know their exact level of 

expression (isotype controls): Cytokeratin, DNA content (linear), CD44, CD90

Unknown profile: morphology FS , SSC, DNA content, CD133, CD117, transcription factors and their localization

Efficient Flow Cytometric Staining

Remove and discard supernatant

Block NSB by adding 5uL of neat mouse serum

Incubate 5 minutes, spin down and remove residual liquid

Centrifuge cell suspension down to a pellet

Add MAB 2uL/antibody, dimmest and lowest abundance epitope add first

Incubate 15 minutes, add buffer 100uL/condition and split

BULK staining: antibodies common to all tubes

OUTCOME staining: antibodies unique to each tube

Cell suspension to be stained 15mL conical

FMO

Elimination of sources of artifactRemove doublets, hypodiploid cells and cell debris, autofluorescent/NSB events

Classifiers Identify population(s) of interest (known marker expression profile) 

OutcomesMeasurements made on populations of interest

Data Analysis“We must learn to love complexity”

George Klein, Karolinska Institute

NB00240x

Case Studies: NB002

25um

Case Studies: NB002

0 25 50 65.54(x 1,000)

0

250

500

FS

60.2%

Puls

e W

idth

010 110 210 310 410

0

25

50

65.54(x 1,000)

DAPI Log

Gate Singlets

B: 36.02%

FS010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD45 APC-Cy7

Gate A&B

41.8%Ly 7.6%

CD

14-3

3-G

lyA

PE-C

y7

Artifact Removal

Case Studies: NB002

Lymphocyte Gate

0 25 50 65.54(x 1,000)

0

100

200

300

396

DAPI Lin0 25 50 65.54

(x 1,000)

10 0

10 1

10 2

10 3

10 4

FS

SS

Case Studies: NB002

Artifact: Gated on Doublets/Clusters

010 110 210 310 410

0

25

50

65.54(x 1,000)

DAPI Log

FSDoublets

6.6%

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD45 APC-Cy7

27.8%

CD

14-3

3-G

lyA

PE-C

y7

0 25 50 65.54(x 1,000)

0

25

50

75

100

DAPI Lin

Heme Lineage Negative

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

iCYTOK FITC

SS

1.4%

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD44 PEC

D90

bs E

CD

CTK+Lin- Doublets

57.4% 17.6%

8.1% 16.9%

In this example 93% of clusters are low FSc and hypodiploid

Case Studies: NB002

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD45 APC-Cy7

57.1%

CD

14-3

3-G

lyA

PE-C

y7

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

iCYTOK FITCSS

0.3%

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD44 PECD

90bs

EC

D

59.0% 24.6%

1.2% 15.3%

0 25 50 65.54(x 1,000)

0

2

4

6

8

10

12

DAPI Lin

Hypodiploid Cells/Debris

These events have little or no DNA but appear to bind antibody

Case Studies: NB002

0 25 50 65.54(x 1,000)

10 0

10 1

10 2

10 3

10 4

FS

SS

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

iCYTOK FITC

SS

1.9%

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD44 PE

SS

48.8%

0 25 50 65.54(x 1,000)

0

10

20

30

40

DAPI Lin

E

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD44 PE

E

86.6% 7.6%

3.6% 2.2%

CD

90bs

EC

D

010 110 210 310 410

10 0

10 1

10 2

10 3

10 4

CD133 APC

E

0.1%

40.0%

5.0%

CD

90bs

EC

D

25um

Primary Classifier: Clean Heme Lineage Negative

Case Studies: Adipose stromal vascular fraction

0 25 50 65.54(x 1,000)

0

250

500

FS Lin - FSP

ulse

Wid

th

A: 96.66%

010

110

210

310

410

100

101

102

103

104

Violet 2

SS

singlets

C: 78.90%0 25 50 65.54

(x 1,000)

100

101

102

103

104

FS Lin - FS

SS

AC

B: 89.19%

010 110 210 310 410100

101

102

103

104

CD146 PE

CD

3FI

TC

ABCG: 30.40%

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

3FI

TC

ABCH: 12.48%

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

146

PE

ABCI: 15.30%

010 110 210 310 410100

101

102

103

104

CD146 PE

CD

3F I

T C

ABC not autofluo

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

3F I

T C

ABC not autofluo

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

146

PE

ABC not autofluo

010 110 210 310 4100

250

500

750

941

CD90 PE-Cy5

ABC

D: 17.17%

010 110 210 310 4100

250

500

750

1000

1250

CD117 PE-Cy7

ABC

E: 0.40%010 110 210 310 410

0

2

3.75(x 1,000)

