30
Fluid dynamical equations (Navier-Stokes equations) independent variables r r =( x , y, z ), t dynamical variables r u =( u , v , w), ρ , p , T (or energy e , or entropy s ) (and for sea water, salinity η ) (and for moist air, water vapor)

Fluid dynamical equations (Navier-Stokes equations)

Embed Size (px)

Citation preview

Page 1: Fluid dynamical equations (Navier-Stokes equations)

Fluid dynamical equations(Navier-Stokes equations)

independent variablesr r = (x,y,z) , t

dynamical variablesr u = (u,v,w) , ρ , p , T (or energy e, or entropy s)

(and for sea water, salinity η )

(and for moist air, water vapor)

Page 2: Fluid dynamical equations (Navier-Stokes equations)

Fluid dynamical equations(Navier-Stokes equations)

Dimensional reduction:from QM to Boltzmann eq.

to the fluid equations

Continuum hypothesis:

d

T

Page 3: Fluid dynamical equations (Navier-Stokes equations)

Mass conservation(continuity equation)

d

dtρ dV

V

∫ =∂ρ

∂tdV

V

∫ = − ρr u ⋅d

r A

A

but

ρr u ⋅d

r A

A

∫ = ∇ ⋅ρr u ( ) dV

V

thus

∂ρ

∂t+∇ ⋅ρ

r u = 0

rA

V

Page 4: Fluid dynamical equations (Navier-Stokes equations)

Mass conservation(continuity equation)

from

∂ρ

∂t+∇ ⋅ ρ

r u ( ) = 0

one can also write

Dt+ ρ∇ ⋅

r u = 0

D

Dt=

∂t+

r u ⋅∇

Page 5: Fluid dynamical equations (Navier-Stokes equations)

Incompressible fluid

Dt= 0

and from

Dt+ ρ∇ ⋅

r u = 0

∇ ⋅r u = 0

Page 6: Fluid dynamical equations (Navier-Stokes equations)

Conservation of linear momentum(Navier-Stokes equations)

ra =

r F /m (per unit volume)

ρD

r u

Dt≡ ρ

∂r u

∂t+

r u ⋅∇( )

r u

⎣ ⎢

⎦ ⎥= force per unit volume

force = body force + surface force

Page 7: Fluid dynamical equations (Navier-Stokes equations)

stress tensor for surface forces

commons.wikimedia.org/ wiki/File:Stress_tensor.png

The stress tensor is symmetric!

Page 8: Fluid dynamical equations (Navier-Stokes equations)

ρ Du

Dt= body force +

+τ xx (x + dx, y,z) − τ xx (x, y,z)

+τ yx (x, y + dy,z) − τ yx (x, y,z)

+τ zx (x, y,z + dz) − τ zx (x,y,z)

ρDu

Dt= body force +

∂ τ xx

∂ x+

∂ τ yx

∂ y+

∂ τ zx

∂ z

ρDu

Dt= −ρ g ˆ z +

∂ τ xx

∂ x+

∂ τ yx

∂ y+

∂ τ zx

∂ z

Page 9: Fluid dynamical equations (Navier-Stokes equations)

(x, y,z) ≡ (x1,x2, x3) ; (u,v,w) ≡ (u1,u2,u3)

τ ij = − p + 23 μ∇ ⋅

r u ( )δ ij + 2μ eij

eij ≡1

2

∂ ui

∂ x j

+∂ u j

∂ x i

⎝ ⎜ ⎜

⎠ ⎟ ⎟

constitutive equation(relationship between stress and strain)

for a Newtonian fluid(with the Stokes assumption)

Page 10: Fluid dynamical equations (Navier-Stokes equations)

Conservation of linear momentum(Navier-Stokes equations)

ρ Dui

Dt= −g ρ δi3 +

∂ τ ji

∂ x j

= −gρ δ i3 +∂ τ ij

∂ x j

ρDui

Dt= −

∂ p

∂ x i

− gρ δi3 +∂

∂ x j

2μ eij − 23 μ ∇ ⋅

r u ( )δ ij[ ]

for incompressible fluid

ρD

r u

Dt≡ ρ

∂r u

∂t+

r u ⋅∇( )

r u

⎣ ⎢

⎦ ⎥= −∇p − gρ ˆ z + μ∇ 2 r

u

Page 11: Fluid dynamical equations (Navier-Stokes equations)

Thermodynamic equation:first principle of Thermodynamics

dE + dW = dQ ⇒ dE + pdV = dQ ⇒ de + pdv = dq

De

Dt+ p

Dv

Dt≡

De

Dt+ p

D

Dt

1

ρ

⎝ ⎜

⎠ ⎟=

Dq

Dt= j

where

e specific energy : internal energy per unit mass

v =1

ρ specific volume : volume per unit mass

Page 12: Fluid dynamical equations (Navier-Stokes equations)

