113
 T H E U N I V E R S I T Y O F T U L S A THE GRADUATE SCHOOL  NUMERICAL SIMULATION OF LAMINAR FLOW OF NON-NEWTONIAN FLUIDS IN ECCENTRIC ANNULI  by Yahya Hashemian Adariani A thesis submitted in partial fulfillment of the req uireme nts for the degree of Master of Science in the Discipline of Petroleum Engineering The Gradu ate Schoo l The University of Tulsa 2005

Flow in Annulus

Embed Size (px)

Citation preview

Page 1: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 1/113

 

T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

 NUMERICAL SIMULATION OF LAMINAR FLOW OF NON-NEWTONIAN

FLUIDS IN ECCENTRIC ANNULI

 byYahya Hashemian Adariani

A thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science

in the Discipline of Petroleum Engineering

The Graduate School

The University of Tulsa

2005

Page 2: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 2/113

  ii

T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

 NUMERICAL SIMULATION OF LAMINAR FLOW

OF NON-NEWTONIAN FLUIDS IN ECCENTRIC ANNULI

 by

Yahya Hashemian Adariani

A THESIS

APPROVED FOR THE DISCIPLINE OF

PETROLEUM ENGINEERING

By Thesis Committee

, Chair

Dr. Mengjiao Yu

Dr. Ramadan Ahmed

Dr. Siamack A. Sirazi

Dr. Stefan Miska

Page 3: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 3/113

  iii

ABSTRACT

Hashemian Adariani, Yahya (Master of Science in Petroleum Engineering)

 Numerical Simulation of laminar Flow of non-Newtonian Fluids in Eccentric Annuli

Directed by Dr. Mengjiao Yu(113 pp., Chapter 4)

(229 words)

Accurate predictions of annular frictional pressure loss are important for optimal

well bore hydraulic program design. Inaccurate prediction of frictional pressure drop in

the annulus can result in an underestimation of the bottom hole pressure, which might

then exceed the strength of the formation, thus causing loss of drilling fluid and creating a

 potentially dangerous situation due to the resulting loss of hydrostatic head.

In this study fully developed laminar axial flow of non-Newtonian fluids in

eccentric annuli has been investigated numerically. Effects of eccentricity on frictional

 pressure loss in annulus for different fluids are presented. Numerical results are compared

with previous studies. Numerical investigation based on SIMPLE algorithm by Patankar-

Spalding (1972) has been presented for the case of Newtonian fluid flow in eccentric

annulus with inner pipe rotation.

Yield power-law rheology model is used as the constitutive equation of the flow.

Cartesian and boundary fitted coordinate system are utilized as two different approaches

to discretize the flow equations and generate mesh network. A minimum cut off value for

Page 4: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 4/113

  iv

the minimum shear rate is used to identify the plug (zero shear rate) region. Fluid flow

equations have been solved using an iterative successive over relaxation method.

Increasing eccentricity is found to lower frictional pressure drop for different

fluids. It was observed that for non-Newtonian fluids the effect of eccentricity on

 pressure loss is less pronounced compared to Newtonian fluids.

Page 5: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 5/113

 

ACKNOWLEDGEMENTS

The author thanks Dr. Mengjiao Yu, dissertation advisor, for his continuous

 patience and assistance in this endeavor.

My special thanks to Dr. Ramadan Ahmed for his help and valuable suggestions.

I am thankful to Dr. Siamack Shirazi and Dr. Stefan Miska for their help,

suggestions and encouragement.

My appreciation extends to National Iranian Oil Company for providing me with

financial support.

I also thank TUDRP students and all my friends for their constant encouragementand support.

This work is dedicated to my parents.

Page 6: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 6/113

  vi

TABLE OF CONTENTS

Page

ABSTRACT...............................................................................................................iii

ACKNOWLEDGEMENTS .......................................................................................v

TABLE OF CONTENTS...........................................................................................vi

LIST OF FIGURES ...................................................................................................viii

CHAPTER 1: INTRODUCTION

1.1 Background ............................................................................................1

1.2 Significance of the Subject ....................................................................2  1.3 Contribution and Evaluation of This Study ........................................3 

1.4 Scope of the Study ..................................................................................4

CHAPTER 2: LITERATURE REVIEW ...............................................................5

2.1 Annular Flow of Newtonian Fluid .......................................................52.2 Concentric No-Rotation Non-Newtonian ............................................92.3 Eccentric No-Rotation Non-Newtonian ..............................................11

2.4 Newtonian Fluid Flow in Annulus with Inner Pipe Rotation ............122.5 Concentric With Rotation Non-Newtonian .........................................13

2.6 Non-Newtonian Fluid Flow in Annulus with Inner Pipe Rotation ....13

CHAPTER 3: ANNULAR FLOW IN ECCENTRIC ANNULUS .......................15

3.1 Annular Flow in Eccentric Annulus .....................................................153.1.1 Assumptions ..............................................................................16

3.1.2 Continuity Equation  .................................................................163.1.3 Momentum Equation.................................................................173.1.4 Drilling Fluid Rheology ............................................................18

General Model: .....................................................................19

3.1.5 Numerical Procedure  ...............................................................203.1.6 Discretizing the Equation of Motion  .......................................213.1.7 Solution Algorithm ....................................................................233.1.8 Minimum Shear Rate.................................................................23

3.1.9 Convergence Criteria................................................................243.1.10 Flow Rate Calculations...........................................................25

3.1.11 Using Boundary Fitted Coordinate System ............................253.1.12 Geometry Transformation.......................................................26

Page 7: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 7/113

  vii

3.1.13 Transformation of the Equations ............................................273.1.14 Discretization of the Equation of Motion................................28

3.1.15 Grid Refinement Analysis .......................................................293.1.16 Flow Rate Calculations...........................................................31

3.2 Newtonian Fluid Flow in Eccentric Annulus with Inner Pipe

Rotating .........................................................................................................32  3.2.1 Assumptions ..............................................................................33

3.2.2 Governing Equations ................................................................333.2.3 Boundary Conditions ................................................................34

3.2.4 Transformation of Equations ....................................................353.2.5 Numerical Procedure ................................................................383.2.6 Discretization of Momentum and Continuity Equation ............38

3.2.7 Pressure Correction Equation ..................................................423.2.8 Summary of SIMPLE Algorithm ...............................................45

CHAPTER 4: RESULTS AND CONCLUSIONS .................................................474.1 Newtonian Fluid .....................................................................................47

4.1.1 Results for Newtonian Fluid .....................................................474.1.2 Comparison of the Results for Newtonian ................................49

4.2 Power-Law Fluid....................................................................................514.2.1 Results for Power-Law Fluid ....................................................514.2.2 Comparison of the Results of Power-Law ................................54

4.3 Results and Comparison for Yield Power-Law Fluid ........................534.4 Comparison with Experimental data of Ahmed[1] .............................56

4.5 Conclusions .............................................................................................58

REFFERENCES ........................................................................................................56

APPENDIX A............................................................................................................64

APPENDIX B............................................................................................................67APPENDIX C ............................................................................................................73APPENDIX D............................................................................................................82

APPENDIX E ............................................................................................................91APPENDIX F.............................................................................................................95

Page 8: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 8/113

  viii

LIST OF FIGURES

Page

1.1 Schematic of Drilling Operation.........................................................................2

2.1.1 Newtonian fluid in concentric annulus ............................................................6

2.1.2 Eccentric Annulus............................................................................................6

2.1.3 Effects of eccentricity on frictional pressure loss for a Newtonian fluid with constant

rate using 7.1.2.eq . [   Secliter Q /1.0= , Sec Pa.00102.0=µ ,   m Ro 0889.0= ].....................9

3.1.1 Cartesian coordinate system.................................................................................17

3.1.2 Flow Curve for Different Fluids ...........................................................................19

3.1.3 Grid network in Cartesian coordinate with different grid sizes in x and y direction...21

3.1.4 Flow Rate Calculation at Grid Point i,j..................................................................25

3.1.5 Grid Network in Boundary Fitted Coordinate System............................................26

3.1.6 Geometry Transformation ....................................................................................27

3.1.7 Grid refinement in tangential direction (number of grids in radial direction=60).

Comparison of the value for volume flow rate of simulation with analytical solutions for

concentric annulus for a Newtonian (n=1) and a power-law (n=0.2) fluid. ........................30

3.1.8 Grid refinement in radial direction (number of grids in tangential direction=60).

Comparison of the value for volume flow rate of simulation with analytical solutions for

concentric annulus for a Newtonian (n=1) and a power-law (n=0.2) fluid. ........................31

Page 9: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 9/113

  ix

3.2.1 Boundary conditions for an eccentric annulus with rotating drill pipe............35

3.2.2 Staggered grid for velocity and pressure .........................................................39

3.2.3 Overall SIMPLE Algorithm .................................................................................46

4.1.1 Velocity profile of Newtonian fluid for concentric to fully eccentric annuli [   mOD 1778.0= ,

SecmQ /0001.0 3= , S  Pa.00102.0=µ ] ........................................................ ...................47

4.1.2 Velocity profile of Newtonian fluid for concentric and fully eccentric annuli

[   mOD 1778.0= , SecmQ /0001.0 3= , S  Pa.00102.0=µ ]..................................................48

4.1.3 Present study results for Newtonian fluid[   mOD 1778.0= , SecmQ /0001.0 3=  ,

S  Pa.00102.0=µ ]..........................................................................................................49

4.1.4 Eccentricity vs. error in pressure drop of the different studies compared with Piercy et al.

for a Newtonian fluid ..................................................... ...............................................50

4.2.1 Velocity profile of power-law fluid for concentric to fully eccentric annuli [ 5.0=o

i

 R

 R,

SecmQ /006.0 3=  , nS  Pa K  .6.0= , 2.0=n ].....................................................................51

4.2.2 Velocity profile of power-law fluid for concentric and fully eccentric annuli [ 5.0=o

i

 R

 R,

SecmQ /006.0 3=  , nS  Pa K  .6.0= , 2.0=n ].....................................................................52

4.2.3 Results for power-law fluid. [ 5.0=o

i

 R

 R, SecmQ /006.0 3=  , nS  Pa K  .6.0= ] ............53

4.2.4 Results for power-law fluid. [ 5.0=n , SecmQ /006.0 3=  , nS  Pa K  .6.0= ]................54

Page 10: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 10/113

  x

4.2.5 Comparison of Re. f   predictions with previous studies [3,5]

 for a power-law fluid with

[ 5.0=o

i

 R

 R, SecmQ /006.0 3=  , nS  Pa K  .6.0= ].................................................................52

4.2.6 Comparison of Re. f   predictions with previous studies[3,5]

  for a power-law fluid with

[   SecmQ /006.0 3= , 5.0=n , nS  Pa K  .6.0= ] .................................................. ...................53

4.3.1 Comparison of the present study with Haciislamoglu[7]

 

[   inchOD 10= ,   inch ID 5= ,   SecmQ /012618.0 3= , 7.0=n , S  Pa K  .25.0= ,   Pa y 394.2=τ ] .....57

4.4.1 Comparison of the present study with experimental data of Ahmed[1] 

[   mOD 035052.0= ,   m ID 01745.0= , %98.0=ty Eccentrici , 671.0=m ,

S  Pa K  .2610958.0= ,   Pa y 1.2=τ ,   m L 6576.3= ] ...................................................... ..........58

Page 11: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 11/113

  1

CHAPTER 1

INTRODUCTION

1.1 Background

During drilling operation of oil wells a fluid is pumped from a surface mud tank

down to the bottom of the well through drill pipe, through nozzles in the drill bit and then

 back to the surface mud tank trough the annular space between the drill pipe and well

 bore wall as shown in Fig.1.1. The drilling fluid has to satisfy several requirements such

as: supporting the well bore wall from collapsing, preventing formation fluid from

transferring to the well bore, cooling the drill bit, carrying cutting from bottom of the

well to the surface through annulus, etc.

The pump pressure is a function of pressure losses in surface equipment, in drill

 pipe, across the bit nozzles, through the annulus, etc. Frictional pressure loss through

annulus is the main concern of this study.

Several factors can affect frictional pressure loss in annulus such as flow rate,

flow regime, mud rheology, well bore geometry, cuttings content, drill pipe rotation, drill

 pipe lateral motion or swirling introduced by the rotation itself and/or fluid flow, etc. In

this study eccentricity is the main investigated issue along with rheology and drill pipe

rotation. 

Page 12: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 12/113

  2

1.2 Significance of the Subject

In conventional drilling, frictional pressure loss accounts for about 10% of the

whole circulation pressure loss. [15] 

In slim hole configurations, annular frictional pressure loss can contribute 30-50%

of the total fluid circulation pressure loss and some investigators have reported it to be as

high as 90%. [8]

Significant frictional pressure drop in the annulus can result in an increase of the

 bottom hole pressure, which might then exceed the strength of the formation, thus

causing loss of drilling fluid and creating a potentially dangerous situation due to the

resulting loss of hydrostatic head. [15] 

Fig.1.1 Schematic of Drilling Operation 

Page 13: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 13/113

  3

1.3 Contribution and Evaluation of This Study

In this study effect of eccentricity of drill pipe and rheology of drilling fluid on

frictional pressure drop in annuli for Newtonian and non-Newtonian fluid is investigated.

A computer program in FORTRAN is developed to perform calculations.

Results of the program are compared with the present works of Azouz [3], Escudier  [4, 5],

Piercy [17] and Haciislamoglu [7] and found to be all in good agreement. Also, numerical

simulation for a Newtonian annular flow in eccentric annulus with a rotational drill pipe

is performed.

1.4 Scope of the Study

A short review of the past works related to this study is the content of Chapter 2.

This review has categorized the previous studies according to the type of the problem.

Chapter 3 is an investigation of laminar flow of Newtonian and non-Newtonian

fluids in eccentric annulus. In the first part of this chapter, drill pipe is considered to be

stationary and fluid is Newtonian or non-Newtonian. The second part of the chapter

considers the drill pipe to be rotating and fluid to be Newtonian only. In the first part of

the chapter, two approaches are used to solve the problem. For the first approach a

rectangular mesh system is used to solve discretized flow equations in Cartesian system.