CD31 APC

ABC

F: 3.10%

010 110 210 310 4100

250

500

750

1000

1233

CD45 APC-Cy7

ABC

010 110 210 310 4100

250

500

750

941

CD90 PE-Cy5

ABC not too bright

010 110 210 310 4100

100

200

300

400

CD117 PE-Cy7

ABC not too bright

010 110 210 310 4100

100

200

300

400

CD31 APC

ABC not too bright

010 110 210 310 4100

250

500

CD45 APC-Cy7

ABC not too bright

Selection of singlets, nucleated cells, elimination of debris

3 first channels autofluorescence

Remaining channelsArtifacts and off scale (too bright) events 

fatSC04‐12‐07

010 110 210 310 410100

101

102

103

104

CD146 PE

CD

3FI

TC

non heme

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

3FI

TC

non heme

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

146

PE

non heme

010 110 210 310 410100

101

102

103

104

CD146 PE

CD

3F

I TC

non heme without dump

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

3F

I TC

non heme without dump

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

146

PE

non heme without dump

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

31AP

C

non heme

AE3:2.49% AE4:65.20%

AE1:2.55% AE2:29.77%

010 110 210 310 410100

101

102

103

104

CD34 ECD

CD

31AP

C

non heme w tooB

010

110

210

310

410

100

101

102

103

104

CD45 APC-Cy7

CD

3FI

TC

cleanABCnot Autofluo

J: 4.63%

K: 68.44%

AD: 18.84%

AJ: 76.43%

010 110 210 310 410100

101

102

103

104

CD146 PE

CD

90PE

-Cy5

non heme

AK3:5.95% AK4:1.65%

AK1:91.28% AK2:1.12%

010 110 210 310 410100

101

102

103

104

CD146 PE

CD

90PE

- Cy5

non heme w tooB

AN3:5.01% AN4:1.39%

AN1:92.47% AN2:1.13%

Selection of non hematopoietic cells,        FITC dump gate

010 110 210 310 410100

101

102

103

104

CD45 APC-Cy7

CD1

17PE

-Cy7

cleanABCnot Autofluo

AO3:74.75% AO4:23.04%

AO1:0.06% AO2:2.14%

010 110 210 310 410100

101

102

103

104

CD45 APC-Cy7

CD

117

PE-C

y7

ABC not autofluo

AP3:64.49% AP4:18.03%

AP1:10.39% AP2:7.08%

EndothelialMature

CD31+ CD34-CD45-

EndothelialProgenitor

CD31+ CD34+CD45-

Supra Adventitial

ASCCD31- CD34+

CD146-CD45-

PericyteCD31- CD146+

CD45-

SA

FS Lin

SS

100

101

102

103

104

0 25 50 65.54(x 1,000)

FS Lin

SS

100

101

102

103

104

0 25 50 65.54(x 1,000)

Pe

FS Lin

SS100

101

102

103

104

0 25 50 65.54(x 1,000)

EPFS Lin

SS

100

101

102

103

104

0 25 50 65.54(x 1,000)

EMC

D14

6 PE

CD90 PE-Cy5100 101 102 103 104100

101

102

103

104

52.1% 18.5%

15.6% 13.7%EM

CD

146

PE

CD90 PE-Cy5

EP

100 101 102 103 104100

101

102

103

104

0.2% 94.2%

0.4% 5.2%

Pe

CD

34

ECD

CD90 PE-Cy540.9% 42.5%

0.0% 16.6%

100 101 102 103 104100

101

102

103

104

SA

CD

117

PE-

Cy7

CD90 PE-Cy50.6% 99.4%

0.0% 0.0%

100 101 102 103 104100

101

102

103

104

CD146 PE

CD

3 FI

TC

A+B+CD:

