52
Constraint - based Metabolic Reconstructions & Analysis Lesson: Flux Balance Analysis Overview BIE 5500/6500 Utah State University H. Scott Hinton, 2017 Flux Balance Analysis Overview 1

Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

1

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

2

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

bull Through the use of genome-scale metabolic network reconstructions Flux Balance Analysis (FBA) can be used to calculate the flow of metabolites through a metabolic network This capability makes it possible to predict the growth rate of an organism andor the rate of production of a given metabolite

bull FBA has limitations It does not use kinetic parameters thus it cannot predict metabolite concentrations It is also only capable of determining fluxes at steady state Typically FBA does not account for regulatory effects such as activation of enzymes by protein kinases or regulation of gene expression Therefore its predictions may not always be accurate

4

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

5

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

6

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective

Create A biochemically genetically and genomically (BiGG) structured knowledge base

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010)

7

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 2: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

2

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

bull Through the use of genome-scale metabolic network reconstructions Flux Balance Analysis (FBA) can be used to calculate the flow of metabolites through a metabolic network This capability makes it possible to predict the growth rate of an organism andor the rate of production of a given metabolite

bull FBA has limitations It does not use kinetic parameters thus it cannot predict metabolite concentrations It is also only capable of determining fluxes at steady state Typically FBA does not account for regulatory effects such as activation of enzymes by protein kinases or regulation of gene expression Therefore its predictions may not always be accurate

4

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

5

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

6

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective

Create A biochemically genetically and genomically (BiGG) structured knowledge base

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010)

7

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 3: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

bull Through the use of genome-scale metabolic network reconstructions Flux Balance Analysis (FBA) can be used to calculate the flow of metabolites through a metabolic network This capability makes it possible to predict the growth rate of an organism andor the rate of production of a given metabolite

bull FBA has limitations It does not use kinetic parameters thus it cannot predict metabolite concentrations It is also only capable of determining fluxes at steady state Typically FBA does not account for regulatory effects such as activation of enzymes by protein kinases or regulation of gene expression Therefore its predictions may not always be accurate

4

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

5

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

6

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective

Create A biochemically genetically and genomically (BiGG) structured knowledge base

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010)

7

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 4: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

bull Through the use of genome-scale metabolic network reconstructions Flux Balance Analysis (FBA) can be used to calculate the flow of metabolites through a metabolic network This capability makes it possible to predict the growth rate of an organism andor the rate of production of a given metabolite

bull FBA has limitations It does not use kinetic parameters thus it cannot predict metabolite concentrations It is also only capable of determining fluxes at steady state Typically FBA does not account for regulatory effects such as activation of enzymes by protein kinases or regulation of gene expression Therefore its predictions may not always be accurate

4

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

5

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

6

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective

Create A biochemically genetically and genomically (BiGG) structured knowledge base

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010)

7

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 5: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

5

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

6

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective

Create A biochemically genetically and genomically (BiGG) structured knowledge base

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010)

7

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 6: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

6

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective

Create A biochemically genetically and genomically (BiGG) structured knowledge base

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010)

7

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 7: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective

Create A biochemically genetically and genomically (BiGG) structured knowledge base

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010)

7

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 8: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Reaction Information1 Reaction Name2 Reaction Description3 Reaction Formula4 Gene-reaction Association5 Genes (Gene Locus) 6 Proteins

7 Cellular Subsystem (eg Glycolysis)

8 Reaction Direction9 Flux Lower Bound10 Flux Upper Bound11 Confidence Score (1-5)12 EC Number13 Notes14 References

Reconstruction and Use of Microbial Metabolic Networks the Core Escherichia coli Metabolic Model as an Educational Guide by Orth Fleming and Palsson (2010) Required

8

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 9: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Reactions9

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 10: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Desired Metabolite Information

1 Metabolite Name2 Metabolite Description3 Metabolite Neutral Formula4 Metabolite Charged Formula5 Metabolite Charge6 Metabolite Compartment 7 Metabolite KEGGID 8 Metabolite PubChemID9 Metabolite CheBI ID10Metabolite Inchi String11 Metabolite Smile

RequiredThiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

10

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 11: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Reconstruction Metabolites11

ecoli_textbookxls

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 12: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Becker S A et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