Till now:

six dynamical variables :

u,v,w, e, p, ρ

up to now, five equations

Dt+ ρ∇ ⋅

r u = 0

ρD

r u

Dt= −∇p − g ρ ˆ z + Du

De

Dt+ p

D

Dt

1

ρ

⎝ ⎜

⎠ ⎟= j

Page 13: Fluid dynamical equations (Navier-Stokes equations)

Equations of state:

p = p ρ,T( )

e = e p,T( )

Perfect gas (e.g., dry air)

p = ρ RT R = 287 J kg−1 K−1

e = e(T) ⇒ d e = cV d T , cV =∂ e

∂ T

⎝ ⎜

⎠ ⎟V

Page 14: Fluid dynamical equations (Navier-Stokes equations)

Perfect gas (e.g., dry air)

p = ρ RT R = 287 J kg−1 K−1

d e = cV d T , cV =∂ e

∂ T

⎝ ⎜

⎠ ⎟V

cV

DT

Dt+ p

D

Dt

1

ρ

⎝ ⎜

⎠ ⎟= j ⇒ cV

DT

Dt−

p

ρ 2

Dt= j

cV

DT

Dt+ R

DT

Dt−

1

ρ

D p

Dt= j ⇒ c p

DT

Dt−

1

ρ

D p

Dt= j

c p = cV + R

Page 15: Fluid dynamical equations (Navier-Stokes equations)

Fluid dynamical eqns. for a perfect gas

ρ= p

RT

Dt+ ρ∇ ⋅

r u = 0

ρD

r u

Dt= −∇p − g ρ ˆ z + Du

c p

DT

Dt−

1

ρ

D p

Dt= j

Page 16: Fluid dynamical equations (Navier-Stokes equations)

The static solution

D

Dt= 0 ,

r u =

r 0

ρ =p

RT

0 = −∂ p

∂ z− g ρ

j = 0

hydrostatic solution

∂ p

∂ z= −g ρ

Page 17: Fluid dynamical equations (Navier-Stokes equations)

Adiabatic processes

j = 0

c p

DT

Dt−

1

ρ

D p

Dt= 0

c p

DT

Dt−

RT

p

D p

Dt= 0 ⇒

1

T

DT

Dt−

R

c p

1

p

D p

Dt= 0

D

Dtlog T p−R / c p

( ) = 0

θ = Tps

p

⎝ ⎜

⎠ ⎟

R / c p

potential temperature

Dt= 0

Page 18: Fluid dynamical equations (Navier-Stokes equations)

Static stability of a perfect gas(adiabatic processes)

ρp

d2z

d t 2= −g ρ p − ρ h (z)( ) ⇒

d2z

d t 2= −g

ρ p − ρ h (z)

ρ p

ρ =p

RT

d2z

d t 2= −g

pp

Tp

−ph

Th (z)pp

Tp

= −g

1

Tp

−1

Th (z)1

Tp

= −gTh (z) − Tp

Th (z), pp = ph

θ = Tps

p

⎝ ⎜

⎠ ⎟

R / c p

d2z

d t 2= −g

θh (z) −θ p

θh (z)

Page 19: Fluid dynamical equations (Navier-Stokes equations)

Neutral stability of a perfect gas(adiabatic processes)

dθN

d z= 0

θ = Tps

p

⎝ ⎜

⎠ ⎟

R / c p

0 =d logθN

d z=

d logTN

d z−

R

c p

d log p

d z=

1

TN

d TN

d z−

R

c p

1

p

d p

d z

0 =d logθN

d z=

1

TN

d TN

d z+

R

c p

1

pN

ρ N g =1

TN

d TN

d z+

R

c p

1

pN

ρ N g

0 =d logθN

d z=

1

TN

dTN

d z+

g

c pTN

dTN

d z= −

g

c p

= −Γ

Page 20: Fluid dynamical equations (Navier-Stokes equations)

For a general, non adiabatic process

c p

DT

Dt−

1

ρ

D p

Dt= j =

Dq

Dt

c p

DT

Dt−

RT

p

D p

Dt=

Dq

Dt⇒ c pT

1

T

DT

Dt−

R

c p

1

p

D p

Dt

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

Dq

Dt

c pTD

Dtlogθ =

Dq

Dt, θ = T

ps

p

⎝ ⎜

⎠ ⎟

R / c p

c p

D

Dtlogθ =

1

T

Dq

Dt=

Ds

Dt

c pd logθ = ds

Relationship between potential temperature and entropy

Page 21: Fluid dynamical equations (Navier-Stokes equations)

Fluid dynamical eqns. for a perfect gas

ρ= p

RT

Dt+ ρ∇ ⋅

r u = 0

ρD

r u

Dt= −∇p − g ρ ˆ z + Du

c p

DT

Dt−

1

ρ

D p

Dt= c pT

Dlogθ

Dt= j

θ = Tps

p

⎝ ⎜

⎠ ⎟

R / c p

Page 22: Fluid dynamical equations (Navier-Stokes equations)