In the second approach, on the other hand, a boundary fitted coordinate system is utilized

to apply numerical technique to equations. Flow equations as well as geometry are

transformed into this new system and then discretized. Similar solution procedures are

used to solve the equations in Cartesian and boundary fitted coordinate system. The last

 part of Chapter 3 is related to flow of Newtonian fluid in eccentric annulus with a rotating

drill pipe. Navier-Stokes equations of motion and continuity in a rectangular coordinate

Page 14: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 14/113

  4

system are transformed into a computational plane in a boundary fitted coordinate

system. SIMPLE algorithm by Patankar-Spalding [16] is chosen to solve the equations.

In chapter 4 results of numerical simulation are presented and compared with

other studies. Results are related to Newtonian and non-Newtonian fluid flow in eccentric

annulus with stationary drill pipe. Results for the case when drill pipe is in motion are not

 presented due to instability of the numerical procedure.

Page 15: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 15/113

  5

CHAPTER 2

LITERATURE REVIEW

This chapter is a review of some the previous work about laminar annular flow.

Laminar annular flow is flow of a fluid in an annulus under laminar regime. In laminar

regime, fluid particles travel along well-ordered non-intersecting paths, or layers.

The determination of annular flow performance is important in the planning and

design of the hydraulic program for a well not only because of significant pressure losses

 but also possible hole cleaning problems.

Laminar annular flow has been the subject of many investigations. With the

developments in computers and also computational fluid dynamics there is a high trend

of using numerical simulations.

2.1 Annular Flow of Newtonian Fluid

One of the first correlations for annular flow is given by Lamb (1932) [12]. In that

study, an equation is presented that correlates frictional pressure loss with flow rate in a

concentric annulus for a Newtonian fluid.

( )

−−=

1

2

221

224

142

ln8

r r r r 

dl 

dP q

µ

π  1.1.2.eq  

Where,

1r : inner radius of the inner pipe

2r  : inner radius of the outer pipe

Page 16: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 16/113

  6

dl 

dP : pressure drop

µ : viscosity of the fluid

q : volumetric flow rate

Piercy et al. (1933) [17] presented an exact solution that correlates, frictional

 pressure loss, flow rate and eccentricity. Considering Fig.2.21:

Where, o R  and i R are the outer and inner cylinder radii and c  is the displacement of the

two centers. Momentum equation in the rectangular Cartesian coordinates for this case to

 be solved is:

Fig.2.1.1  Newtonian fluid in concentric annulus 

R i 

R o 

c

X

Y

Fig.2.1.2 Eccentric Annulus 

Page 17: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 17/113

  7

   

  

 

∂∂

+∂∂

+∂∂

−=2

2

2

2

0 y

v

 x

v

 z 

 P   z  z µ   2.1.2.eq  

Where,

 z 

 P 

∂∂ : pressure drop in axial direction

µ : fluid viscosity

 z v : fluid velocity in axial direction

Using below notation:

( )22 y xk v z    +−=φ   3.1.2.eq  

The mathematical problem now becomes:

02

2

2

2

=∂∂

+∂∂

 y x

φφ  4.1.2.eq  

subjected to the no-slip condition, )(

22

 y xk w   +−=φ on the solid boundaries, which is

Laplace’s equation.

They obtained exact solution by mapping the cross section conformally onto a

region where Laplace’s equation has a known solution. This technique is called” complex

variable” technique. By applying the transformation:

( )  

  

  +=+   ηξ   i M iz  y

2

1tan   5.1.2.eq  

where,

2

2222

2  o

io  Rc

c R R M    − 

  

  

    +−=  

 z 

 P k 

∂∂

=µ4

1:Where

Page 18: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 18/113

  8

the momentum equation ( 4.1.2.eq ) in the ( )ηξ , ??coordinate system will take the form:

02

2

2

2

=∂

∂+

η

φ

ε

φ  6.1.2.eq  

Subject to:

βαηεη

η,01

coshcosh

cosh22 ==   

  

 −

+−   at  M  K   

Solving 6.1.2.eq :

( )io

n

n

io

 R Rc for 

nn

ne M c

 M c R R

dl 

dp−<<

   

  

 

−−

−−−

−=

∑∞

=

+−0,

)sinh(8

4

8

Q

1

)(22

2244

αβαβµ

π   αβ  7.1.2.eq  

Where,

c

c R R   io

2F

222 +−=  

22o R F  M    −=  

   

  

−+

= M  F 

 M  F ln

2

1α  

   

  

−−+−

= M c F 

 M c F ln

2

1β  

Page 19: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 19/113

  9

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1

Relative Eccentricity, [c/(Ro-Ri)]

   d   P   /   d   L   (   E  c  c  e  n .   /   C  o  n  c  e  n .   )

Ri/Ro=0.8

Ri/Ro=0.5

Ri/Ro=0.2

 

As can be clearly seen from Fig.2.1.3, the eccentricity of the drill pipe can cause a

substantial decrease in frictional pressure loss.

2.2 Concentric No Rotation Non-Newtonian

Bird and Fredrickson (1958) [6]  obtain analytical correlation between flow rate and

frictional loss for Power-law fluids.

( ) ( )

−−− 

 

  

 ∆

+=

  +−++

nnnnn

n

o

 L K 

 P 

n

 RQ

1122

111

12

113

123

1  κβκβ

π  1.2.2.eq  

Where,

 K    = fluid consistency index

Fig.2.1.3 Effects of eccentricity on frictional pressure loss for a Newtonian fluid with

constant flow rate using 7.1.2.eq . [   Secliter Q /1.0= , Sec Pa.00102.0=µ , m Ro 0889.0= ] 

Page 20: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 20/113

  10

n   = flow behavior index for power-law fluid

o

i

 R

 R=κ  

 L

 P 

∆= pressure drop per unit length

And β can be calculated from the following equation:

∫ ∫       

  

 −= 

  

  

 −

11

2

1

2

β

β

κ

ξξ

βξξξ

ξ

βd d 

nn

  2.2.2.eq  

In their paper, Bird and Fredrickson (1958) [6] also showed a correlation for

Bingham Plastic fluid flow in concentric annulus as follows:

( )   ( )( ) ( )   ( )  

−++−−−−−

∆∆=   +++   y y y y

 p

o  K  K  K  L

 P  RQ   ττλττλλ

µ

π 33242

23

11

3

4121

8  3.2.2.eq  

Where,

 K    = fluid consistency index

 pµ  = plastic viscosity

o

i

 R

 R=κ  

 L

 P 

∆∆

= pressure

 yτ = yield stress

And +λ can be calculated from the following:

( ) ( )   ( ) 0121ln22 =−+++−

−−   +

+

+++   λττ

λ

τλτλλ   y y

 y y   K 

 K   4.2.2.eq  

Bird and Fredrickson [6] solved 4.2.2.eq numerically and presented the results in the

form of charts facilitating rapid application.

Skelland (1967) [8] presented another exact solution for Bingham plastic fluid as

follows:

Page 21: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 21/113

  11

( ) ( ) ( )( )

( )   ( )( )   ( )( )

( )( )   ( )( ) ( )33332222

2222222

22222224444

344

4416

816ln

2

16

2

io p

 y y

oi

 y

iooi y

io y

ioio

i

o p

io

 p

 R Rbaabbaab R R

 R R R R R Rbaab L

 P 

 R Rab L

 P  R R

 L

 P 

bR

aRba R R

 L

 P Q

−−++

−++−+−

−++−+−−∆

∆−

−−

∆∆+−

∆∆−

   

  

 +−+−

∆∆=

µ

πτττ

ττ

µ

π

µ

π

 

5.2.2.eq  

Where, a  and b could be calculated by solving the following equations:

( )

( )( )

   

  

 +−−+=

=−

−−

∆∆

i

o

ioab R R

 L P 

 y

bR

aR

 R Rabab

ab

io

ln

2

2222

22

τ

  6.2.2.eq  

Hanks (1979)[9]  presented analytical solution for yield power-law fluid. In that

study several charts are presented through computing theoretical solutions of the

equations of the motion for the concentric annular geometry using the Herschel-Bulkly

model. Using those charts to find some parameters and applying them to the equations,

one can compute volume flow rate through given pressure drop and also computing

 pressure drop through given volume flow rate.

2.3 Eccentric No-Rotation Non-Newtonian

Haciislamoglu (1985) [7]  and Azouz (1994) [3] used numerical simulation to solve

the governing equations of non-Newtonian fluid flow in eccentric annulus without pipe

rotation.

 Nearly all of the analytical and numerical solutions for annular flow without pipe

rotation indicate that frictional pressure loss decreases with increasing eccentricity, at a

Page 22: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 22/113

  12

given flow rate. The reduction in pressure loss can be significant for instant can be in the

range of the pressure loss.

2.4 Newtonian Fluid Flow in Annulus with Inner Pipe Rotation

Yamada (1960) [22]  described the experimental results for the resistance of water

flow through an annulus formed by two concentric cylinders, with the inner cylinder

rotating and the outer cylinder stationary. This study shows that when the flow is laminar,

the resistance of a flow is unaffected up to a certain rotational speed. But beyond this

speed the flow resistance increases as the Reynolds number increases.

Ooms et al. (1996) [15] performed numerical simulation of Newtonian fluids flow

in annulus to investigate effects of eccentricity and rotational speed of the inner pipe on

frictional pressure loss. Their study was more accurately followed by Escudier et al.

(1999) [4]. Theoretical and experimental study of Escudier et al.  [4]  suggested that in the

case of concentric annulus, rotation of the inner pipe does not influence frictional

 pressure loss of the Newtonian fluids. However, in the case of eccentric annulus they

showed that when the inner pipe is rotating, for low eccentricities (less than 30%),

 pressure drop remains approximately constant with increasing of eccentricity. For higher

eccentricities however, frictional pressure loss generally decreases with increasing of

eccentricity. Escudier et al. [4] also found that for a given radius ratio, as rotation speed of

the inner cylinder increases at any eccentricity, frictional pressure loss increases.

Page 23: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 23/113

Page 24: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 24/113

  14

drop values for power-law fluids follow the trends observed by Escudier et al. (1999) [4]  

for Newtonian fluids, including an increase with rotation of the inner pipe, an increase

with eccentricity at low and very high eccentricities but a decrease for intermediate

eccentricities. They showed that a power-law fluid generally exhibits lower pressure drop

as compared with the Newtonian liquid.

Page 25: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 25/113

  15

CHAPTER 3

ANNULAR FLOW IN ECCENTRIC ANNULUS

In this chapter laminar flow of Newtonian and non- Newtonian fluids through an

eccentric annulus is numerically simulated. In the first part of the chapter drill pipe is

considered to be stationary and fluid is Newtonian or non-Newtonian. In the second part

of this chapter inner pipe is rotating and fluid is Newtonian.

3.1 Annular Flow in Eccentric Annulus without Inner Pipe Rotating

To simulate fluid flow in an eccentric annulus when the drill pipe is stationary,

governing equations for flow in eccentric annulus are developed in the Cartesian

coordinate system. Yield Power Law model is used to represent the rheology of the fluid.

To solve the flow equations, two approaches are used. In the first approach a rectangular

mesh system is used to solve discretized flow equations in the Cartesian coordinate

system. In the second approach, on the other hand, a boundary fitted coordinate system is

utilized to apply numerical technique to equations.

In the first approach using a rectangular grid system, equations are discretized and

an iterative over relaxation method is used to solve for velocity field at each grid point

knowing frictional pressure loss in axial direction of the well bore. A relaxation technique

is used to speed up convergence of the solution. Calculation of relaxation factor is

 presented and the treatment for the no shear region is discussed.

Page 26: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 26/113

  16

In the second approach similar solution procedure is used, but geometry as well as

equations are transformed into a computational domain in a boundary fitted coordinate

system.

3.1.1 Assumptions

1-Laminar and fully developed flow

2-Isothermal and steady state conditions

3-Flowing direction is in the annulus along the axial direction of the well bore.

4- Incompressible fluid

5- Flow domain is an eccentric annulus.

6- Drill pipe is stationary

7-No slippage at the walls

3.1.2 Continuity Equation

 Navier-Stokes continuity equation for an isothermal laminar flow in Cartesian

coordinate system is:

   

  

 

∂∂

+∂

∂+

∂∂

−=∂∂

+∂∂

+∂∂

+∂∂

 z 

v

 y

v

 x

v

 z v

 yv

 xv

 z  y x z  y x   ρ

ρρρρ  1.1.3.eq  

Where, ρ  is the density of the fluid and  z  y x   vvv ,, are velocity components in

 z  y,,  directions respectively. Coordinate system is shown in Fig.3.1.1.

Since the fluid is incompressible, all the terms on the left hand side of eq.3.1.1 are

zero. The first two terms in parenthesis on the right hand side of the same equation are

zero since the flow is purely axial (i.e. no flow in x and y directions). So, from 1.1.3.eq :

Page 27: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 27/113

  17

0=∂

∂ z 

v z    2.1.3.eq  

Fig.3.1.1 Cartesian coordinate system

3.1.3 Momentum Equation

For axial laminar flow, the equation of motion will take the form (Appendix A):

 z 

 P 

 y

w

 y x

w

 x   ∂

∂=

   

 

 

 

∂+

  

 

 

 

∂µµ   3.1.3.eq  

Where, w is the fluid velocity in  z  direction and  µ  is the viscosity that is a

function of shear rate. The viscosity function depends on the rheology of the fluid. The

shear rate for axial flow can be expressed as:

22

   

  

 ∂∂+  

 

  

 ∂∂=

 y

w

 x

wγ&   4.1.3.eq  

In order to solve the above equations, the following boundary conditions are

applied:

1-Velocity at the drill pipe is zero

2- Velocity at the well-bore wall is zero.

 X

 Z

Y

   F   l  o  w

   D   i  r  e  c   t   i  o  n

    F   l  o  w

   D   i  r  e  c   t   i  o  n

Page 28: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 28/113

  18

3.1.4 Drilling Fluid Rheology

Flow behavior of a fluid can be described by a mathematical relationship between

shear stress and shear rate. Fluids are generally categorized as Newtonian and non-

 Newtonian Fig.3.1.2. This classification is based on the relationship between shear rate

and shear stress. Drilling fluids are mostly non-Newtonian in character and almost

invariably shear thinning, and often exhibiting visco-elastic and thixotropic properties as

well as yield stress [2].