Reactions(mmolgDWhr)

Metabolites(mmol)

hexokinase

glucose-6-phosphate isomerase

Phosphofructokinasefructose-bisphosphatase

fructose-bisphosphate aldolase

triose-phosphate isomerase

D-Glucose

D-Glucose 6-phosphate

D-Fructose 6-phosphate

D-Fructose 16-bisphosphate

Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate

Exchange Reaction (mmolgDWhr)

MetabolicPathway

12

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 13: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

System BoundariesExchange amp Transport Reactions

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

Cytoplasm [c]

Periplasm [p]

Extracellular [e] Exchange Reactions

Transport Reactions

13

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 14: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstructions

bull Overview

bull Draft Reconstruction

bull Refinement of Reconstruction

bull Conversion of Reconstruction into Computable Format

bull Network Evaluation

bull Data Assembly and Dissemination

Draft Reconstruction

Network Evaluation

Conversion of Reconstruction

Refinement of Reconstruction

Data Assemblyand

Dissemination

Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

14

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 15: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

15

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 16: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EcoliCore Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

Glycolysis

Glycoxylate Cycle Gluconeogenesis and

Anapleurotic Reactions

Tricarbonoxylic Acid Cycle (TCA)

Oxidative Phosphorylation and Transfer of Reducing

Equivalents

Ana TCA

OxP

PPP

Glyc

Ferm

NNitrogen

Metabolism

Fermentation

Pentose Phosphate Pathway

16

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 17: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

17

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 18: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Creating A Stoichiometric Matrix

Becker S A A M Feist et al (2007) Quantitative prediction of cellular metabolism with constraint-based models the COBRA Toolbox Nature protocols 2(3) 727-738

The stoichiometric matrix S is the centerpiece of a mathematical representation of genome-scale metabolic networks This matrix represents each reaction as a column and each metabolite as a row where each numerical element is the corresponding stoichiometric coefficient

18

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 19: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Genome-scale Metabolic Reconstruction

Reed J L I Famili et al (2006) Towards multidimensional genome annotation Nature reviews Genetics 7(2) 130-141

BIGGDatabase

Stoichiometric Matrix

MetabolicPathway

Gene-Protein-Reaction(GPR) Associations

19

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 20: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

20

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 21: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

How can we use the Stoichiometric Matrixbull The stoichiometric matrix S is a linear transformation of the flux

vector v to a vector of time derivatives of the concentration vector x Reactions

Met

abol

ites

ddt

= sdotx S v

bull The concentration vector x represents the concentration of each of the metabolites

bull If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dxdt = 0 This is the steady state assumption of flux balance analysis

0ddt

= = sdotx S v

bull Since there are normally many more reactions (columns) than metabolites (rows) more unknown variables than equations then there is no unique solutions (could be a large number of solutions)

bull Need to find a way to constrain the solution space

21

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 22: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Dynamic Mass BalanceA simple network

A B

C

e1 e2

e3

v1

v4

v3v2

Linear Differential Equations

Linear Transformation

1 2 3 1

1 4 2

2 3 4 3

dA v v v edtdB v v edtdA v v v edt

= minus minus + +

= + minus

= minus minus minus

ddt

= sdotx S v

1

2

3

4

1

2

3

1 1 1 0 1 0 01 0 0 1 0 1 00 1 1 1 0 0 1

vdA vdt vdB vdt

edCedte

minus minus = minus minus minus minus

0 = sdotS v

Dynamic Mass Balance (Steady State) 1

2

3

4

1

2

3

0 1 1 1 0 1 0 00 1 0 0 1 0 1 00 0 1 1 1 0 0 1

vvvveee

minus minus = minus minus minus minus

Stoichiometric Matrix

Note More unknown variables than equationsthus no unique solutions Need constraints

22

ν1 ν2 ν3 ν4 e1 e2 e3

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 23: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Conceptual Basis of Constraint-based Modeling

With no constraints the flux distribution of a biological network may lie at any point in a solution space When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (ai and bi) (label 2) are applied to a network it defines an allowable solution space The network may acquire any flux distribution within this space but points outside this space are denied by the constraints Through optimization of an objective function using linear programming FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

23

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 24: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

REI601M Introduction to Systems Biology Dr Innes Thiele2012 httpssystemsbiologyhiiswikiREI601M

