F_MIMO

  • Upload
    krbhnp

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • 8/20/2019 F_MIMO

    1/64

    Multiple-Input-Multiple-Output(MIMO) transmission over

    fading channels

  • 8/20/2019 F_MIMO

    2/64

  • 8/20/2019 F_MIMO

    3/64

    ECSE610 MIMO - 3

    Multiple-Antenna systems:

     Antenna diversity

    a) Receive diversity (SIMO); b) Transmit diversity (MISO);c) Transmit and Receive diversity (MIMO)

  • 8/20/2019 F_MIMO

    4/64

    ECSE610 MIMO - 4

    Single-Input Multiple-Output (SIMO)

  • 8/20/2019 F_MIMO

    5/64

    ECSE610 MIMO - 5

    Spatial diversity-on-receive SIMO channel

    MT=1, MR=L, h=[h1,h2,…,hL]T

    , y=hx+w, RW=W2

    IL: white Gaussian noiseMaximum Likelihood (ML) decision:

    Consider equally probable transmission of x from A={ak, k=1,2,…,K}

    Receiver knows h, computes squared Euclidean distances: y-hak2

    Select x=ak corresponding to the shortest Euclidean distance:From y-hx2=(y-hx)H(y-hx)=h2{y2/h2+x2-(xyHh+x*hHy)/h2}

    = h2{x-xo2+yo2}, xo= hHy/h2: complex, yo2 ={y2/h2}-xo2

    select ak A for min y-hak2 select ak A for min x-xo2

    ML Rx: First, with channel knowledge, Rx uses matched filter (Maximum Ratio

    Combiner, MRC): Rx beamforming → Rx diversity gain

    Second, Rx selects akA nearest to xo.

    2

    22

    received vector: [ ] [ ], { } , { }

    [ ] [ ] '[ ], '[ ] [ ],

    {[ ] } , { ' }

    matched filter:

    ,

    [ ]

    ]

    /

    [

     H 

    s o L

    o

    s o M 

     H 

     RC s o

     H 

    m m E x E E N  

     x m

     x m

    m w m w m m

     E LE E w N SN  x   L

     x

     R E 

    m

     N 

    y w ww Ih

    h hhh h

    y w

    h

  • 8/20/2019 F_MIMO

    6/64

    ECSE610 MIMO - 6

    SIMO channel: spatial diversity performance

    In general, with ML detection, the conditional symbol error rate is

    a: constant related to the number of nearest neighbors

    d : constant related to the squared minimum distance (normalized to Es)

    For Rayleigh fading channel, average symbol error rate

    diversity order: indicated by the exponent L.

    In general, this is an application of (L,1) repetitive coding. Diversity can be

    obtained in time, frequency or space. Spatial diversity costs antennas (space)but save time and bandwidth (in time or frequency diversity).

    2

    2 2

    2 2 -x /2

    10 0

    ( ) exp , , Chernoff bound Q(x) e2

     Ls s

    e l

    l

    d E d E  P aQ a h

     N N   

       

    h hh h

    1 2

     L

    se e

    o

    dE 

    P E P a  N 

    h   h

  • 8/20/2019 F_MIMO

    7/64

    ECSE610 MIMO - 7

    Multiple-Input Single-Output (MISO) systems

    Tx Diversity: With channel knowledge at Tx, Tx sends vector:

    so that the received scalar signal is:

    which maximizes the received SNR by in-phase addition of signals at thereceiver (Tx beamforming same as Rx beamforming).

    *

    ( ) ,( )mm   x  h

    hx

    *

    ( ) ( ) ( ) ( ) (( ) )) (T T  y m m w m w m w m x m x m       hh h hh

    x

  • 8/20/2019 F_MIMO

    8/64

    ECSE610 MIMO - 8

    Diversity-on-transmit MISO channel:h known to Tx

    MT=N, h=[h1,h2,…,hN], P/W2=Es /No Tx use a complex weight Nx1 vector p=[p1,p2,…,pN]

    T to transmit x over Nantennas and keep p2=1 (for a total average Tx power of P or Es).