Fluid dynamical eqns. for a perfect gas

θ =Tps

p

⎝ ⎜

⎠ ⎟

R / c p

= Tps

p

⎝ ⎜

⎠ ⎟

γ −1( ) /γ

⇒ T = θp

ps

⎝ ⎜

⎠ ⎟

γ −1( ) /γ

γ =c p

cv

ρ =p

RT→ ρ =

ps

p

ps

⎝ ⎜

⎠ ⎟

1/γ

, ρθ =ps

Dt+ ρ∇ ⋅

r u = 0

ρD

r u

Dt= −∇p − g ρ ˆ z + Du

c pTDlogθ

Dt= j

Page 23: Fluid dynamical equations (Navier-Stokes equations)

The Boussinesq approximation(adiabatic process, ideal fluid)

ρ =ρ p,θ( ) for a perfect gas : ρ =ps

p

ps

⎝ ⎜

⎠ ⎟

1/γ ⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Dt=

∂ρ

∂p

Dp

Dt+

∂ρ

∂θ

Dt=

1

c 2

Dp

Dt

c 2 =∂p

∂ρ

⎝ ⎜

⎠ ⎟

θ

Page 24: Fluid dynamical equations (Navier-Stokes equations)

The Boussinesq approximation(adiabatic process, ideal fluid)

ru ≡ (u,v,w) , ρ, p,θ

ρ = ρ 0 + ρ '(z) , p = p0 + p'(z)

ρ '= ρ (z) + ˜ ρ (x, y,z, t) , p'= p (z) + ˜ p (x,y,z, t)

∂p

∂z= −gρ

ρD

r u

Dt≡ ρ 0 + ρ '( )

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −∇p'−ρ 'g ˆ z

Dρ '

Dt+ ρ 0 + ρ '( )∇ ⋅

r u = 0

Dρ '

Dt=

1

c 2

Dp'

Dt

Page 25: Fluid dynamical equations (Navier-Stokes equations)

The Boussinesq approximation

ρ (z) , ˜ ρ (x,y,z, t) << ρ 0

ρ ≈p

c 2≈

ρ 0gH

c 2⇒ ρ << ρ 0 if H <<

c 2

g

˜ p ≈ ˜ ρ gH

1

c 2

D ˜ p

Dt≈

gH

c 2

D ˜ ρ

Dt<<

D ˜ ρ

Dtif H <<

c 2

g

sea water : c 2

g≈ 200 km

air : c 2

g≈10 km

Page 26: Fluid dynamical equations (Navier-Stokes equations)

ρ (z) , ˜ ρ (x, y,z, t) << ρ 0 if H <c 2

g

Dt≈ 0

Dt+ ρ∇ ⋅

r u = 0 → ∇ ⋅

r u = 0

ρ 0 + ρ '( )∂

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −∇p − ρ g ˆ z

The Boussinesq approximation(adiabatic process, ideal fluid)

Page 27: Fluid dynamical equations (Navier-Stokes equations)

The Boussinesq approximation(real fluid)

ρ (z) , ˜ ρ (x, y,z, t) << ρ 0 if H <c 2

g

Dt≈ 0

Dt+ ρ∇ ⋅

r u = 0 → ∇ ⋅

r u = 0

ρ 0 + ρ '( )∂

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −∇p − ρ g ˆ z + Du,0 + D'u

ρ 0

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −∇p − ρ g ˆ z + μ0∇

2 r u

Page 28: Fluid dynamical equations (Navier-Stokes equations)

Dt≈ 0 , ∇ ⋅

r u = 0

c p,0 +c'p( )DT

Dt−

1

ρ

D p

Dt= j = j0 + j '= −∇ ⋅

r Q 0 +

r Q '( )

j = −∇ ⋅r Q ,

r Q = −k∇T Fourier law

r Q 0 = −k0∇T

DT

Dt= κ 0∇

2 T , κ 0 =k0

c p,0

The Boussinesq approximation(real fluid)

Page 29: Fluid dynamical equations (Navier-Stokes equations)

∇⋅ r

u = 0

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −

1

ρ 0

∇p −ρ

ρ 0

g ˆ z + ν 0∇2 r u

DT

Dt= κ 0∇

2 T

ρ = ρ(T)

The Boussinesq approximation(real fluid)

Page 30: Fluid dynamical equations (Navier-Stokes equations)

∇⋅ r

u = 0 ,DT

Dt= κ ∇ 2 T

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −

1

ρ 0

∇p −ρ

ρ 0

g ˆ z + ν 0∇2 r u

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −

1

ρ 0

∇p'−ρ '

ρ 0

g ˆ z + ν 0∇2 r u

ρ '= ρ − ρ 0 = −α ρ 0 T − T0( )

∂t+

r u ⋅∇

⎝ ⎜

⎠ ⎟r u = −

1

ρ 0

∇p +α gT ˆ z + ν 0∇2 r u

The Boussinesq approximation(real fluid)