Role of Constraints

24

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 25: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Optimization(Linear Programming or Linear Optimization Problem)

i ii

Z c v= = sdotsum c v

j j j

ddt

vα β

= sdot =

le le

x S v 0

Maximize the objective function

with the following constraints

wherex = concentration vectorv = flux vectorc = objective function weightsS = Stoichiometric matrixαj = Lower bound of fluxβj = upper bound of flux

The goal is to create and objective function that is biologically meaningful These could include

1 Cellular growth (maximization)

2 Particular metabolite engineering (maximization)

3 Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

1 ldquoIt has been shown that under rich growth conditions (ie no lack of phosphate and nitrogen) E coli grows in a stoichiometrically optimal mannerrdquo (Schilling 2001 Edwards 1994)

2 ldquoIt is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performancerdquo (Segre 2002)

25

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 26: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

26

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 27: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass Precursorsbull The biomass reaction accounts for

all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass

bull These factional contributions need to be determined experimentally for cells growing in log phase

bull It may not be possible to obtain a detailed biomass composition for the target organism In this case one can estimate the relative fraction of each precursor from existing databases Thiele I and B O Palsson (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

27

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 28: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Precursor Metabolites

Heptose in LPS

2-Keto-3-deoxyoctanate

Pyruvate familyAlanineValineLeucineIsoleucineIsoprenoids

Fatty AcidsMureinLeucine

Glutamate familyGlutamate -gt HemesGlutamineArginine -gt PolyaminesProline

Heme

Aspartate familyAsparagineThreonineMethionine -gt SpermidineAspartate -gt Nicotinamide coenzymes

-gt Pyrimidine nucleotidesLysine

Serine FamilySerine -gt Tryptophan

-gt Ethanolamine-gt 1-C units

Glycine -gt Purine nucleotidesCysteine

Amino sugarsNicotinamide coenzymesGlycerol-3-phosphate -gt Phospholipids

Sugar nucleotidesVitamins and cofactorsFolatesRiboflavinCoenzyme AAdenosylcobalamineNicotinamide

Purine nucleotides

Pyrimidine nucleotides

Phosphoribosylpyrophosphate

HistidineTryptophan

Aromatic FamilyTyrosineTryptophanPhenylalanine

Chorismate

Vitamins and cofactorsUbiquinoneMenaquinoneFolates

28

M Schaechter et al Microbe ASM Press 2006 p 116

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 29: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Maintenance Energy Requirementsbull To simulate growth the energy required to maintain the cell growth must

be accounted for

bull Two forms of energy are required growth associated maintenance (GAM) energy and non-growth associated maintenance (NGAM) energy (eg turgor pressure)

bull GAM reaction accounts for the energy (ATP) necessary to replicate a cell It is represented in the model by

x ATP +x H20 -gt x ADP +x Pi + x H+

Where x is the number of required phosphate bonds (5981 in core model) This will be included in the biomass reaction

bull The NGAM reaction (ATPM) is given by

1 ATP + 1H2O -gt 1 ADP + 1 Pi + 1 H+

where the flux through this reaction is constrained by experimental data to 839 mmol gDW

-1h-1 Thiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121

29

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 30: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass ReactionFor Ecoli Core Model

(1496) 3pg + (37478) accoa + (598100) atp + (03610) e4p + (00709) f6p + (01290) g3p + (02050) g6p + (02557) gln-L + (49414) glu-L + (598100) h2o + (35470) nad + (130279) nadph + (17867) oaa + (05191) pep + (28328) pyr + (08977) r5p --gt (598100) adp + (41182) akg + (37478) coa + (598100) h + (35470) nadh + (130279) nadp + (598100) pi

ecoli_core_modelsxls Key Cofactors

30

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 31: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)

Z = 0000223 10fthf[c] + 0000223 2ohph[c] + 05137 ala-L[c] + 0000223 amet[c] + 02958 arg-L[c] + 02411 asn-L[c] + 02411 asp-L[c] +

59984 atp[c] + 0004737 ca2[c] + 0004737 cl[c] + 0000576 coa[c] + 0003158 cobalt2[c] + 01335 ctp[c] + 0003158 cu2[c] + 009158

cys-L[c] + 002617 datp[c] + 002702 dctp[c] + 002702 dgtp[c] + 002617 dttp[c] + 0000223 fad[c] + 0007106 fe2[c] + 0007106 fe3[c]