 Newtonian Model:

γµτ =   5.1.3.eq  

Bingham Plastic Model:

γµττ   & p y +=

  6.1.3.eq  

Power Law Model:

→<→>

=FluidticPseudoplas1

FluidDilatant1

n

n K    nγτ   &

  7.1.3.eq  

Yield Power Law (Herschel-Bulkley) Model:

Pipe and annular flows of Yield Power-Law fluid is of great interests in drilling

applications. This model describes the rheological behavior of drilling muds more

accurately than Bingham Plastic and Power-Law models. The Yield Power-Law

rheological model for all time-independent fluids is given by:

n y   K γττ   &+=

  8.1.3.eq  

Where:

Page 29: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 29/113

  19

τ   = Shear Stress

 yτ  = Yield Shear Stress

γ&   = Shear Rate

 K    = Fluid Consistency Index

n   = Flow Behavior Index

µ   = Newtonian Viscosity

 pµ = Plastic Viscosity

Fig.3.1.2 Flow Curve for Different Fluids 

General Model:

All the above models can be expressed by the Yield Power Law model as follows:

→≠≠

=→=≠

→≠=

=→==

+=

 Fluid  Law Power Yield n If 

 K  Model  Plastic Binghamn If 

 Model  Law Power n If 

 K  Model  Newtoniann If 

 K 

 y

 p y

 y

 y

n y

1,0:

)(1,0:

1,0:

)(1,0:

τ

µτ

τ

µτ

γττ   &   9.1.3.eq  

Apparent Viscosity:

A non-Newtonian fluid does not have a constant viscosity like Newtonian. However, in

numerical modeling, the concept of viscosity is used for non-Newtonian fluids to make

the governing equations similar to Newtonian fluids. This viscosity is known as apparent

Page 30: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 30/113

Page 31: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 31/113

  21

Fig.3.1.3  Grid network in Cartesian coordinate with different grid sizes in x and y direction 

3.1.6 Discretizing the Equation of Motion

Equation of motion is a differential equation that can be approximated by a

discretized finite difference equation. A second-order central differencing scheme has

 been used for all the grid points inside of the flow domain. This scheme establishes the

following system of algebraic equations:

   

  

 ∂∂

−++++++

=   −+

+−+

++

 z 

 P W  AW  AW  AW  A

 A A A AW    ji

n

 ji

n

 ji

n

 ji

n

 ji

n

1,

1

41,3,1

1

2,114321

,

1 1   13.1.3.eq  

Page 32: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 32/113

  22

Where, coefficients are calculated based on 10.. Beq (Appendix B). In order to

speed up the rate of convergence an over relaxation factor is introduced to 1.6.3.eq thus:

( )    

 ∂∂

−+++−

 

 +++

++++=   −

++−

++

+

 z 

 P W  A A A A

W  AW  AW  AW  A A A A A

W W 

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

,4321

1,

1

41,

3,1

1

2,1

14321

,,

1 ω

 

14.1.3.eq

 

Where:

 ji

n

W  ,

1+ : The value of the velocity field at node  ji,  at computational step (iteration) 1+n  

 ji

n

W  ,  : The value of the velocity field at node  ji,  at computational step (iteration) n  

Where, ω  is over relaxation factor and is calculated following Azouz [3]at each

grid point and it is shown in (Appendix D):

( )

( )

<−++

≥−−+

=

0411

2

0411

2

2

3

2

12

23

21

2

ϕϕρ

ϕϕρ

ω

if 

if 

 J 

 J 

  15.1.3.eq  

Where:

   

  

    

  

+−+ 

  

  

+−

+=

1cos4

1cos4

2

1 24

22

23

21

21   N  M  J 

πϕϕ

πϕϕ

ϕϕρ  

appµϕ   =1  

appµϕ   =2  

 x∂∂=   µ

ϕ3  

Page 33: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 33/113

  23

 y∂∂

=  µ

ϕ4  

Where,   N  M ,  are number of grid points in  y x,   direction. Details of calculations

can be found in Appendix D.

Discretizing viscosity equation in 11.1.3.eq  yields:

( ) 1,

,,

−+=   n ji

 ji

 y

 ji   K   γγ

τµ   &

&  16.1.3.eq  

Where:

2

1,1,

2

,1,1,

22      

  

 ∆

−+  

 

  

 ∆

−=   −+−+

 y

W W 

 x

W W   ji ji ji ji jiγ&   17.1.3.eq  

3.1.7 Solution Algorithm

Three systems of algebraic equations are solved iteratively. First, discretized

velocity equation ( 14.1.3.eq ) is solved at point  ji,  that is a point in the flow region. Then

viscosity equation ( 16.1.3.eq , 17.1.3.eq ) followed by relaxation factor calculation ( )15.1.3.eq  

is evaluated. Iterations continue until convergence is achieved. Having velocity field,

flow rate is calculated through numerical integration over the flow region.

3.1.8 Minimum Shear Rate

Visco-plastic fluids encounter a problem for small shear rate in the un-yielded

region while calculating the apparent viscosity. This is the most difficult aspect for

numerical modeling of fluids with yield stress. Azouz [3] used a minimum cut off value of

the shear rate. It is better to determine a cut off value corresponding to the conditions. It

Page 34: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 34/113

  24

was experienced that if the cut of value is too small or too big, sometimes we need too

many unnecessary iterations or we may encounter instability problem. The following

equations can be used for calculating cut off value of minimum shear rate:

   

  

 

=− StressYiel without  Fluids for 

StressYield with Fluids for  K 

wall 

n y

γ

τ

γ

&

&

8

1

8

min

10

10

  18.1.3.eq  

where, wall γ&  can be calculated from 24.. Beq .Detailed derivations of the above equations

can be found in Appendix B.

Iteration begins with a relatively large value of cut off shear rate. When velocity

field reaches a convergence the cut off value must decrease and iterations continue with

the new cut off shear rate. This procedure continues until the smallest desired cut off

value is obtained. From then on, it will remain constant.

3.1.9 Convergence Criteria

When the values of velocity field do not change with more iteration and also

smallest calculated shear rate reaches the minimum desired shear rate, convergence is

achieved and calculations should be stopped.

Convergence of velocity is achieved when velocity field at new iterations is close

to the values of the previous iteration. This is defined by a relative value, called residual

of velocity:

Page 35: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 35/113

  25

( ) ( )

( )∑∑

∑∑

= =

= =

=max max

max max

1 1

,

1 1

,,

 j

 j

i

i

 jiold 

 j

 j

i

i

 jiold 

 jinew

w

ww

 Residual Velocity   19.1.3.eq  

If the velocity residual is small enough 710..   − g e  , convergence is achieved.

3.1.10 Flow Rate Calculations

Flow rate is integral of velocity times its associated area:

 y xw AwwdAQ

 j

 j

i

i ji

 j

 j

i

i ji ji   ∆∆=≈=   ∑∑∑∑∫  = == =

max maxmax max

1 1,

1 1,,   20.1.3.eq  

Fig.3.1.4 Flow Rate Calculation at Grid Point i,j 

3.1.11 Using Boundary Fitted Coordinate System

One advantage the boundary fitted coordinate system compared to rectangular

coordinate system is its ability to conform to the boundaries of the system regardless of

i i+1i-1

 j+1

 j

 j-1

 y∆ 

 x∆  

 jiw ,  

 y x A  ji   ∆∆=,  

Page 36: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 36/113

  26

the shape. In another word grid generated can fit itself into the boundary of the system as

shown in Fig.3.1.4. This feature increases the accuracy of the solution developed.

Doing the transformation, physical Cartesian coordinates (x,y) becomes the

dependent variables and the curvilinear coordinates (   ηξ , ) becomes the independent

variables. A generated grid is then defined as a set of points formed by the intersections

of the lines of a boundary conforming curvilinear coordinate system.

Fig.3.1.5  Grid Network in Boundary Fitted Coordinate System 

There is a uniform grid in this system in the sense that at each radius position the

angular width is constant and at each angular position, the radial width of the cells is also

constant.

 x  

 y  

e  i R  

o R  ),(),(),(   ji y x   =≡   ηξ  

Page 37: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 37/113

Page 38: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 38/113

  28

e : Distance between the inner cylinder (drill pipe) and outer cylinder (well bore wall).

3.1.13 Transformation of the Equations

Equation of motion and apparent viscosity equation 12.1.3.eq are numerically

transformed from a Cartesian system to a computational domain. According to 43..C eq  

(Appendix C):

( ) ( ) z 

 P  J W W 

 J W W 

 J 

appapp

∂∂

=   

  

 −

∂∂

+   

  

 −

∂∂

ξηηξ   γβµ

ηγα

µ

ξ  22.1.3.eq  

Where:

1−+=   n y

app   K  γγ

τµ   &

( )ηξηξ   γβαγ   W W W W  J 

21 22

2  −+=&  

22ηηα   x y   +=  

ηξξηγ   x x y y   +=  

22ξξβ   x y   +=  

ξηηξ   y x y x J    −= 

Detailed derivations can be found in Appendix C.

3.1.14 Discretization of the Equation of Motion

The same way of discretizing as was used for the Cartesian coordinate system will

 be used for the transformed equation:

Page 39: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 39/113

  29

0101,191,18,171,6

1,15,141,31,12,1

=−−−−

−−−−−

++−−++

+−−−−+

 AW  AW  AW  AW  A

W  AW  AW  AW  AW  A

 ji ji ji ji

 ji ji ji ji ji 

23.1.3.eq 

Where coefficients 101   A A   − can be found in 16.. Deq (Appendix D) .

Solution algorithms will the same as well. Using relaxation factor:

+−+++

+++++=

++−−+

++

+−−+

−+

−++

10,11,191,1

1

8,171,6

1,15,1

1

41,

1

31,121

,,

1

 AW  AW  AW  AW  AW  A

W  AW  AW  AW  A A

W W 

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n ω

 

24.1.3.eq

 

3.1.15 Grid Refinement Analysis

A gird refinement analysis showed that using grid numbers more than 100 in

radial and in tangential direction does not result in a significant change in flow rate. In

order to check the results for different grid numbers, a concentric annulus was considered

and the results of the numerical simulation was compared with the results of analytical

solution for Newtonian and non-Newtonian as it is shown in 6.1.3. Fig   and 7.1.3. Fig  .

Page 40: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 40/113

  30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400

Number of Grids in Tangential Direction

   %   E  r  r  o  r   i  n

   f   l  o  w  r  a   t  e   (  c  o  m  p  a  r  e   d  w   i   t   h  a  n  a   l  y   t   i  c  a   l

  s  o   l  u   t   i  o  n  s   )

n=1.0

n=0.5

 

Fig. 3.1.7 Grid refinement in tangentialdirection (number of grids in radial direction=60).Comparison of the value for volume flow rate of simulation with analytical solutions for

concentric annulus for a Newtonian (n=1) and a power-law (n=0.2) fluid.

Page 41: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 41/113

Page 42: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 42/113

  32

( ) ( ) ( ) ( )1,11,11,11,11,11,11

2

1+++−+++++−++

∆−+−−=   ji ji ji ji ji ji   x x y y y x ABO   27.1.3.eq  

( ) ( ) ( ) ( )1,11,11,11,11,11,112

1−+−−−+−+−−−+

∆−+−−=   ji ji ji ji ji ji   x x y y y xCDO   28.1.3.eq  

( )( )( )   ( )( )

( )         

 

 

 

 

   

  

 −

−+−−

   

  

 −

−+−−=

2

2

2

2

1

1

2sin

1

1

2

1

 JM 

 R i Ro j JM  R o

CDO Arc

 JM 

 R i Ro j JM  R oCPDO   29.1.3.eq  

( ) ( )   ( )( )   ( )1,11,11,11,11,11,12

12

21 −+−−−+−+−−−+∆ −  

  

   −−−−−−==   ji ji ji ji ji ji   x x y

 JM  je y y xCDO   30.1.3.eq  

( )( )( )   ( )( ) ( )

( )         

 

 

 

 

   

  

 −

−+−−

   

  

 −

−−−−=

2

3

2

3

1

1

2sin

1

1

2

1

 JM 

 R i Ro j JM  R o

 ABO Arc

 JM 

 Ri R o j JM  R o AQBO   31.1.3.eq  

( ) ( )( )

  ( )1,11,11,11,11,11,1312

1+++−+++++−++

∆−  

 

 

 

 −

−−−−=   ji ji ji ji ji ji   x x y

 JM 

 je y y x ABO   32.1.3.eq  

Where, e JM  IM  ji ,,,,  are shown in Fig.3.1.5.

3.2 Newtonian Fluid Flow in Eccentric Annulus with Inner Pipe Rotating

The objective of this section is to investigate laminar Newtonian fluid flow in a

concentric annulus with inner pipe rotation. Navier-Stokes equations for laminar flow of

a Newtonian fluid in Cartesian coordinate system are considered. All the equations are

transformed to a computational domain in the boundary fitted coordinate system.

Geometry, on the other hand is transformed algebraically. Having equations and

Page 43: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 43/113

  33

geometry in the computational domain, SIMPLE algorithm (Patankar –Spalding, 1972) is

applied to solve the equations.

3.2.1 Assumptions

1-Laminar and fully developed flow

2-Isothermal and steady state conditions

3-Flowing direction is in the annulus along the axial direction of the well bore.

4- Incompressible fluid

5- Flow domain is an eccentric annulus.