8.8%

100 101 102 103 104100

101

102

103

104

CD34 ECD

CD

3FI

TC

A+B+CE: 13.2%

100 101 102 103 104100

101

102

103

104

CD34 ECD

CD

146

PE

A+B+CF: 14.4%

100 101 102 103 104100

101

102

103

104

Artifact removalA

B: 50.5%100 101 102 103 104100

101

102

103

104

DAPI

SS

0 25 50 65.54(x 1,000)

0

250

500

FS Lin

Pul

se

Wid

th

A: 94.3%

FS Lin

SS

100

101

102

103

104

0 25 50 65.54(x 1,000)

A+B

C: 87.6%

Classification of cell populations

CD45APC-Cy7

CD

3 FI

TC

A+B+C – (D+E+F)NH: 76.5%

Ly

100 101 102 103 104100

101

102

103

104

H: 20.0%

CD34 ECD

CD

31 A

PC

NHEM:1.5%

EP: 16.8%

100 101 102 103 104100

101

102

103

104

NE: 80.5%

CD34 ECD

NEPe: 4.0%

CD

146

PE100 101 102 103 104

100

101

102

103

104

SA: 35.3%

Presenter
Presentation Notes
Figure 3. Classification of endothelial and perivascular populations for analytical flow cytometry. The data are representative of 10 independent samples. Up to 10,000,000 events were acquired per file. Top left box, upper row: Identification of singlet cells with DNA content ≥2N. FS pulse analysis was used to remove cell clumps remaining after disaggregation (A). Cells were gently permeabilized after fixation, permitting DAPI-dim hypodiploid events to be eliminated for the analytical population (B). Events with low light scatter were eliminated (C) on the basis of the location of small resting T lymphocytes (CD3+CD45+ lymphocytes (Ly), color evented red). Top left box, lower row: Elimination of autofluorescent events. Cells with high autofluorescence form a diagonal streak in 2-parameter histograms of the first 3 fluorescent channels. Events present in the compound gate of D and E and F were removed from analysis. In this sample autofluorescent cells accounted for 8.1% of otherwise analyzable events. Right and bottom panel, top to bottom: Classification of analyzable events into nonhematopoietic (NH) and hematopoietic (H), and nonhematopoietic endothelial (EM, EP) and nonendothelial (NE) populations. Within the endothelial mature subset (EM, pink) the majority of cells were CD90-, with some cells expressing CD146 and dim CD90. Endothelial progenitors (red) were exclusively CD90-bright with heterogeneous CD146 staining. CD90+ cells with saturating fluorescence were eliminated from the analysis, not shown. Pericytes (Pe, orange) were defined among nonendothelial cells as CD146+, with a subset of bright CD90 cells. A proportion of these CD90+ pericytes coexpressed CD34. A-ASC (AA, green) were defined among nonendothelial cells as CD34+ CD146- cells. Like endothelial progenitors, the majority of A-ASC coexpressed bright CD90. No CD117 expression could be detected on A-ASC and other sorted non hematopoietic populations as well (not shown). Light scatter profiles are presented for each candidate population. The region percentages represent the proportion of cells within each respective histogram.

Using “SP” to Identify and Isolate Tumor SC as is done for Tissue Stem Cells

MDR has been used for tissue SC identification and isolation in the absence of specific tiss.SC markers: Any tissue contains a rare population of “SP” cells.  When sorted these cells are highly clonogenic (Margaret Goodel, 1998)

Caution: Not all SC have MDR activity and not all MDR active cells are SC! (MDR in BBB, kidney, small gut, T cells)

Donnenberg VS, Meyer EM, Donnenberg AD. Measurement of Multiple Drug Resistance Transporter Activity in Putative Cancer Stem/Progenitor Cells. In: Yu J, ed. Methods in Molecular Biology. Vol. Cancer Stem Cells. New York: Humana Press, Springer; 2009.