    Rx signal:

    Select p to maximize the received SNR:

    → Rx SNR: E{h2(Es /No)}=N(Es /No): N time better than SISO: Tx array gain of N

    Conditional symbol error rate:

    For Rayleigh fading channel, average symbol error rate:

    diversity order of N

    2 2

    0 0

    ( ) exp2

    s s

    e

    dE dE  P aQ a

     N N 

       

    h hh

    12

     N 

    se e

    o

    dE P E P a

     N 

    h   h

    2

    ( ) ( ) ( ) ( ), Rx( )   sT T T 

    o

     E  x m y m m w m w m SN 

     N  R   pxh   ph h

    *2 2

     maximumopti R mum , }x {s

    o

    SNR E   E 

     N  N 

      p  h

    h h

    h

  • 8/20/2019 F_MIMO

    9/64

    ECSE610 MIMO - 9

    Multiple-Input Multiple-Output (MIMO)

    : Time delay-spread

    t: time-variance

    time-varying

    MIMO channel:

    Block frequency-flat fading MIMO channel:

    where

    Channel state information (CSI)

    may be

    unknown to both Tx and Rx

    only known to Rx

    known to both Rx and Tx

  • 8/20/2019 F_MIMO

    10/64

    ECSE610 MIMO - 10

    zero-mean, circularly symmetric complex Gaussian

    (ZMCSCG) Consider a continuous complex Gaussian vector Z=ZI+jZQ=[Z1,Z2,…,ZN]

    T,Zk =ZkI+jZkQ with zero mean and NxN correlation matrix R Z=E{ZZ

    H}

    It can be represented by a real-valued vector

    Z’ =[ZI,ZQ]=[Z1I,Z2I,…,ZNI,Z1Q,Z2Q,…,ZNQ]T

    with zero mean and correlation 2Nx2Nmatrix R Z’ =E{Z’Z’ 

    T} and pdf 

    R Z=E{ZZH}= E{(ZI+jZQ)(ZI-jZQ)

    T}=(R II+R QQ)+j( R QI-R IQ)

    If R II=R 

    QQand R 

    QI=-R 

    IQ R 

    Z=2(R 

    II-jR 

    IQ) and E{ZZT}=0 then Z is zero-mean,

    circularly symmetric complex Gaussian (ZMCSCG):

    ZI, ZQ: zero-mean, uncorrelated since R IQ=E{ ZIZQT}= E{ZI}[E{ZQ}]

    T=0,

    i.e., ZI,ZQ: orthogonal ZI,ZQ: statistically independent: R Z=2R II If Gaussian ZI,ZQ: statistically independent and identically distributed:

    ' ,  E 

    II IQ   T

    Z AB A B

    QI QQ

    R R R R Z Z

    R R 

     

    T 1

    '2

    '

    exp ' ' / 2( )

    2 det Z 

     N  p

     

      Z'

    Z

    z R zz'

     

    2-1H 1 exp / 2exp

    ( ) and ( ) ( ) ( )det 2 det

     N   N  p p p p

       

       

    I Q

    I II IZ

    Z Z Z I Z Q

    ZII

    z R zz R zz z z z

    R  R 

  • 8/20/2019 F_MIMO

    11/64

    ECSE610 MIMO - 11

    Eigen-decomposition andsingular-value decomposition (SVD): quick review

    Eigen-decomposition of a MxM complex matrix A:

    Eigenvalue problem: Ax= x,   : scalar, x: Mx1 vector.  AH= AT*,  A is a Hermitian matrix if A= AH

    In general, there are up to M distinct eigenvalues of A, n, n=1,2,…,M, whichare roots of the characteristic equation: det[ A-I]=0. Corresponding to each m,m=1,2,…,M, is the eigenvector  xm.

     Axm=m xm A[ x1, x2,…, xM]=[1 x1, 2 x2,…, M xM]or AU=U   A=U  UH (spectral decomposition theorem) where

    U=[ x1, x2,…, xM]: unitary matrix,i.e., UUH=UHU=I, UH=U-1, and

      =diag[1, 2,…,M]

    Singular-value decomposition (SVD) of a complex-valued LxN matrix G:

    xx x( )

    ( )x

    1 1

    1 2 min( , )

    1 2 min( , )

    for LN, or of if L

  • 8/20/2019 F_MIMO

    12/64

    ECSE610 MIMO - 12

    Parallel Decomposition of a MIMO channel y=Gx+w MT=N, MR =L, LxN Channel Matrix: G=[gln] with E{gln2}=1 and (squared)

    Frobenius norm

    where dm is the mth singular values of G

    Tx : X =[X1,X2,…,XN]T , Rx: Y =[Y 1,Y 2,…,Y L]

    T noise: W=[W1,W2,…,WL]T

    From y=Gx+w, using singular-value decomposition (SVD), we can obtain  y’ =UH y=UHGV  V H x+UHw = Dmin(L,N) x’+w’ where

     y’ =UH y, w’ =UHw, x’ = V H x are column vectors of M=min(L,N) elements.