+ 02632 gln-L[c] + 02632 glu-L[c] + 06126 gly[c] + 02151 gtp[c] + 54462 h2o[c] + 009474 his-L[c] + 02905 ile-L[c] + 01776 k[c] +

001945 kdo2lipid4[e] + 04505 leu-L[c] + 03432 lys-L[c] + 01537 met-L[c] + 0007895 mg2[c] + 0000223 mlthf[c] + 0003158 mn2[c] +

0003158 mobd[c] + 001389 murein5px4p[p] + 0001831 nad[c] + 0000447 nadp[c] + 0011843 nh4[c] + 002233 pe160[c] + 004148

pe160[p] + 002632 pe161[c] + 004889 pe161[p] + 01759 phe-L[c] + 0000223 pheme[c] + 02211 pro-L[c] + 0000223 pydx5p[c] +

0000223 ribflv[c] + 02158 ser-L[c] + 0000223 sheme[c] + 0003948 so4[c] + 0000223 thf[c] + 0000223 thmpp[c] + 02537 thr-L[c] +

005684 trp-L[c] + 01379 tyr-L[c] + 55e-005 udcpdp[c] + 01441 utp[c] + 04232 val-L[c] + 0003158 zn2[c] -gt 5981 adp[c] + 5981 h[c]

+ 59806 pi[c] + 07739 ppi[c]

31

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 32: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Formulation of Flux Balance Analysis

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

32

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 33: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Core Model

Orth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

httpsystemsbiologyucsdeduDownloadsE_coli_Core

Ana TCA

OxP

PPP

Glyc

Ferm

33

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 34: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli model ldquoecoli_iaf1260xmlrdquo

Ecoli K-12 MG1655Genome-Scale Reconstructions

BIGG Models httpbiggucsdedu

iAF1260 ndash 6Feist A M C S Henry et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Molecular Systems Biology 3 121

iJO1366 - Orth J D and B O Palsson (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions BMC systems biology 6(1) 30

34

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 35: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

The Iterative Reconstruction and History of the E Coli Metabolic Network

Feist A M and B O Palsson (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli Nature biotechnology 26(6) 659-667

35

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 36: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Ecoli Genome-scale Reconstructionsbull Escherichia coli 042

bull Escherichia coli 536

bull Escherichia coli 55989

bull Escherichia coli ABU 83972

bull Escherichia coli APEC O1

bull Escherichia coli ATCC 8739

bull Escherichia coli B str REL606

bull Escherichia coli BL21(DE3) AM946981

bull Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG

bull Escherichia coli BL21(DE3) CP001509

bull Escherichia coli BW2952

bull Escherichia coli CFT073

bull Escherichia coli DH1

bull Escherichia coli DH1 ME8569

bull Escherichia coli E24377A

bull Escherichia coli ED1a

bull Escherichia coli ETEC H10407

bull Escherichia coli HS

bull Escherichia coli IAI1

bull Escherichia coli IAI39

bull Escherichia coli IHE3034

bull Escherichia coli KO11FL

bull Escherichia coli LF82

bull Escherichia coli NA114

bull Escherichia coli O103H2 str 12009

bull Escherichia coli O111H- str 11128

bull Escherichia coli O127H6 str E234869

bull Escherichia coli O157H7 EDL933

bull Escherichia coli O157H7 str EC4115

bull Escherichia coli O157H7 str Sakai

bull Escherichia coli O157H7 str TW14359

bull Escherichia coli O26H11 str 11368

bull Escherichia coli O55H7 str CB9615

bull Escherichia coli O83H1 str NRG 857C

bull Escherichia coli S88

bull Escherichia coli SE11

bull Escherichia coli SE15

bull Escherichia coli SMS-3-5

bull Escherichia coli str K-12 substr DH10B

bull Escherichia coli str K-12 substr MG1655

bull Escherichia coli str K-12 substr W3110

bull Escherichia coli UM146

bull Escherichia coli UMN026

bull Escherichia coli UMNK88

bull Escherichia coli UTI89

bull Escherichia coli W

bull Escherichia coli W CP002185

bull Escherichia coli K-12 MG1655

Monk J M P Charusanti et al (2013) Proceedings of the National Academy of Sciences of the United States of America 110(50) 20338-20343