MDR10%

ClonogenicityTumorigenicity10%

Overlap 80%

Use of Inhibitors to Confirm Transporter Specificity

K56

2 Pa

rent

Ho33342 RED

No Inhibitor CsA Vincristine Fumitr

K56

2 G

185

Ho 3

334 2

BL U

E

Ho33342 RED

Vera

Ho3

3342

BL U

E

0.??%71% 98%INH 0%INH 0%INH 66%INH

3.36% 74%INH 0%INH 72%INH 80%INH

No Inhibitor CsA Vincristine Fumitr

R123

Vera

R123

4%

99%INH 0%INH 0%INH 88%INH

96.5%

0%INH 0%INH 0%INH 0%INH

96%

3.5%

MDR50% Tumorigenicity

10%

Overlap 10%

If cells are sorted on MDR (SP), no net increase in tumorigenicity

MDR10%

ClonogenicityTumorigenicity10%

Overlap 80%

If cells are sorted on MDR (SP), increase in tumorigenicity

Tumorigenicity and SP

Untreated primary

TSCsort017

0.82% SP

Hoechst 33342 Red 660-680 nm

Hoe

chst

333

42B

lue

420-

480

nm

TSCsort020 PE42

51% SPuntreated PE

Donnenberg et al JCR2007

+Fumitromorgin+CsA:No SP

Presenter
Presentation Notes
1) Normal: SP cells from a variety of tissues are highly enriched in adult tissue stem cells Controversial whether SP marks cancer stem population: do not know if we can use SP from tumors and see if we have increased clonogenicity Only a proportion of tumor cells are tumorigenic Experiments testing tumorigenicity of SP from tumors have failed to show enrichment Tumorigenicty of the SP is a function of the frequency of tumorigenic cells, the frequency of SP cells and the overlap of these two populations within the tumor Figure shows 2 scenarios: On the left MDR+ cells and tumorigenic cells both constitute 10% of the tumor population, but they only overlap by 10%. Sorting MDR+ cells in this case would result in no enrichment of tumorigenic cells. On the right the frequency of MDR+ and tumorigenic cells are also 10%, but they overlap substantially. Sorting MDR+ cells would yield a substantial enrichment in tumorigenic cells. Take HOME: Importantly, in both cases a fraction of tumorigenic cells are protected by constitutive MDR activity and therefore inherently therapy resistant.

• We have characterized a subset of highly tumorigenic breast cancer cells expressing CD90, CD44 and resting morphology. 

• These cells were detected in previously untreated primary tumors.

• Which cells survive a “partial response” to chemotherapy?

Epithelial Tumors on Therapy: MRD

Singlets Nucleated CD45‐CD14‐CD33‐GlyA‐

FS peak height

FS peak width

DAPI Log

FS

CD45 APC‐Cy7

CD14,33,Gly PC5

FS

SS Log

SingletsSingletsNucleatedUngated

CTK FITC

EpCA

M APC

PE73

BrCA

19 pre

PE75

BrCA

19 post

Cytospin

97% 90% 0.45% 24%

97% 92% 0.75% 3.2%

Pre

Post

Analysis of Tumor Cell Survival After Therapy

Donnenberg et al. Therapeutic Index and the Cancer Stem Cell Paradigm. In: Bagley R, Teicher B, eds. Stem Cells and Cancer Series: Cancer Drug Discovery and Development. New York: Springer, Humana Press; 2009.

Presenter
Presentation Notes
Gating strategy for analysis of tumor cell survival after therapy. Pleural Effusions were collected from a patient with metastatic breast cancer before (top panels) and nine weeks after therapy (bottom panels) with the anti-proliferative nucleotide analog capecitabine. From left to right: Cytocentrifuge preparations (Wright Giemsa) shows preferential survival of lymphoid cells; forward light scatter pulse analysis is used to identify singlets (eliminating cell clusters); noncellular debris and apoptotic cells with <2N DNA are eliminated by DAPI staining; CD45 negative (nonhematopoietic) cells are identified (note relative enrichment of nonhematopoietic cells and loss of CD33+ polymorphonuclear leukocytes after therapy); loss of high light scatter cells reflects the loss of polymorphonuclear leukocytes, activated macrophages and large tumor cells after therapy, as well as preferential survival of small cells (low light scatter); Cytokeratin positive, EpCAM positive cells are reduced but not eliminated after therapy. Subsequent analyses (Figure 9) are gated on CD45 negative singlets with ≥ 2N DNA.

Which Cells are Targeted by Cytotoxic Therapy?

Cancer Stem Cell

Drug Resistant Bulky Tumor

Cancer Progenitor

Constitutive MDR

Acquired MDR

Bulky Disease

Drug Selection

Genetic Instability

CHEMOTHERAPY Shrinks the tumor!