6- Drill pipe is rotating at a constant angular velocity

7-No slippage at the walls

3.2.2 Governing Equations

Considering Navier-Stokes equations in a Cartesian coordinate system for

 Newtonian fluid, momentum equations in  z  y x ,,  will be:

( ) ( ) x g 

 x

 p

 z 

w

 y

v

 x

u

 z 

wu

 y

vu

 x

u

uρµρρ   +

∂∂

∂+

∂+

∂+ 

  

  

 

∂∂

+∂

∂+

∂∂

−=∂∂

2

2

2

2

2

22

  1.2.3.eq  

( ) ( ) y g 

 y

 p

 z 

w

 y

v

 x

u

 z 

wv

 y

v

 x

uv

vρµρρ   +

∂∂

∂+

∂+

∂+ 

  

  

 

∂∂

+∂∂

+∂

∂−=

∂∂

2

2

2

2

2

22

  2.2.3.eq  

( ) ( )  z  g  z  p

 z w

 yv

 xu

 z w

 yvw

 xuw

t w ρµρρ   +

∂∂−

∂∂+

∂∂+

∂∂+  

  

  

∂∂+

∂∂+

∂∂−=

∂∂

2

2

2

2

2

22

  3.2.3.eq  

And Continuity equation is:

0=   

  

 ∂∂

+∂∂

+∂∂

+∂∂

 z 

w

 y

v

 x

u

ρ  3.2.3.eq  

Page 44: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 44/113

  34

The first term on the left hand side of all the momentum equations is zero because

the flow is under steady state. Also on the right hand side of the same equations the last

term in the second parenthesis is zero due to flow is fully developed. Also the last term

on 1.2.3.eq  and 2.2.3.eq  is zero because there is not any gravity in  x and  y directions.

In continuity equation, the first term is also zero because of a steady state flow.

The last term on the left hand side of this equation is also zero because fluid is fully

developed.

Gravity in  y x, directions is zero. Also we wish to eliminate gravity in  z direction

in order to consider only frictional pressure loss so 4.2.321.3.   −eq will take the new form:

( ) ( ) x

 p

 y

v

 x

u

 z 

wu

 y

vu

 x

u

∂∂

∂+

∂= 

  

  

 

∂∂

+∂

∂+

∂∂

2

2

2

22

µρ

  5.2.3.eq  

( ) ( ) y

 p

 y

v

 x

u

 z 

wv

 y

v

 x

uv

∂∂

∂+

∂= 

  

  

 

∂∂

+∂∂

+∂

∂2

2

2

22

µρ

  6.2.3.eq  

( ) ( ) z 

 P 

 y

v

 x

u

 z 

w

 y

vw

 x

uw

∂∂

∂+

∂= 

 

 

 

 

 

∂∂

+∂

∂+

∂∂

2

2

2

22

µρ

 7.2.3.eq

 

0=∂∂

+∂∂

 y

v

 x

u

  8.2.3.eq  

3.2.3 Boundary Conditions

==

−=

===

0

:)(

0

:)(

..

w

Cosr v

Sinr u

boundaryinner  string drill theOn

wvu

boundaryouter wall borewell theOn

Cs B

θω

θω

  9.2.3.eq  

Page 45: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 45/113

  35

Fig.3.2.1 Boundary conditions for an eccentric annulus with rotating drill pipe

3.2.4 Transformation of Equations

Using boundary fitted coordinates flow equations can be transformed from the

real domain onto a computational domain.

According to Hoffman [10] :

ξηηξ   y x y x J  −=1

  10.2.3.eq  

 J 

 y x

ηξ   =

  11.2.3.eq  

 J 

 x y

ηξ   −=

  12.2.3.eq  

 J 

 y x

ξη   −=

  13.2.3.eq  

 J 

 x y

ξη   =

  14.2.3.eq  

( )ξηηξ   y f  y f  J  f  x

 f  x   −==

∂∂

  15.2.3.eq  

θ  

ωr   

θω Cosr   

θωSinr − 

ω  

 x

 y

Page 46: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 46/113

  36

( )ξηηξξη   y f  x f  x f  J  f  y

 f  y   −−==

∂∂

  16.2.3.eq  

( )

( )( ){

( )( )}ξηηξηηξξηηξξξ

ηξξηηηξξηηξξξ

ηηξξηηξξξ

 f  y f  y x y x y y x y

 f  x f  x y y y y y y y J 

 f  y f  y y f  y J  x

 f 

n

n

n

−+−

+−+−

++−=∂

22

223

222

2

2

2

2

2

  17.2.3.eq  

( )

( )( ){

( )( )}ξηηξηηξξηηξξξ

ηξξηηηξξηηξξξ

ηηξξηηξξξ

 f  y f  y x x x x x x x

 f  x f  x y x y x x y x J 

 f  x f  x x f  x J  x

 f 

n

n

n

−+−+

−+−+

+−=∂∂

22

223

222

2

2

2

2

2

  18.2.3.eq  

Applying 18.2.310.2.3.   −eq  to equations of motion and continuity, yields:

ξ -momentum equation:

)2( 1   ξηηηξηξξ   ueducubuau J    +++−  

( ) ( )   ( ) 01

21432

22

1   =++++++   ηξξηηξρ

 pa pauvauvauaua   19.2.3.eq  

η -momentum equation:

)2( 1   ξηηηξηξξ   vedvcvbvav J    +++−  

( ) ( )   ( ) 01

432

42

321   =++++++   ξηξηηξρ

 pa pavavauvauva   20.2.3.eq  

 Z -momentum equation:

)2( 1   ξηηηξηξξ   wedwcwbwaw J    +++−  

( ) ( ) ( ) ( ) 01

4321   =∂∂

−++++ Z 

 P 

 J vwavwauwauwa

µξηηξ   21.2.3.eq  

Page 47: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 47/113

  37

Continuity Equation:

04321   =++++   ξηηξ   vavauaua  

22.2.3.eq  

Where:

22ηη   x ya   +=  

ηξηξ  y y x xb   +=  

22ξξ   x yc   +=

 

ξηηξ   y x y x J 

−= 1

 

ηηξηξξα   cxbxax   +−= 2  

ηηξηξξβ   cybyay   +−= 2 

βα   ξξ   x y J d    −=   23.2.3.eqs  

αβ   ηξ   y x J e   −=1  

ηµ

ρ ya   −=1  

ξµ

ρ ya   =2

 

ξµ

ρ xa   −=3

 

ηµ

ρ xa   =4  

Page 48: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 48/113

  38

3.2.5 Numerical Procedure

This set of equations ( )2.22.319.2.3.   −eqs  exhibit a mixed elliptic-parabolic

 behavior, and hence the standard relaxation technique which is widely used for those

types of equations is not particularly helpful.

To solve these kinds of equations, Patankar and Spalding (1972) proposed a

method called SIMPLE (Semi Implicit Pressure Linked Equation) algorithm. SIMPLE

algorithm is basically an iterative approach, where some innovative physical reasoning is

used to make the next iteration from the results of the previous iteration. The idea is to

start with discrete continuity equation and substitute into it the discrete u  and v  

momentum equations. Discrete momentum equations contain pressure differences hence

we can get an equation for the discrete pressures. SIMPLE algorithm actually solves for a

related quantity called the pressure correction.

3.2.6 Discretization of Momentum and Continuity Equation

Using ordinary discretization of equations in these types of equations may create a

checkerboarding problem as described by Patankar-Spalding [15]. A popular remedy for

checkerboarding is the use of a staggered mesh. The key feature here is to calculate

 pressure and velocity at different grid points as shown in 2.2.3. Fig  .

Page 49: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 49/113

  39

Fig.3.2.2 Staggered grid for velocity and pressure 

The original formulation of the SIMPLE method by Patankar and Spalding

involved a finite-volume approach. In this study, a finite-difference approach is used

which would essentially give the same results as obtained by finite-volume method. We

choose to use a forward or backward differencing for the grid points close to the walls.

For other points, central differencing with second order accuracy is used. The

computational domain is assumed to have equal spaces in ηξ ,  direction meaning:

1=∆=∆   ηξ  .

ξ -momentum equation after some arrangements will be:

( )  ( ) ( )[ ] ji ji ji ji ji   P  P a P  P a

ca J  AU  ,2,2,2,12,1

2

1−+−

++=   +−−

ρ  24.2.3.eq  

Where:

( )ca J 

 A A

+=

2

12  

( ) jη  

( )iξ  

i,j  

i, , j-1  

i-1, j  

 jiU  ,1−

 ji ji   W  P  ,, ,  

1,   − jiV   

Page 50: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 50/113

Page 51: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 51/113

  41

And,

2

2

2

2

2,12,1

,1,1

2,1,1

2,1,1

−−−+∨∨

−+∨∨

−−−

−++

+=

+=

+=

+=

 ji ji

 ji ji

 ji ji

 ji ji

U U U 

U U U 

U U U 

U U U 

 

 z -momentum equation:

2,   C W   ji   =   26.2.3.eq  

Where:

( )ca J 

C C 

+=

2

12  

( ) ( )

( ) ( ) ( )

   

  

∂∂

−   

  

 −+  

 

  

 −

+   

  

 −+  

 

  

 −

+   

 −+−++

 +−−−+=

+−

∧∧

+

∧∧

+

−−

−+

−+−+−+

−−+−−+++−+

 z 

 p

 J W V W V 

aW V W V 

a

W U W U a

W U W U a

W W e

W W d 

W W c

W W W W b

W W a J C 

 ji ji ji ji

 ji ji ji ji

 ji ji ji ji ji ji

 ji ji ji ji ji ji

µ

1~

2

~

2

2

~

2

22

2

,2,24

2,2,3

2,2,2

1,21,21

,2,2

1

2,2,2,2,

2,22,22,22,2,2,21

 

2

2

~

2,12,1

2,12,1

−+−−≈

−+++

+=

+=

 ji ji

 ji ji

U U U 

U U U 

 

2

2

2,12,1

2,12,1

−+−−∧∧

+++−∧

+=

+=

 ji ji

 ji ji

U U U 

U U U 

 

Page 52: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 52/113

  42

2

2

~

1,21,2

1,21,2

−−+−≈

−+++

+=

+=

 ji ji

 ji ji

U V V 

V V V 

 

2

21,21,2

1,21,2

−−−+∧∧

+−++∧

+=

+=

 ji ji

 ji ji

U V V 

V V V 

 

Continuity equation:

01,21,41,1,32,1,12,1,11   =−+−+−+−   −−−−+−−−−+   ji ji ji ji ji ji ji ji   V V aV V aU U aU U a   27.2.3.eq  

Where could be calculated from 23.2.3.eqs .

3.2.7 Pressure Correction Equation

The primary idea behind SIMPLE is to create a discrete equation for pressure (or

alternatively, a related quantity called the pressure correction) from the discrete

continuity equation( )27.2.3.eq . Since the continuity equation contains discrete face

velocities, we need some way to relate these discrete velocities to the discrete pressure

field. The SIMPLE algorithm uses the discrete momentum equations to derive this

connection. Let ** ,V U  and *W   be the discreteU  ,V  and W   fields resulting from a solution of

the discrete V U , and W momentum equations. Let * P   represent the discrete pressure field

which is used in the solution of the momentum equations. Thus 1,,1 ,   −−   ji ji   V U  and   jiW , satisfy:

( ) 

   

  

  −+   

  

  −+

+=   +−−   ji ji ji ji ji   P  P a P  P aca J 

 AU  ,

*

2,

*

2,2

*

,

*

1

*

2,1

*

2

1

ρ  28.2.3.eq  

( ) 

   

  

  −+   

  

  −+

+=   +−−   ji ji ji ji ji   P  P a P  P aca J 

 BV  ,

*

,2

*

42,

*

,

*

3

*

21,

*

2

1

ρ  29.2.3.eq  

Page 53: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 53/113

  43

2

*

,

*

C W   ji   =   30.2.3.eq  

01,21,41,1,32,1,12,1,11   =−+−+−+−   −−−−+−−−−+   ji ji ji ji ji ji ji ji   V V aV V aU U aU U a   31.2.3.eq  

If the pressure field * P   is only a guess or a prevailing iterate, the discrete

**,V U  and *

W  obtained by solving the momentum equations will not, in general, satisfy the

discrete continuity equation( )31.2.3.eq . A correction is proposed to the starred velocity

field such that the corrected values satisfy continuity equation:

U U U    ′+=*

  32.2.3.eq  

V V V    ′+=*

  33.2.3.eq  

W W W    ′+=*

  34.2.3.eq  

Correspondingly, we wish to correct the existing pressure field

*

 p with

 P  P  P    ′+=*

  35.2.3.eq  

Subtracting 26.2.324.2.3.   −eqs , from 30.2.328.2.3.   −eqs , we obtain:

( )  ( ) ( )[ ] ji ji ji ji ji   P  P a P  P a

ca J  AU  ,2,2,2,12,1

2

1 ′−′+′−′+

+′=′   +−−ρ

  36.2.3.eq  

( )   ( ) ( )[ ] ji ji ji ji ji   P  P a P  P aca J 

 BV  ,,242,,321,2

1

′−′+′−′++′=′   +−−ρ   37.2.3.eq  

2,   C W   ji   ′=′   38.2.3.eq  

We now make the main simplification of SIMPLE algorithm by doing following

approximation:

Page 54: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 54/113

  44

0

0

0

2

2

2

≅′≅′≅′

 B

 A

  39.2.3.eqs  

So, 38.2.336.2.3.   −eqs  will take the form

( )  ( ) ( )[ ]

( )  ( ) ( )[ ]

0

2

1

2

1

,

,,242,,31,

,2,2,2,1,1

=′

′−′+′−′+

=′

′−′+′−′+

=′

+−−

+−−

 ji

 ji ji ji ji ji

 ji ji ji ji ji

 P  P a P  P aca J 

 P  P a P  P aca J 

ρ

ρ

  40.2.3.eqs  

We now consider the discrete continuity equation. The starred velocities**

, V U   

obtained by solving the momentum equations using the prevailing pressure field*

 P  do

not satisfy the discrete continuity equation. Thus substituting 33.2.3.32.2.3.   eqand eq  into

continuity equation:

01,21,2

*

1,1,

*

41,1,

*

1,1,

*

3

2,12,1

*

,1,1

*

2,1,1

*

,1,1

*

1

=

   

  

  ′+−   

  

  ′++

   

  

  ′+−   

  

  ′++

   

  

  ′+−   

  

  ′++

   

  

  ′+−   

  

  ′+

−−−−−−−−++

−−−−−−++++

 ji ji ji ji ji ji ji ji

 ji ji ji ji ji ji ji ji

V V V V aV V V V a

U U U U aU U U U a

 

41.2.3.eq

 

 Now substituting 37.2.3.30.2.3.   eqand eq  into 41.2.3.eq , after some arrangements it

yields:

Page 55: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 55/113

Page 56: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 56/113

  46

Fig.3.2.3 Overall SIMPLE Algorithm

Correct pressure and velocities

32.2.3.*

eqU U U    ′+=

33.2.3.*

eqV V V    ′+=

35.2.3.*

eq P  P  P    ′+=  

Solve pressure correction equation

( ) ( ) ( )[ ] 42.2.3.1

2,2,42,22,23,2,221

,   eq P  P  f  P  P  f  P  P  f  f 

 P    ji ji ji ji ji ji ji   +−−−++−+   ′+′+′+′+′+′−=′

 

START

STOP

Convergence ?