36

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 37: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Phylogenetic Coverage of Genome-scale Network

Reconstructions

Monk J J Nogales et al (2014) Optimizing genome-scale network reconstructions Nature biotechnology 32(5) 447-452

37

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 38: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

38

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 39: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Cobra ToolboxMatlab Cobra Toolbox

bull Flux Optimizationbull Flux Variability Analysisbull Robustness Analysisbull Phenotype Phase Plane Analysisbull Parsimonious FBAbull Visualization Toolsbull Gene Additions amp Knockoutsbull Production Envelopes

Load ModelsSBML Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Links for installing COBRA toolbox for MATLAB

ndash httpwwwnaturecomprotocolexchangeprotocols2097introduction

ndash httpbenheavnercomsystemsbioindexphptitle=Installing_COBRA_toolbox_for_MATLAB

ndash httpopencobrasourceforgenetopenCOBRAInstallhtml

39

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 40: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Matlab Interface40

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 41: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Drawing Flux Values on a Map

41

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 42: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Print Flux Values

ACONTa 600725ACONTb 600725AKGDH 506438ATPM 839ATPS4r 45514Biomass_0873922CO2t -228098CS 600725CYTBD 43599ENO 147161EX_co2(e) 228098EX_glc(e) -10EX_h2o(e) 291758EX_h(e) 175309EX_nh4(e) -476532EX_o2(e) -217995EX_pi(e) -32149

PGK -160235PGL 495998PGM -147161PIt2r 32149PPC 250431PYK 175818RPE 267848RPI -22815SUCDi 506438SUCOAS -506438TALA 149698TKT1 149698TKT2 11815TPI 747738

FBA 747738FUM 506438G6PDH2r 495998GAPD 160235GLCpts 10GLNS 0223462GLUDy -454186GND 495998H2Ot -291758ICDHyr 600725MDH 506438NADH16 385346NH4t 476532O2t 217995PDH 928253PFK 747738PGI 486086

GrowthRate

Inputs amp Outputs(Exchange Reactions)

42

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 43: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

EX_co2(e) 406527

EX_glc(e) -185

EX_h2o(e) 526943

EX_h(e) 331606

EX_nh4(e) -901387

EX_o2(e) -387416

EX_pi(e) -608116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

43

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 44: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Close-up of TCA Cycle

44

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 45: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Biomass 0470565

EX_ac(e) 151732

EX_co2(e) -0840759

EX_etoh(e) 146749

EX_for(e) 321194

EX_glc(e) -185

EX_h2o(e) -120879

EX_h(e) 567321

EX_nh4(e) -25659

EX_pi(e) -173107

Exchange Reactions

Anaerobic Growth on Glucose

45

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 46: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Aerobic Growth Anaerobic Growth

Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248

a b

46

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 47: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Substrate Maximum Growth RateSubstrate Aerobic (hr-1) Anaerobic (hr-1)acetate 03893 0

acetaldehyde 06073 0

2-oxoglutarate 10982 0

ethanol 06996 0

D-fructose 17906 05163

fumarate 07865 0

D-glucose 17906 05163

L-glutamine 11636 0

L-glutamate 12425 0

D-lactate 07403 0

L-malate 07865 0

pyruvate 06221 00655

succinate 08401 0(What is flux balance analysis - Supplementary tutorialldquo)

The core E coli model contains exchange reactions for 13 different organic compounds each of which can be used as the sole carbon source under aerobic or anaerobic conditions

47

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 48: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

48

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 49: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Methods in Constraint-based Reconstruction and

Analysis

49

Lewis N E H Nagarajan et al (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nature reviews Microbiology 10(4) 291-305

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 50: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Flux Balance Analysis Overview

bull Flux Balance Analysis Overview

bull Reactions Metabolites amp Pathways

bull Mathematical Representation of Reactions amp Constraints

bull Mass Balanced Linear Equations

bull Biomass Reaction

bull Calculating Fluxes

bull Flux Balance Analysis Toolbox

50

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 51: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Learning Objectives