Initial guess p*, u*, *

Solve discritized momentum equations

( )28.2.3.,

*

2,

*

2,2

*

,

*

1

*

2,1

*

2

1eq ji ji ji ji ji   P  P a P  P a

ca J  AU 

   

  

  −+   

  

  −+

+=   +−−ρ

( )29.2.3.,

*

,2

*

42,

*

,

*

3

*

21,

*

2

1eq ji ji ji ji ji   P  P a P  P a

ca J  BV 

   

  

  −+   

  

  −+

+=   +−−ρ

 

2

*

,

*

C W   ji   =   30.2.3.eq  

Yes

No

Set:

U U  =*

 

V V  =*

 

W W  =*

 

 P  P  =*  

Page 57: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 57/113

  47

CHAPTER 4

RESULTS AND CONCLUSIONS

4.1 Newtonian Fluid

4.1.1 Results for Newtonian Fluid

As eccentricity increases, frictional pressure drop decreases. This value could be

about 50% less than the pressure drop of a concentric annulus with the same flow rate.

When the annulus becomes eccentric, one side of annuls is wider than the other side.

Since fluid always tends to bulge through the wider area, most of the fluid flows through

the wider area of the annulus (as shown in Fig.4.1.1), where there is less restriction. In

other words the portion of the fluid that is taking the highest restriction of the geometry is

less than the portion under lower restriction. Figure.4.1.3 shows the results of the

simulation for Newtonian fluid in eccentric annuli.

Fig.4.1.1 Velocity profile of Newtonian fluid for concentric to fully eccentric annuli

[   mOD 1778.0= , SecmQ /0001.0 3=  , S  Pa.00102.0=µ ] 

Page 58: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 58/113

  48

Fig.4.1.2 Velocity profile of Newtonian fluid for concentric and fully eccentric annuli

[   mOD 1778.0= , SecmQ /0001.0 3=  , S  Pa.00102.0=µ ]

Page 59: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 59/113

  49

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1 1.2

Eccentricity

     P    r    e    s    s .     D

    r    o    p     (     E    c    c    e    n     t    r     i    c     /     C    o    n    c    e    n     t    r     i    c     )

(Ri/Ro)=0.8(Ri/Ro)=0.5

(Ri/Ro)=0.2

 

Fig.4.1.3 Present study results for Newtonian fluid [   mOD 1778.0= , SecmQ /0001.0 3=  ,

S  Pa.00102.0=µ ]

4.1.2 Comparison of the Results for Newtonian

Figure 4.1.4 shows the comparison of the present and past studies with the

analytical solution of Piercy et al. [17]. All the cases can predict quite reasonable results.

Considering the trend of the error for different studies, in the study of Azouz [3] error

seems to be quite constant for different eccentricities. However this is quite different for

the other two studies where with increasing of the eccentricity, error decreases. Since the

error can be generate from different sources, one can not explain the reason of these

discrepancies.

Page 60: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 60/113

  50

Present Study

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

Eccentricity

     E    r    r    o    r     %

Ri/Ro=0.8

Ri/Ro=0.5

Ri/Ro=0.2

Escudier et al.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.2 0.4 0.6 0.8 1 1.2

Eccentricity

     E    r    r    o    r     %

Ri/Ro=0.8

Ri/Ro=0.5

Ri/Ro=0.2

Azouz

 

Fig.4.1.4 Eccentricity vs. error in pressure drop of the different studies compared with

Piercy et al. for a Newtonian fluid

Page 61: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 61/113

Page 62: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 62/113

  52

Fig.4.2.2 Velocity profile of power-law fluid for concentric and fully eccentric annuli [ 5.0=o

i

 R

 R,

SecmQ /006.0 3=  , nS  Pa K  .6.0= , 2.0=n ] 

Page 63: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 63/113

Page 64: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 64/113

Page 65: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 65/113

  55

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

Eccentricty

   f .   R  e

Escudier et al.

 Azouz

Present Studyn=0.8

n=0.5

n=0.2

Ri/Ro=0.5

 Figure 4.2.5 Comparison of Re. f   predictions with previous studies

 [3,5] for a power-law fluid

with [ 5.0=o

i

 R

 R, SecmQ /006.0 3=  , nS  Pa K  .6.0= ]

Page 66: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 66/113

  56

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 0.2 0.4 0.6 0.8 1

Eccentricty

   f .   R  e

Escudier et al.

 Azouz

Present Study

Ri/Ro=0.2

Ri/Ro=0.5

Ri/Ro=0.8

n=0.5

 

Figure 4.2.6 Comparison of Re. f   predictions with previous studies [3,5]

 for a power-law fluid

with [   SecmQ /006.0 3= , 5.0=n , nS  Pa K  .6.0= ]

4.3 Results and Comparison for Yield Power- Law Fluid

Like power-law and Newtonian fluids, the same trend is observed for yield

 power-law fluid. For the following case (Fig. 4.3.1), reduction in frictional pressure loss

for eccentric annulus compared to concentric case is 40%. A comparison between the

results of this study with Haciislamoglu[7]

 for this case shows a good agreement between

the two studies and the differences is less than 2%.

Page 67: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 67/113

Page 68: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 68/113

  58

0

10

20

30

40

50

60

70

0 5 10 15 20 25

Q[GPM]

   P  r  e  s  s  u  r  e   D  r  o  p   [   i  n  c   h  o   f  w  a   t  e  r   ]

Experimental Data

Present Study

 

Figure 4.4.1 Comparison of the present study with experimental data of

Ahmed[1]

[   mOD 035052.0= ,   m ID 01745.0= , %98.0=ty Eccentrici , 671.0=m ,

S  Pa K  .2610958.0= ,   Pa y 1.2=τ ,   m L 6576.3= ]. 

 Note: Extensive numerical simulation using the program indicates that the

numerical procedure used in this study is not able to accurately predict the flow rate for

fluids with yield stress when the plug region is relatively large.

4.5 Conclusions

Ø  For a given flow rate increasing eccentricity of the inner pipe decreases the

 pressure drop in annuli;

Page 69: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 69/113

  59

Ø  Pressure loss reduction due to eccentricity for highly shear thinning ( )2.0=n  

non-Newtonian fluids is approximately 30%, while for Newtonian fluids can

 be as high as 50%;

Ø  The reduction of pressure loss due to eccentricity, is more significant at higher

radius ratios    

  

 → 1..

o

i

 R

 Rei ; 

Ø  Using Cartesian grid networks simplifies the equation of motion and

numerical procedure, however at the same time less accuracy was observed;

Ø  Due to complexity of the pipe rotation case, it is recommended to do more

simplification to find the source of instability.

Page 70: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 70/113

Page 71: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 71/113

  61

[6] Fredrickson, A. G., Bird, R.B.: “Non-Newtonian Flow in Annuli,” Ind. And Chem.,

Vol. 50, March 1958,pp.347-352.

[7] Haciislamoglu, M. “Non-Newtonian Fluid Flow in Eccentric Annuli and Its

Application to Petroleum Engineering Problems.” Dec. 1989.

[8] Haige et al., “Experimental Study of Slim Hole Annular Pressure loss and Its Field

Applications.” SPE Paper No.59265

[9]Hanks, W.R., “The Axial Laminar Flow of Yield-Pseudoplastic Fluids in a Concentric

Annulus.” Ind. Eng. Chem. Process Des. Dev., Vol. 18, No. 3, 1979

[10]Hoffmann, K.A. “Computational Fluid Dynamics for Engineers.” Vol.1, 1993

[11]Hussain, Q.E. Sharif, M.A.R. “Analysis of Yield-Power-Law Fluid in Irregular

Eccentric Annuli.” Journal of Energy Resources Technology 120 (1998) 201-207

[12]Lamb, H., 1945, Hydrodynamics, 6th edn., Dover Publications, New York, pp. 585-

587.

Page 72: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 72/113

  62

[13] Luo, Y., Peden J. “Flow of Drilling Fluids Through Eccentric Annuli”, SPE 16692,

62nd Annual Technical Conference and Exhibition, Dallas, September 1987.

[14]Miska, S.Z. “Advanced Drilling”, Teaching Note, University of Tulsa, 2004.

[15]Ooms, G., Kampman-Reinhartz, B.E.,1996. “Influence of drill pipe rotation and

eccentricity on pressure drop over borehole during drilling”. Eur. J. Mech. B 15 (5), 695-

711.

[16]Patankar, S.V., 1980. “Numerical Heat Transfer and Fluid Flow Hemisphere”,

Bristol, PA, pp. 1-197.

[17]Piercy, N.A.V., Hooper, M.S., Winny, H.F. 1933. “Viscous flow through pipes with

core.” London Edinburgh Dublin Phil. Mag. J. Sci., 15 647-676.

[18]Pilehvari, A.: “Modeling of Laminar Helical Flow of A Power-Law Fluid Using the

Finite Element Method”, Technical Report, The University of Tulsa, 1989.

[19]Skelland, A. H. P. “Non-Newtonian Flow and Heat Transfer”, 1967, John Wiley &

Sons, Inc. New York.

[20]Wei, X., Miska S.Z., Takach N.E. “The Effect Of Drill Pipe Rotation On Annular

Frictional Pressure Loss”.

Page 73: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 73/113

  63

[21]Welty, J. R., Wicks, C. E. and Wilson, R. E., “Fundamentals of Momentum, Heat &

Mass Transfer”, New York, John Wiley & Sons, (1976).

[22]Yamada “Resistance of a flow through an Annulus with an Inner Rotating Cylinder”

Bulletin of JSME. May, 1960.

Page 74: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 74/113

  64

APPENDIX A

EQUATION OF MOTION IN CARTESIAN COORDINATES FOR LAMINAR

FLOW OF NON-NEWTONIAN FLUID IN ANNULUS 

1.. Aeq  

Flow

Direction

Page 75: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 75/113

Page 76: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 76/113

  66

Because flow is only in one direction, 0==   y x   vv   and also from continuity equation, 0=∂ z 

v z   

3.. Aeqs will take the form:

0=

∂∂

−=

∂∂−=

 zz 

 z  yz 

 z  xz 

 y

v

 xv

τ

µτ

µτ

  5.. Aeq  

 Now substituting, 5.. Aeq  into 3.. Aeq :

 z 

 p

 y

v

 y x

v

 x

 z  z 

∂∂=  

  

  

∂∂

∂∂+  

  

  

∂∂

∂∂ µµ   6.. Aeq  

Denoting:   wv z   = , 6.. Aeq  will be:

 z 

 p

 y

 y x

 x   ∂∂=  

 

  

 ∂

∂∂∂+ 

 

  

 ∂

∂∂∂

µµ   7.. Aeq  

Page 77: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 77/113

  67

APPENDIX B

DISCRETIZING EQUATION OF MOTION IN CARTESIAN COORDINATES

FOR LAMINAR FLOW OF NON-NEWTONIAN FLUID IN ANNULUS  

Recalling equation of motion ( )AppendixA,A.7eq. : 

0=∂∂−    

   ∂∂∂∂+      ∂∂∂∂  z 

 P  yw

 y xw

 xµµ   1.. Beq  

The above finite differential equation can be app  be approximated by a difference

equation. Beginning with the first term: 

 ji ji ji  x

 x

 x

 x,

2

1,

2

1,   −+

   

  

∂∂

−   

  

∂∂

≈   

  

∂∂

∂∂

µµµ   2.. Beq  

Also we can say:

2

,,1

,2

1

 ji ji

 ji

µµµ

+≈   +

+  3.. Beq  

2

,,1

,2

1

 ji ji

 ji

µµµ

+≈   −

−  4.. Beq  

 Now, using a second-order central differencing:

 x

ww

 x

W    ji ji

 ji  ∆

−≈ 

  

  

∂∂   +

+

,,1

,

2

1  5.. Beq  

 x

W W 

 x

W    ji ji

 ji  ∆

−≈ 

  

  

∂∂   −

,1,

,2

1  6.. Beq  

Substituting 6.3..   B Beqs   −  into 2.. Beq  yields:

Page 78: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 78/113

  68

( )( )( ) ( )( )[ ] ji ji ji ji ji ji ji ji

 ji

W W W W  x x

 x,1,,,1,,1,,12

, 2

1−−++   −+−−+

∆≈ 

  

  

∂∂

∂∂

µµµµµ   7.. Beq  

Similarly for  y derivative in 2.. Beq :

( ) ( )( ) ( )( )[ ]1,,,1,,1,,1,2, 2

1 −−++   −+−−+∆

≈    

  

∂∂

∂∂  ji ji ji ji ji ji ji ji

 ji

W W W W  y y

W  y

µµµµµ   8.. Beq  

Substituting equation 7.. Beq  and 8.. Beq  into 1.. Beq :

( )( )

( )  ( )

 ( )( )

( ) ( )

( )( )

( )( )

0

2

1

2

1,,

,1,2

,1,

,1,

2

,1,

,,12

,,1

,,1

=∂∂

−   

 

−+−

−++

 

 

−+−

−+

−−

++

−−

++

 z 

 P 

 y

W W 

 y

W W 

 x

W W 

 x

W W 

 ji ji

 ji ji

 ji ji

 ji ji

 ji ji

 ji ji

 ji ji

 ji ji

µµµµ

µµµµ

 

9.. Beq

 

The above equation can be rearranges as:

( ) ( ) ( ) ( )

( ) ( )

( ) ( )0

22

22

2222

2

,1,

1,2

,1,

1,

2

,,1

,12

,,1

,1

2

,1,

2

,1,

2

,,1

2

,,1

,

=∂∂

−   

  

 

++ 

  

  

 

++

   

  

 

++ 

  

  

 

++

   

  

 

++

++

++

+−

−−

++

−−

++

−+−+

 z 

 P 

 yW 

 yW 

 xW 

 xW 

 y y x xW 

 ji ji

 ji

 ji ji

 ji

 ji ji

 ji

 ji ji

 ji

 ji ji ji ji ji ji ji ji

 ji

µµµµ

µµµµ

µµµµµµµµ

 

10.. Beq

 

Or:

( ) 01,11,1,11,114321,   =∂∂

−+++++++−   −+−+ z 

 P W  AW  AW  AW  A A A A AW   ji ji ji ji ji

  11.. Beq  

Where:

( )2

,,1

12   x

 A  ji ji

+=   +   µµ

 

( )2

,,1

2

2   x

 A  ji ji

+=   −   µµ

 

( )2

,1,

32   y

 A  ji ji

+=   +   µµ

 

( )2

,1,

42   y

 A  ji ji

+=   −   µµ

 

Page 79: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 79/113

  69

Rearranging 11.. Beq :

   

  

 ∂∂

−++++++

=   −+

+−+

++

 z 

 P W  AW  AW  AW  A

 A A A AW    ji

n

 ji

n

 ji

n

 ji

n

 ji

n

1,

1

41,3,1

1

2,114321

,

1 1   12.. Beq  

Where 1,   +nn  are the old and the new computational steps (iterations)

respectively.

To apply relaxation factor to 12.. Beq , first we add  ji

n

 ji

n

W W  ,,   −  to the right hand side of that

equation:

   

  

 ∂∂

−++++++

+−=   −+

+−+

++

 z 

 P W  AW  AW  AW  A

 A A A AW W W    ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

1,

1

41,3,1

1

2,114321

,,,

1 1   13.. Beq  

Moving  ji

n

W  ,−  into the parenthesis in 13.. Beq yields:

( )    

 ∂∂

−+++−

 

 +++

++++=   −

++−

++

+

 z 

 P W  A A A A

W  AW  AW  AW  A A A A A

W W 

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

,4321

1,

1

41,3,1

1

2,114321

,,

1 1

 

14.. Beq

 

Equation 14. B  can be represented as:

Residual,,

1

+=

+

 ji

n

 ji

n

W W    15.. Beq  

Where:

( )    

 ∂∂

−+++−

 

 +++

+++=   −

++−

++

 z 

 P W  A A A A

W  AW  AW  AW  A A A A A

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

,4321

1,

1

41,3,1

1

2,11

4321

1Residual

 

16.. Beq

 

Residual in 15.. Beq  will decrease as we approach the solution. And when the

convergence is achieved, value of residual will reach very close to zero. Based on this fact we can

increase/decrease rate of convergence by multiplying residual by an over/under relaxation factor

shown by  ω . As a result, 14.. Beq  will take the form:

Page 80: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 80/113

  70

( )    

 ∂∂

−+++−

 

 +++

++++=   −

++−

++

+

 z 

 P W  A A A A

W  AW  AW  AW  A A A A A

W W 

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

 ji

n

,4321

1,

1

41,3,1

1

2,114321

,,

1 ω

 17.. Beq

 

 Minimum Shear Rate Calculation

Recalling YPL Rheology model equation:

n y   K  γττ   &+=   18.. Beq  

In the plug region, shear rate is very small. There for the contribution of the second term

on the right hand side of 18.. Beq is negligible compared to   yτ .Denoting the shear rate in the plug

region by minγ& , we get:

 yn K    τγ   <<min&   19.. Beq  

Or,

 yn K    τγε   <<min&   20.. Beq  

As a reasonable estimation, ε in 19.. Beq can be approximated by

8

10 . Therefore,

19.. Beq takes the form  :

n y   K  min

810   γτ   &=   21.. Beq  

Or,

n y

 K 

1

8min10    

  

  

 =

  τγ&   22.. Beq  

Equation 22. B  can not be used for fluids without yield stress, because the value will be

zero. So a new cut off value has to be defined. For fluids with zero yield stress, wall shear rate

can be used as a value to estimate the cut off value. As a reasonable approximation:

wall γγ   && 8min 10

−=   23.. Beq  

Page 81: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 81/113

Page 82: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 82/113

  72

  

 

 

 

 

=−

StressYield with Fluids for 

 K 

StressYield without  Fluids for 

n y

wall 

1

8

8

min

10

10

τ

γγ

&&   28.. Beq  

Where, wall γ&  can be calculated from 24.. Beq  

Page 83: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 83/113

  73

APPENDIX C

TRANSFORMATION OF EQUATION OF MOTION FROM CARTESIAN

COORDINATES TO A BOUNDARY FITTED COORDINATE SYSTEM  

Considering A.7eq.   ( )AppendixA  :

 z 

 P 

 y

 y x

 x

  appapp

∂=

∂+

∂µµ

  1..C eq  

Where:

22

1

   

  

 ∂∂

+   

  

 ∂∂

=

+=   −

 y

w

 x

w

 K    n y

app

γ

γγ

τµ

&

&&

 

There has to be a corresponding relationship between each point in  y x , coordinate to

 boundary fitted ( )ηξ ,  system therefore,

( )

( )

( )

( ) y x

 y x

 y y

 x x

,

,

,

,

ηη

ξξ

ηξ

ηξ

=

=

=

=

 

2..C eqs

 

 x

 f 

 x

 f 

 x

 f 

∂∂

∂∂

+∂∂

∂∂

=∂∂   η

η

ξ

ξ  3..C eq  

 y

 f 

 y y

 f 

∂∂

∂∂

+∂∂

∂∂

=∂∂   η

η

ξ

ξ  4..C eq  

 Now 1..C eq can be written as:

Page 84: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 84/113

  74

 z 

 P 

 x

 F 

 x

 F 

∂∂

=∂

∂+

∂∂ 21

 5..C eq

 

Where:

 x

 F  app ∂∂

= µ1  6..C eq

 

 y

W  F    app ∂

∂= µ2

 7..C eq

  Applying the same procedure as in 3..C eqs  to 5..C eqs :

 z 

 P 

 y

 F 

 y

 F 

 x

 F 

 x

 F 

∂∂

=∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂   η

η

ξ

ξ

η

η

ξ

ξ2211   8..C eq  

Defining  J ′  as:

 x y y x J 

∂∂

∂∂−

∂∂

∂∂=′   ηξηξ

  9..C eq  

And multiplying 8..C eq  by J  ′1

, yields:

   

  

∂∂

′=  

 

  

 ∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

′   z 

 P 

 J  y

 F 

 y

 F 

 x

 F 

 x

 F 

 J 

11 2211   η

η

ξ

ξ

η

η

ξ

ξ  10..C eq  

According to chain rule:

 

   

  

 ∂∂

′∂∂+ 

  

  

∂∂

′∂∂+  

 

  

 ∂∂

′∂∂+ 

  

  

∂∂

′∂∂+

∂∂

∂∂

′+

∂∂

∂∂

′+

∂∂

∂∂

′+

∂∂

∂∂

=   

  

 ∂∂

′+

∂∂

′∂∂

+   

  

 ∂∂

′+

∂∂

′∂∂

 y J  F 

 x J  F 

 y J  F 

 x J  F 

 F 

 y J 

 F 

 x J 

 F 

 y J 

 F 

 x J 

 y J 

 F 

 x J 

 F 

 y J 

 F 

 x J 

 F 

η

η

η

η

ξ

ξ

ξ

ξ

η

η

η

η

ξ

ξ

ξ

ξ

ηξ

η

ξξ

ξ

1111

1111

2121

2121

2121

 

11..C eq

 

Equation 11..C eq can be rearranged as:

Page 85: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 85/113

Page 86: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 86/113

  76

Equation 15.C  can be written as:

ξ

ξ

η

ηξ

η

η

ξ

 x J 

 y J 

 x J 

 y J  x

 y

 x

 y

′=′−=

′−=

′=

 

16..C eqs

 

Consider the second bracket of the right hand side of  12..C eq :

   

  

 ∂∂

′∂∂

+   

  

 ∂∂

′∂∂

+

   

  

∂∂

′∂∂

+   

  

∂∂

′∂∂

 y J  y J  F 

 x J  x J  F 

  η

η

ξ

ξ

η

η

ξ

ξ

111121   17..C eq  

 Now plugging 16..C eqs into it 17..C eq yields:

( ) ( ) ( ) ( )   [ ] [ ] 02121   =+−+−=

∂∂+−

∂∂+

∂∂+

∂∂ ηξηξηξηξξηξη

ηξηξ x x F  y y F  x x F  y y F    18..C eq  

Therefore 12..C eq reduces to:

   

  

 ∂∂

′+

∂∂

′∂∂

+   

  

 ∂∂

′+

∂∂

′∂∂

=

∂∂

∂∂+

∂∂

∂∂+

∂∂

∂∂+

∂∂

∂∂

 y J 

 F 

 x J 

 F 

 y J 

 F 

 x J 

 F 

 F 

 y

 F 

 x

 F 

 y

 F 

 x J 

ηη

η

ξξ

ξ

η

η

η

η

ξ

ξ

ξ

ξ

2121

21211

 

19..C eq

 

Plugging 19..C eq into 18..C eq , yields:

 z 

 P 

 J  y J 

 F 

 x J 

 F 

 y J 

 F 

 x J 

 F 

∂∂

′=  

 

  

 ∂∂

′+

∂∂

′∂∂

+   

  

 ∂∂

′+

∂∂

′∂∂ 12121   ηη

η

ξξ

ξ   20..C eq  

 Now we need to write all derivatives in 20..C eq  in terms of ηξ , only. So we need to

convert x∂

∂ξ,

 y∂∂ξ

, x∂

∂η,

 y∂∂η

 into derivatives with respect to ηξ , .

Recalling form 2..C eqs :

( )ηξ , x x =  

( )ηξ , y y =  

( ) y x,ξξ =  

Page 87: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 87/113

  77

( ) y x ,ηη =  

According to chain rule:

=⇒

∂∂+

∂∂=

∂+

∂=

ηξη

ηξ

ξ

η

η

ξ

ξηξ

ηξd d  y y  x xdydx

d  y

d  y

dy

d  x

d  x

dx

  =⇒

ηξηξ

ηξd d  y y  x xdydx

1

  21..C eq  

And similarly:

=

∂∂+

∂∂=

∂∂+

∂∂=

dydx

d d 

dy y

dx x

dy y

dx x

 y x

 y x

ηη

ξξ

ηξ

ηηη

ξξξ

  22..C eq  

From 21..C eq  and 22..C eq  we deduce:

1−

=

ηξ

ηξ

ηη

ξξ

 y y

 x x

 y x

 y x   23..C eq  

Extending 23..C eq results:

−−−

−−

−=

−−

=

ξηηξ

ξ

ξηηξ

ξ

ξηηξ

η

ξηηξ

η

ξξ

ηη

ξηηξηηξξ

 y x y x

 x

 y x y x

 y y x y x

 x

 y x y x

 y

 x y x y

 y x y x y x

 y x 1  24..C eq  

And also 24..C eq  in an extend form can be written as:

ξηηξ

ξ

ξηηξ

ξ

ξηηξ

η

ξηηξ

η

η

η

ξ

ξ

 y x y x

 x

 y x y x

 y

 y x y x

 x

 y x y x

 y

 y

 x

 y

 x

−=

−−=

−−=

−=

 

25..C eqs

 

Jacobean is defined as:

ξηηξ   y x y x J    −=   26..C eq  

Page 88: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 88/113

Page 89: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 89/113

  79

Comparing 27..C eqs  and 16..C eqs we can say:

ξηηξ   y x y x J 

 J    −=′

=1

  33..C eq  

Utilizing 33..C eq  in 32..C eq :

 z 

 P  J 

 J 

 xW  xW  x

 J 

 yW  yW  y

 J 

 xW  xW  x

 J 

 yW  yW  y

appapp

appapp

∂∂

=   

  

−+

−−

∂∂

+

   

  

    −−

∂∂

ηξξη

ξ

ξηηξ

ξ

ηξξη

η

ξηηξ

η

µµη

µµξ

  34..C eq  

Rearranging 34..C eq :

( )   ( )

( )   ( ) z 

 P  J  x x y y yW 

 J  x yW 

 J 

 x x y yW  J 

 x yW  J 

app

appapp

appapp

∂∂

=   

  

 +−+

∂∂

+  

 

 

 

 +−+

∂∂

ηξξηξξξξη

ηξξηηηηξ

µµµ

η

µµ

ξ

22

22

 35..C eq

 

Using following notations:

22

22

ξξ

ηξξη

ηη

β

γ

α

 x y

 x x y y

 x y

+=

+=

+=

 

36..C eqs

 

Equation 35..C eq  will take the form:

( ) ( ) z 

 P  J W W 

 J W W 

 J 

appapp

∂∂

=   

  

 −

∂∂

+   

  

 −

∂∂

ξηηξ   γβµ

ηγα

µ

ξ  36..C eq  

In 36..C eq we need to the transformation for    appµ  as well. Recalling appµ  from 1..C eq  

1−+=   n y

app   K  γγ

τµ   &

22

   

  

 ∂∂

+   

  

 ∂∂

= y

w

 x

wγ&  

In order to transfer    appµ , we need to transform γ& . According to 28..C eq and 29..C eq  

Page 90: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 90/113

  80

 J 

 yW  yW 

 x

W    ξηηξ   −=

∂∂

  37..C eq  

 J 

 xW  xW 

 y

W    ηξξη   −=

∂∂

  38..C eq

  Substituting 37..C eq and 38..C eq  into γ& , we get:

( )ξηηξηξξηξηηξξηηξ   x xW W  xW  xW  y yW W  yW  yW  J  y

 x

W 22

1 22222222

2

22

−++−+=   

  

 ∂

∂+   

  

∂∂

  39..C eq  

Rearranging 39..C eq :

( ) ( )   ( )( )ξηξηηξξξηηηξ   y y x xW W  y xW  y xW 

 J  y

 x

W +−+++=  

 

 

 

 ∂∂

 

 

 