Each student should be able to

bull Explain flux balance analysis (FBA)

bull Explain reactions metabolites amp pathways

bull Explain mass balanced linear equations

bull Explain the biomass reaction

bull Explain how to create a stoichiometric matrix from reactions and metabolites

bull Explain gene-protein-reaction associations

bull Explain the constraint-based modeling

51

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions
Page 52: Flux Balance Analysis Overview - USU · Constraint-based Metabolic Reconstructions & Analysis Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview H. Scott Hinton,

Constraint-based Metabolic Reconstructions amp Analysis

Lesson Flux Balance Analysis OverviewBIE 55006500Utah State University

H Scott Hinton 2017

Reflective Questions1 What is flux balance analysis2 What does steady state mean in flux balance analysis (FBA)3 What is the difference between a reaction a metaboite and a

pathway4 What is a gene-protein-reaction (GPR)5 What is a gene locus6 What is the difference between a single enzyme an isozymes

and a protein complex7 What is a reaction formula8 What is the difference betwen a metabolite neutral formula

and a metabolite charged formula9 What is a metabolite compartment10 What is an exchange reaction11 What are the units of flux12 What is the mathematical sign for uptake and secretion13 What is the difference between extracellular envionrment and

intracellular space14 What are transport reactions

15 Are the rows of a stoichhiometric matrix metaobites or reactions

16 Why is the product of the stoichiometric matrix and the flux set to zero

17 What is the purpose of linear programming18 What is the purpose on an objective function19 What are biomass precursors20 What is the purpose of growth associated maintenance (GAM)21 What is the purpose of non-growth associated maintenance energy

(NGAM)22 What is the purpose of the biomass reaction23 What are genome-scale metabolic network reconstruction24 What phase of growth does FBA assume (lag exponential

stationary death)25 What are the limits of FBA26 What role does the stoichiometric matrix play in FBA27 Why are visualization tools needed

52

  • Flux Balance Analysis Overview
  • Learning Objectives
  • Flux Balance Analysis Overview
  • Flux Balance AnalysisOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Formulation of Flux Balance Analysis
  • Flux Balance Analysis Overview
  • Identifying Metabolic Reactions and Metabolites(Gene-Protein-Reactions)
  • Desired Reaction Information
  • Genome-scale Reconstruction Reactions
  • Desired Metabolite Information
  • Genome-scale Reconstruction Metabolites
  • Slide Number 12
  • System BoundariesExchange amp Transport Reactions
  • Genome-scale Metabolic Reconstructions
  • Reconstruction Process 96 Step ProtocolThiele I and B O Palsson (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction Nature protocols 5(1) 93-121
  • Slide Number 16
  • Flux Balance Analysis Overview
  • Creating A Stoichiometric Matrix
  • Genome-scale Metabolic Reconstruction
  • Flux Balance Analysis Overview
  • How can we use the Stoichiometric Matrix
  • Dynamic Mass Balance
  • The Conceptual Basis of Constraint-based Modeling
  • Role of Constraints
  • Flux Optimization(Linear Programming or Linear Optimization Problem)
  • Flux Balance Analysis Overview
  • Biomass Precursors
  • Slide Number 28
  • Maintenance Energy Requirements
  • Biomass ReactionFor Ecoli Core Model
  • iaf1260 Biomass Objective Function(Ec_biomass_iAF1260_core_59p81M)
  • Formulation of Flux Balance Analysis
  • Slide Number 33
  • Slide Number 34
  • The Iterative Reconstruction and History of the E Coli Metabolic Network
  • Ecoli Genome-scale Reconstructions
  • Phylogenetic Coverage of Genome-scale Network Reconstructions
  • Flux Balance Analysis Overview
  • Cobra Toolbox
  • Matlab Interface
  • Drawing Flux Values on a Map
  • Print Flux Values
  • Slide Number 43
  • Close-up of TCA Cycle
  • Slide Number 45
  • Aerobic vs Anaerobic GrowthOrth J D I Thiele et al (2010) What is flux balance analysis Nature biotechnology 28(3) 245-248
  • Substrate Maximum Growth Rate
  • Flux Balance Analysis Overview
  • Methods in Constraint-based Reconstruction and Analysis
  • Flux Balance Analysis Overview
  • Learning Objectives
  • Reflective Questions