 ∂

∂2

1 222222

2

22

  40..C eq  

Utilizing notations form 36..C eqs  into 40..C eq :

( )ηξηξ   γβα   W W W W  J  y

 x

W 2

1 22

2

22

−+=   

  

 ∂

∂+ 

  

  

∂∂   41..C eq  

 Now plugging 41..C eq  into 1..C eq :

1−+=   n yapp   K γ

γ

τµ   &

Where:

( )ηξηξ   γβαγ   W W W W  J 

21 22

2  −+=&   42..C eq

  So from 36..C eq and 42..C eq :

( ) ( ) z 

 P  J W W 

 J W W 

 J 

appapp

∂∂=  

 

  

 −

∂∂+  

 

  

 −

∂∂

ξηηξ   γβµ

ηγα

µ

ξ   43..C eq  

Where:

1−+=   n yapp   K γ

γ

τµ   &

Page 91: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 91/113

  81

( )ηξηξ   γβαγ   W W W W  J 

21 22

2  −+=&  

22ηηα   x y   +=  

ηξξηγ   x x y y   +=  

22ξξβ   x y   +=  

ξηηξ   y x y x J    −=  

Page 92: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 92/113

Page 93: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 93/113

  83

Each term on the right hand side of 6.. Deq  can be extended to:

  

 

 

 

    

  

 +  

 

  

 ≈  

 

  

 

++   ji

ap p

 ji

ap p

 ji

ap p

 J  J  J ,,1,

2

1 2

1   µαµαµα   7.. Deq  

and

  

 

 

 

    

  

 +  

 

  

 ≈  

 

  

 

−+−   ji

ap p

 ji

ap p

 ji

ap p

 J  J  J ,1,,

2

1 2

1   µαµαµα   8.. Deq  

In 6.. Deq :

 ji ji

 ji

W W W 

,,1

,2

1−≈  

 

  

 ∂∂

++ξ

  9.. Deq  

And also

 ji ji

 ji

W W W 

,1,

,2

1  −

+−

−≈   

  

 ∂∂ξ

  10.. Deq  

Therefore:

( )

( )−  

  

     

  

  +  

  

  

−−  

 

 

 

    

  

 +  

 

  

 ≈  

 

  

 ∂∂

∂∂

−−

++

 ji ji

 ji

ap p

 ji

ap p

 ji ji

 ji

ap p

 ji

ap p

 ji

ap p

W W  J  J 

W W  J  J 

 J 

,1,

,1,

,,1

,,1,2

1

µαµα

µαµα

ξ

µα

ξ 

11.. Deq

 

Similar to 11.. Deq , η derivative in 1.. Deq can be approximated as:

( )

( )

−  

 

 

 

    

  

 +  

 

  

 −

−  

 

 

 

    

  

 +  

 

  

 ≈  

 

  

 ∂∂

∂∂

−−

++

1,,

1,,

,1,

,1,,2

1

 ji ji

 ji

app

 ji

app

 ji ji

 ji

ap p

 ji

ap p

 ji

ap p

W W  J  J 

W W  J  J 

 J 

µβµβ

µβµβ

η

µβ

η

 

12.. Deq

 

For the mixed derivation at node (i,j), we have:

Page 94: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 94/113

  84

( ) ( )

     

 

 

 

    

  

 

−−

     

 

 

 

    

  

 

     

 

 

 

 

∂∂  

 

  

 

∂∂

−−+−

−+++

+

1,11,1

,1

.

1,11,1

,1

.

,

.

4

1 ji ji

 ji

 ji ji

 ji ji

W W  J 

W W  J 

 J 

γµγγµγ

η

γµγ

ξ  13.. Deq  

( ) ( )

−−   

  

 

−+−   

  

 ≈  

 

  

 ∂∂

∂∂

−−+−

−+++

1,1,1

1,

,11,1

1,,

114

1 ji ji

 ji

app ji ji

 ji

app

 ji

ap pW W 

 J W W 

 J 

 J 

µγµγ

ξ

µγ

η 

14.. Deq  

Plugging 14.11..   D Deqs   − into 1.. Deq :

 z 

 P  J 

 J 

 J 

 J 

 J 

appappappapp

∂∂=  

 

  

 ∂∂

∂∂−  

 

  

 ∂∂

∂∂+  

 

  

 ∂∂

∂∂−  

 

  

 ∂∂

∂∂

ξ

µγ

ηη

µβ

ηη

µγ

ξξ

µα

ξ 

( )

( )

( ) ( )   +

−   

  

 

−−   

  

 

−  

 

 

 

    

  

 +  

 

  

 

−−  

 

 

 

    

  

 +  

 

  

 

−−+−−

−++++

−−

++

1,11,1

,1

1,11,1

,1

,1,

,1,

,,1

,,1

2

1

2

1

 ji ji

 ji

ap p

 ji ji

 ji

ap p

 ji ji

 ji

ap p

 ji

ap p

 ji ji

 ji

ap p

 ji

ap p

W W  J 

W W  J 

W W  J  J 

W W  J  J 

µγµγ

µαµα

µαµα

 

( )

( )

( ) ( ) z 

 P  J W W 

 J W W 

 J 

W W  J  J 

W W 

 J  J 

 ji ji ji

 ji

ap p ji ji

 ji

ap p

 ji ji

 ji

ap p

 ji

ap p

 ji ji

 ji

ap p

 ji

ap p

∂∂

=

−−   

  

 

−+−   

  

 

−  

 

 

 

    

  

 +  

 

  

 

−−

 

 

 

 

 

 

   

 

 

 +

   

 

 

 

−−+−

−+++

−−

++

,1,1,1

1,

,11,1

1,

1,,

1,,

,1,

,1,

114

1

2

1

µγµγ

µβµβ

µβµβ

 

15.. Deq

 

After some arrangements:

( )

   

  

 −  

 

  

 −  

 

  

 −  

 

  

 −

   

  

 −  

 

  

 

−   

  

 −  

 

  

 − 

  

  

−+

−+

1,,,1,

,1,,,1

,2

1

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p ji

 J  J  J  J 

 J  J  J  J W 

µβµβµβµβ

µαµαµαµα

 

Page 95: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 95/113

  85

( )

   

  

 −  

 

  

 − 

  

  −

−+−+

1,,1

1,14

1

 ji

app

 ji

ap p ji

 J  J W 

µγµγ 

( )

   

  

 −   

  

 −     −

−−

1,,

1,2

1

 ji

app

 ji

app ji

 J  J W 

µβµβ

 

( )

   

  

 −  

 

  

 − 

 

  

 −−

− ji

app

 ji

app

 ji J  J 

,1,

,12

1   µαµα 

( )

   

  

 −  

 

  

 − 

  

  −

+−+−

1,,1

1,14

1

 ji

app

 ji

app

 ji J  J 

W µγµγ

 

( )

   

  

 −  

 

  

 − 

  

  −

++

 ji

app

 ji

app

 ji J  J 

,1,

1,2

1   µβµβ 

( )

   

  

 −  

 

  

 − 

  

  −

++

 ji

app

 ji

app

 ji J  J 

,,1

,12

1   µαµα 

( )

   

  

 +  

 

  

    

  −

−−−−

1,,1

1,14

1

 ji

app

 ji

app

 ji J  J 

W µγµγ

 

( ) 04

1,

1,,1

1,1   =∂∂−

   

  

 +  

 

  

    

  −

++++

 z 

 P  J 

 J  J W   ji

 ji

app

 ji

app

 ji

µγµγ  16.. Deq  

Rearrangement and multiplying two sides of 16.. Deq  by (-1):

( )

  

 

 

 

  

 

 

 

 +  

 

 

 

  

 

 

 

 +

   

  

 

   

  +  

 

  

    

  +  

 

  

 +  

 

  

 

−+

−+

1,1,

,1,1,,

,

2

1

2

1

2

1

2

1

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p

 ji

ap p ji

 J  J 

 J  J  J  J W 

µβµβ

µαµαµβµα

 

( )

   

  

 +  

 

  

    

  −

−+−+

1,,1

1,14

1

 ji

ap p

 ji

ap p ji

 J  J W 

µγµγ

 

Page 96: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 96/113

  86

( )

   

  

 +  

 

  

    

  −

−−

1,,

1,2

1

 ji

app

 ji

app

 ji J  J 

W µβµβ

 

( )

    

  +  

  

   

  

  −

−−

 ji

app

 ji

app

 ji J  J 

,1,

,12

1   µαµα  

( )

   

  

 +  

 

  

    

  −

+−+−

1,,1

1,12

1

 ji

app

 ji

app

 ji J  J 

W µγµγ

 

( )

   

  

 +  

 

  

    

  −

++

 ji

app

 ji

app

 ji J  J 

,1,

1,2

1   µβµβ 

( )

   

  

 +  

 

  

    

  −

++

 ji

app

 ji

app

 ji J  J 

,,1

,12

1   µαµα 

( )

   

  

 +  

 

  

    

  −

−−−−

1,,1

1,14

1

 ji

app

 ji

app

 ji J  J 

W µγµγ

 

( ) 04

1,

1,,1

1,1   =∂∂

+

   

  

 +  

 

  

    

  −

++++

 z 

 P  J 

 J  J W    ji

 ji

app

 ji

app

 ji

µγµγ  16.. Deq  

Denoting101   A A   −

:

0101,191,18,171,6

1,15,141,31,12,1

=−−−−−

−−−−

++−−++

+−−−−+

 AW  AW  AW  AW  A

W  AW  AW  AW  AW  A

 ji ji ji ji

 ji ji ji ji ji

  16.. Deq  

Where:

1,1,

,1,1,,

1

2

1

2

1

2

1

2

1

−+

−+

   

  

 +  

 

  

 +

 

 

 

 

 

 +

 

 

 

 

 

 +

 

 

 

 

 

 +

 

 

 

 

 

 =

 ji

app

 ji

app

 ji

app

 ji

app

 ji

app

 ji

app

 J  J 

 J  J  J  J 

 A

µβµβ

µαµαµβµα

 

   

  

 +  

 

  

 =

−+ 1,,1

24

1

 ji

app

 ji

ap p

 J  J  A

µγµγ 

Page 97: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 97/113

  87

   

  

 +  

 

  

 =

−1,,

32

1

 ji

app

 ji

app

 J  J  A

µβµβ

 

    

  +  

  

  =

−   ji

app

 ji

app

 J  J  A

,1,

42

1   µαµα  

   

  

 +  

 

  

 =

+− 1,,1

54

1

 ji

app

 ji

app

 J  J  A

µγµγ 

   

  

 +  

 

  

 =

+   ji

app

 ji

app

 J  J  A

,1,

62

1   µβµβ 

   

  

 +  

 

  

 =

+   ji

app

 ji

app

 J  J  A

,,1

72

1   µαµα 

   

  

 +  

 

  

 =

−− 1,,1

84

1

 ji

app

 ji

app

 J  J  A

µγµγ 

   

  

 +  

 

  

 =

++ 1,,1

94

1

 ji

app

 ji

app

 J  J  A

µγµγ 

 z 

 P  J  A   ji ∂

∂−= ,10  

Applying Relaxation Factor:

Adding  ji ji   W W  ,,   − to the right hand side of  16.. Deq :

{

}101,191,18,171,6

1,15,141,31,12

1

,,,

1

 AW  AW  AW  AW  A

W  AW  AW  AW  A A

W W W 

 ji ji ji ji

 ji ji ji ji ji ji ji

+++++

++++−=

++−−++

+−−−−+

  17.. Deq  

 Now  jiW ,−  taking into the braces:

Page 98: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 98/113

  88

{

}10,11,191,18,171,6

1,15,141,31,121

,,

1

 AW  AW  AW  AW  AW  A

W  AW  AW  AW  A A

W W 

 ji ji ji ji ji

 ji ji ji ji ji ji

+−++++

++++=

++−−++

+−−−−+

  18.. Deq  

 Now using relaxation factor we will have:

{

}10,11,191,18,171,6

1,15,141,31,12

1

,,

 AW  AW  AW  AW  AW  A

W  AW  AW  AW  A A

W W 

 ji ji ji ji ji

 ji ji ji ji ji ji

+−++++

++++=

++−−++

+−−−−+ω

  19.. Deq  

Calculating Relaxation Factor

Following Azouz [3]:

 J 

appµα

ϕ   =1   20.. Deq  

 J 

appµβϕ   =2   21.. Deq  

( )

( )

   

  

 −  

 

  

 −

   

  

 −  

 

  

 =  

 

  

 −  

 

  

 =

−+

−+

1,1,

,1,1

3

5.0

5.0

 ji

app

 ji

app

 ji

app

 ji

appappapp

 J  J 

 J  J  J  J 

µγµγ

µαµαµγµαϕ

ηξ

 

22.. Deq  

( )

( )

   

  

 −  

 

  

 

   

  

 − 

  

  

 = 

  

  

 − 

  

  

 =

−+

−+

 ji

app

 ji

app

 ji

app

 ji

appappapp

 J  J 

 J  J  J  J 

,1,1

1,1,

4

5.0

5.0

µγµγ

µβµβµγµβϕ

ξη 

23.. Deq  

   

  

    

  

+−+ 

  

  

+−

+=

1cos4

1cos4

2

1 24

22

23

21

21   N  M  J 

πϕϕ

πϕϕ

ϕϕρ   24.. Deq  

If  ( ) 042

32

1   ≥−ϕϕ , then:

Page 99: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 99/113

  89

211

2

 J ρ

ω

−+=   25.. Deq  

Otherwise,

211

2

 J ρ

ω

++=   26.. Deq  

Calculating Relaxation Factor in Cartesian Coordinate System

Following Azouz (1994):

ξηηξ

ξξ

ηξξη

ηη

β

γ

α

 y x y x J 

 x y

 x x y y

 x y

−=

+=

+=

+=

22

22

 

27.. Deq

 

In this system, since there is not any transformation it can be said:

ξ

η

==

 x

 y  28.. Deq  

As a result:

1

0

====

ξη

ξη

 x y

 y x  29.. Deq

 

So,

101

110

000

101

22

22

=−=−=

=+=+=

=+=+=

=+=+=

ξηηξ

ξξ

ηξξη

ηη

β

γ

α

 y x y x J 

 x y

 x x y y

 x y

 

30.. Deq

 

( )

( )   app

appapp

 J µ

µµαϕ   ===

1

11   31.. Deq  

Page 100: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 100/113

  90

( )

( )   app

appapp

 J µ

µµβϕ   ===

1

12   32.. Deq  

( )

( )

( )

( )

( ) x

 J  J 

app

appappappapp

∂∂

==

   

  

 −  

 

  

 =  

 

  

 −  

 

  

 =

µµ

µµµγµαϕ

ξ

ηξηξ1

0

1

13

 

33.. Deq

 

( )

( )

( )

( )

( ) y

 J  J 

app

appappappapp

∂∂==

   

  

 −  

 

  

 =  

 

  

 −  

 

  

 =

µµ

µµµγµβϕ

η

ξηξη1

0

1

14

 

34.. Deq  

   

  

    

  

+−+ 

  

  

+−

+=

1cos4

1cos4

2

1 24

22

23

21

21   N  M  J 

πϕϕ

πϕϕ

ϕϕρ   35.. Deq  

If  ( ) 04 23

21   ≥−ϕϕ , then:

211

2

 J ρ

ω

−+=   36.. Deq  

Otherwise,

211

2

 J ρ

ω

++=   37.. Deq  

Page 101: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 101/113

  91

APPENDIX E

ALGEBRAIC GEOMETRY TRANSFORMATION 

 Algebraic Transformation of an Eccentric Annulus

Considering Fig3.8, Each point can be defined by a radius and an angle.

Fig.E.1 Determination of an arbitrary grid point 

According to Fig.E.1  :

( ) ( )[ ]112

1l  R ol  Ro Roj   −+−=   1.. E eq  

From Fig.E.1  :

( )1

1 −

−+−=

 JM 

 Rie Ro j JM l    2.. E eq  

l

 p

d

 Ri ee

 Ro  Roj 

C m 

C  j 

C 1 

rθ  

 Ro 

 Ri 

 Roj 

Page 102: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 102/113

Page 103: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 103/113

  93

Plugging 8.. E eqs  into 7.. E eq :

( ) ( ) 222cossin   oj j j j   Rer r    =−+   θθ   9.. E eq  

Or,

θθ   CoseSine Rr   j joj j   +−= 222   10.. E eq  

Since the circle is decided into 1− IM  divisions in tangential direction , where each

division will be represented by θ∆ , and half of the circle is used:

1−=∆

 IM 

πθ   11.. E eq  

So θ  can be calculated as:

( )1−∆=   iθθ   12.. E eq  

Substituting θ∆  from 11.. E eq  

( )1

1

−−

= IM 

iπθ   13.. E eq  

Substituting 5.. E eq and 6.. E eq ,into 10.. E eq :

( )( )( )

( )( )

( )   ( )( )

( )   

  

−−

−−

+   

  

−−

   

  

 −

−−  

 

  

 −

−−−=

1

1

1

1

1

1

1

1

1

222

 IM 

iCos

 JM 

 je

 IM 

iSin

 JM 

 je

 JM 

 Ri Ro j JM  Ror  j

ππ 

14.. E eq  

Substituting 13.. E eq  and 14.. E eq , into 8.. E eqs :

( )  ( )( )

( )( )

( )( ) ( )

( )( ) ( )

( )  ( )( )

( )( )

( )( ) ( )

( )( ) ( )

1

1

1

1

1

1

1

1

1

1

1,

1

1

1

1

1

1

1

1

1

1

1,

222

222

−−

   

 

 

 

    

  

−−

−−+ 

  

  

−−

   

  

 −

−−   

  

 −

−−−=

−−

   

 

 

 

    

  

−−

−−+ 

  

  

−−

   

  

 −

−−   

  

 −

−−−=

 IM 

iCos

 IM 

iCos

 JM 

 je

 IM 

iSin

 JM 

 je

 JM 

 R i Ro j JM  Ro ji y

 IM 

iSin

 IM 

iCos

 JM 

 je

 IM 

iSin

 JM 

 je

 JM 

 R i Ro j JM  Ro ji x

πππ

πππ

  15.. E eq  

Where:

Page 104: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 104/113

  94

 JM  j IM i   <<<< 1,1  

 ji,  : Grid points in tangential and radial direction respectively

1− IM  : Number of divisions in tangential direction.

1− JM  : Number of divisions in radial direction.

It should be mentioned that 15.. E eq  is valid only for the half of the domain, and by

replacing π  by π2  it can be used to transform a whole eccentric annulus from real

domain to a computational domain.

Page 105: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 105/113

Page 106: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 106/113

  96

 AQBDPC  A A A A   =+++ 4321   3.. F eq  

From 2.. F eq , 3.. F eq :

 AQBDPC 

Q

  ji

 ji 4

,

,   =   4.. F eq  

 Now, we need to find the area of  AQBDPC .

Fig.F.2

 A 

 B 

C  

 D 

 P  

+1, j 

i,j 

+1, j+1  

-1, j 

+1, j-1 

-1, , j-1 

-1,j+1  

 , , j+1  

 , , j-1 

A1 

A2 

A3 

A3 

Page 107: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 107/113

  97

Fig.F.3

According to FigF.3:

5611   A ACDO ABO AQBDPC    +−−=  ∆∆

  5.. F eq  

And also from the same figure:

∆−=   CDOCPDO A 226   6.. F eq  

∆−=   ABO AQBO A 335

  7.. F eq  

Plugging, 6.. F eq , 7.. F eq into 5.. F eq :

∆∆∆∆−++−−=   ABO AQBOCDOCPDOCDO ABO AQBDPC  332211   8.. F eq  

From the mathematics books:

 D 

 B 

 A 

C  

O1

A5

A6

O2

O3

Page 108: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 108/113

  98

Fig.F.4

( )( ) ( )( )323132313232

3131

2

1det

2

1 x x y y y y x x

 y y x x y y x x

 ABC    −−−−−=   

  

−−−−=

∆  9.. F eq  

Applying 9.. F eq  to 8.. F eq :

( )( ) ( ) ( ) B A BO B A BO   x x y y y y x x ABO   −−−−−=∆

1112

1  10.. F eq  

Substituting the coordinate of each point in 10.. F eq :

( ) ( ) ( ) ( )1,11,11,11,11,11,11 002

1+++−+++++−++

∆−−−−−=   ji ji ji ji ji ji   x x y y y x ABO   11.. F eq  

Simplifying 11.. F eq :

( ) ( ) ( ) ( )1,11,11,11,11,11,112

1+++−+++++−++

∆−+−−=   ji ji ji ji ji ji   x x y y y x ABO   12.. F eq  

Similarly for calculating the area of ∆CDO2 :

( )( ) ( )( ) DC  DO DC  DO   x x y y y y x xCDO   −−−−−=∆

2222

1  13.. F eq  

( ) ( ) ( ) ( )1,11,11,111,11,11,12 021 −+−−−+−−+−−−+∆ −−−−−=   ji ji ji j ji ji ji   x x ye y y xCDO   14.. F eq  

( ) ( ) ( ) ( )1,11,11,111,11,11,122

1−+−−−+−−+−−−+

∆−−−−−=   ji ji ji j ji ji ji   x x ye y y xCDO   15.. F eq  

Substituting for 1− je  from 10.. E eq , Appendix E:

A

B

C

Page 109: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 109/113

  99

( )( ) ( )

( )1

11,1 −

−+−−−+−=   −−

 JM 

 Rie Ro j JM  R o Ree   jo j   16.. F eq  

Or,

( ) ( )( )11

1,1 −−++−−+−=   −−

 JM  R ie Ro j JM  R o Ree   jo j   17.. F eq  

Substituting for 1,   − jo R  from 10.. E eq , Appendix E:

( )( )

( )1

11, −

−+−−=−

 JM 

 Ri R o j JM  R o R   jo   18.. F eq  

Substituting 18.. F eq  into 17.. F eq :

( ) ( )( )

( ) ( )( )11

11

1 −−++−−+

−−+−+−=−

 JM  Rie Ro j JM  Ro

 JM  Ri Ro j JM  Roee j   19.. F eq  

Or,

( ) ( )( )

( ) ( )( )1

1

1

11 −

−++−−

−−+−

+=− JM 

 Rie Ro j JM 

 JM 

 Ri Ro j JM ee j   20.. F eq  

Or,

( ) ( )( )1

11 −

+−−−+−+=−  JM 

 Ri

e Ro

 Ri

 Ro

 j JM 

ee j   21.. F eq  

Simplifying 21.. F eq  

( )( )1

11 −

+−−=−

 JM 

 j JM eee j   22.. F eq  

Or,

( )

( )1

21

−=−

 JM 

 jee j   23.. F eq  

Substituting 23.. F eq  into 15.. F eq :

( ) ( ) ( ) ( )1,11,11,111,11,11,122

1−+−−−+−−+−−−+

∆−−−−−=   ji ji ji j ji ji ji   x x ye y y xCDO  

Or,

Page 110: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 110/113

  100

( ) ( )   ( )( )

  ( )1,11,11,11,11,11,121

2

2

1−+−−−+−+−−−+

∆−  

 

  

 −

−−

−−−=   ji ji ji ji ji ji   x x y JM 

 je y y xCDO   24.. F eq  

After simplification:

( ) ( )   ( )( )

  ( )1,11,11,11,11,11,121

2

2

1−+−−−+−+−−−+

∆−  

 

  

 −

−−

−−−==   ji ji ji ji ji ji   x x y JM 

 je y y xCDO   25.. F eq  

Calculating   CPDO2 :

We know that:

( )2

2

1,

2

−=   jo RCPDO

α  26.. F eq  

From Sinus law for calculating the area of a triangle:

( )   αsin2

1 21,2   −

∆=   jo RCDO   27.. F eq  

As a result we can get:

( )      

 

 

 

 =

21,

22sin

 jo R

CDO Arcα   28.. F eq  

Recalling for 1,   − jo R  from 10.. E eq , Appendix E:

( )( )

( )1

11, −

−+−−=−

 JM 

 Ri R o j JM  R o R   jo   29.. F eq  

Substituting 29.. F eq  and 28.. F eq  into 26.. F eq :

( )( )

( )   ( )( )( )      

   

 

 

 

 

    

  

−−+−−

  

 

 

 

 

−+−−=

2

2

2

2

11

2sin

1

1

2

1

 JM  Ri Ro j JM  Ro

CDO Arc

 JM 

 Ri Ro j JM  RoCPDO   30.. F eq  

Similarly, we can calculate∆CDO1  :

( )( ) ( )( ) DC  DO DC  DO   x x y y y y x xCDO   −−−−−=∆

1112

1  31.. F eq  

Page 111: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 111/113

Page 112: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 112/113

  102

( ) ( )( )

  ( )1,11,11,11,11,11,1312

1+++−+++++−++

∆−  

 

  

 −

−−−−=   ji ji ji ji ji ji   x x y

 JM 

 je y y x ABO   39.. F eq  

To calculate   AQBO3 , similar procedure for calculating   CPDO2 can be used as:

We know that:

( )2

2

1,

3

+=   jo R AQBO

β  40.. F eq  

From Sinus law for calculating the area of a triangle:

( )( )     

 

 

 

 

 =⇒=

+

+

2

1,

32

1,3

2sinsin

2

1

 jo

 jo R

 ABO Arc R ABO   ββ   41.. F eq  

Or,

( )2

2

1,

3

+=   jo R AQBO

β  42.. F eq  

As a result:

( )      

 

 

 

 =

+

2

1,

32sin

 jo R

 ABO Arcβ   43.. F eq  

Recalling for 1,   + jo R  from 10.. E eq , Appendix E:

( )( )

( )1

11, −

−−−−=+

 JM 

 Ri Ro j JM  Ro R  jo   44.. F eq  

Substituting 44.. F eq  and 43.. F eq  into 42.. F eq :

( )( )( )   ( )( ) ( )

( )         

 

 

 

 

   

  

 −

−+−−

   

  

 −

−−−−=

2

3

2

3

1

1

2sin

1

1

2

1

 JM 

 R i Ro j JM  Ro

 ABO Arc

 JM 

 Ri R o j JM  R o AQBO   45.. F eq  

And finally from 4.. F eq , 3.. F eq , 12.. F eq , 25.. F eq , 30.. F eq , 32.. F eq , 39.. F eq , 45.. F eq  

Page 113: Flow in Annulus

8/13/2019 Flow in Annulus

http://slidepdf.com/reader/full/flow-in-annulus 113/113

 AQBDPC W 

Q  ji

 ji2

,,   =   46.. F eq  

Where:

∆∆∆∆

−++−−=   ABO AQBOCDOCPDOCDO ABO AQBDPC  332211  

( ) ( ) ( ) ( )1,11,11,11,11,11,112

1+++−+++++−++

∆−+−−=   ji ji ji ji ji ji   x x y y y x ABO  

( ) ( ) ( ) ( )1,11,11,11,11,11,112

1−+−−−+−+−−−+

∆−+−−=   ji ji ji ji ji ji   x x y y y xCDO  

( )( )

( )   ( )( )( )      

   

 

 

 

 

     

 −

−+−−  

 

 

 

 

−+−−=

2

2

2

2

11

2sin

1

1

2

1

 JM  R i Ro j JM  R o

CDO Arc

 JM 

 R i Ro j JM  R oCPDO  

( ) ( )   ( )( )

  ( )1,11,11,11,11,11,121

2

2

1−+−−−+−+−−−+

∆−  

 

  

 −

−−

−−−==   ji ji ji ji ji ji   x x y JM 

 je y y xCDO  

( )( )( )   ( )( ) ( )

( )    

    

 

 

 

 

  

 

 

 

 

−+−−

   

  

 −

−−−−=

2

3

2

3

1

1

2sin

1

1

2

1

 JM 

 R i Ro j JM  Ro

 ABO Arc

 JM 

 Ri R o j JM  R o AQBO   7.16.3.eq  

( ) ( )( )

  ( )1,11,11,11,11,11,1312

1+++−+++++−++

∆−  

 

  

 −

−−−−=   ji ji ji ji ji ji   x x y

 JM 

 je y y x ABO   8.16.3.eq