    The SVD of G transform the MIMOchannel into M=min(L,N) parallelvirtual SISO channels:

     Y’ m=dmX’ m+W’ m where

     Y’ m, X’ m, W’ m are the mthcomponents of  Y’ , X’ , W’ ,respectively, and

    dm is the mth singular values of G.

    X’ 1

    X’ 2

    X’ M

     Y’ 1

     Y’ 2

     Y’ M

    d2 W’ 2

    d1 W’ 1

    dM W’ M

    min ,,

    2 2 2

    ln

    1, 1

     or , L N  L N 

     H H 

    m m m

    l n m

    g tr tr d    

    G GG G G

  • 8/20/2019 F_MIMO

    13/64

    ECSE610 MIMO - 13

    MIMO channel with Gaussian noise y=Gx+w:conditional mutual information for a given G

     y=Gx+w

     Additive Gaussian noise: W=[W1,W2,…,WL]T: ZMCSCG with LxL correlation matrix

    R W=E{WWH}, R W=W2 IL for white Gaussian noise (W2=No /Ts)

    Continuous source X =[X1,X2,…,XN]T, with correlation NxN matrix R  X =E{ XX 

    H}, andTx power P=tr[R  X ]: trace of R  X : sum of N diagonal elements of R  X

     X , W: independent, continuous Rx Y =[Y 1,Y 2,…,Y L]T with LxL correlation matrix R  Y 

    Conditional entropy H( Y  X,G)= H(W)= [Llog(e)+log(det[R W])] conditional mutual information for a given G: I( X , Y G)=H( Y )–H( Y | X )

    Capacity C= maxp(x) I( X , Y G)=maxp(x) [H( Y )–H( Y | X )] equivalent to maxp(x) H( Y )when X is ZMCSCG

     X , W: independent,  Y : Gaussian, zero-mean, H( Y )=E{-log[p Y ( y)]}=[Llog(e)+log(det[R  Y ])] I( X , Y G)=H( Y )–H( Y | X )= log(det[R W+GR  X G

    H]/det[R W])

     H H H H H H H H  E E  Y X WR (GX + W)(GX + W) GXX G + GXW WX G WW GR G R  

  • 8/20/2019 F_MIMO

    14/64

    ECSE610 MIMO - 14

    capacity of MIMO channel G with Gaussian noise:G: known at the transmitter C= log(det[R W+GR  X G

    H]/det[R W]) with

    where P : total power, symbol energy: Es=P Ts R  X : non-negative definite, to be designed

    For R W

    =W

    2 IL: white Gaussian noise (

    W

    2=No /T

    s), C= log(det[I

    L+GR 

     X GH /

    W

    2])

    From det[I+ AB]=det[I+BA] det[I+GR  X GH /W2]=det[I+R  X GHG /W2] Eigen-Decomposition of a Hermitian matrix: GHG=U  UH

      det[I+R  X GHG /W2]=det[I+R  X U  UH /W2]=det[I+  UHR  X U /W2] tr{UHR  X U}= tr{U

    HUR  X }=tr{R  X } and UHR  X U: also non-negative definite

    Recall: any non-negative definite NxN A satisfies the Hadamard inequality:

    where ann: diagonal elements of A

    det[I+  UHR  X U /W2]

    where 1 2…N: eigenvalues of GHG and Pnn: diagonal elements of UHR  X U. Theequality holds only when UHR  X U is a diagonal matrix.

    max : constant Tx power  tr Px

    xR 

    1

    det N 

    nn

    n

    a

    A 2 2

    1 1

    1 / 1/ / N N 

    n nn W n n nn W  

    n n

    P P  

    2

    1 1

    max log 1 / subject to the power constraintnn

     N N 

    n nn W nnP

    n n

    C P P P  

  • 8/20/2019 F_MIMO

    15/64

    ECSE610 MIMO - 15

    capacity of MIMO channel G with Gaussian noise & Gknown at the transmitter: water-filling procedure  As log(.) is monotonously increasing with its argument, to maximize C, we select

    a set of {Pnn} to meet the total power constraint P , and maximize

    Depending on P , some Pnn=0 selected to be corresponding to the smallest n.Let N+N such that Pnn>0 for nN+ and +=diag[1, 2,…,N+]. Then

    The inequality follows the relation between the arithmetic and geometric means .The equality holds only if

    water-filling procedure:

    21

    1/ / N 

    n n nn W  

    n

    P  

     

    2 2

    1 1 1 1

    2 2

    11 1 1

    1/ / 1/ / 1/

    1/ / 1/ / /

     N N N N 

    n n nn W n n nn W n

    n n n   n N 

     N 

     N N N    N 

    n n nn W n n nn W  

    nn n n

    P P

    P P N 

     

     

     

     

     

        1

    2 2 2

    1

    1/ / 1/ / / / / N 

    n nn W n nn W W  

    n

    P P N Tr P N    

        1

    2 2Fill power (water) / where "water-fill level" = /nn W n W  P Tr P N     

  • 8/20/2019 F_MIMO

    16/64

    ECSE610 MIMO - 16

    capacity of MIMO channel G with Gaussian noise & Gknown at the transmitter & using water-filling procedure

    Transmit more signal power in the better channels (larger n). N+ can beimplicitly found from the above water-filling procedure: Start with N+=N, if

    set N+= N+-1 and continue until .

    The capacity of the channel G when G is known to the transmitter is

    2 /W    N        2 /W    N     

        1

    2( ) log det / /

     N 

    T W C Tr P N   

    G Λ Λ

    X’ 1

    X’ 2

    X’ M

     Y’ 1

     Y’ 2

     Y’ M

    d2 W’ 2

    d1 W’ 1

    dM W’ M

    i.e., From y=Gx+w

     y’ =UH y=UH {GVx’ +w},  x’ = V H x,the SVD of G transform the MIMOchannel into rank M≤min(L,N) virtual

    SISO channels: Y’ m=[m]1/2X’ m+W’ m

    where Y’ m, X’ m, W’ m are the mthcomponents of  Y’ , X’ , W’= UH w,

    optimum R  X satisfiesUHR  X U=diag{Pnn, n=1,2,…,N

    +}

  • 8/20/2019 F_MIMO

    17/64

    ECSE610 MIMO - 17

    Ergodic capacity of MIMO flat-fading Gaussian channel:G known to the receiver but unknown to the transmitter

    G: is Zero Mean Spatially White (channel elements can be assumed to be i.i.d random variables), stationaryand ergodic (time averages of a sample function are equal to the corresponding ensemble average or

    expectation at a particular time instant).

    Without knowledge of G at Tx, Tx equally distributes power over Tx antennas, i.e., RX=X2I, X2=P/N, I(X,YG)=H(Y)–H(Y|X)= log(det[RW+GRXG

    H]/det[RW]), AWGN: RW=W2 I

    Ergodic capacity: C=EG{CUT(G)}, CUT(G)=log(det[RW+GRXGH]/det[RW]) subject to power constraint (i.e., total Txpower of P).

    CUT(G)=log(det[IL +( P/NW2)GGH] for LN for GHG to be of full rank eigen-decomposition of a Hermitianmatrix: GGH=U  UH for LN.

    From det[I+ AB]=det[I+BA] CUT(G)=log(det[IL+(P/NW2)U  UH] CUT(G)=log(det[IL+(P/NW2)  UHU] for LN

    MIMO ergodiccapacity =sum of capacities of min(L,N) virtual SISO channels defined by the spatialeigenmodesof GHG or GGH.

    For N=L, as N, (Taylor’s series) and

    i.e., C is linearly (rather than

    logarithmically) increased with SNR.

    min( , ) min( , )

    2 2

    11

    ( ) log 1 / max( , ) log 1 / max( , ) L N    L N 

    UT m W m W  

    mm

    C P L N P L N    

     

      G

    2

    2log 1 /

    log ( )

    ma m W 

    W e

    PP N 

     N a

       

     

      2 21 1

    1log 1 / where

    log ( )

     N N avg

    a m W avg m

    m mW e

    PC E P N E  

    a N 

       

     

  • 8/20/2019 F_MIMO

    18/64

    ECSE610 MIMO - 18

    Capacity comparison

    FOR LARGE SNR: P/W2

    FOR SMALL SNR: In CT(G), all Tx power allocated to the dominant eigenvector,corresponding to

    1, of GGH and the channel is essentially reduced to a SISO

    channel with gain 1.

      CSI at Tx is more important for low SNR

    min( , ) min( , )2

    11

    min( , ) 2

    1

    log 1/ / /

    ( )

    ( ) log 1 / max( , )

     N  L N    L N 

    m m W 

    mm

     L N UT 

    m W 

    m

    P N 

    C  P L N 

     

     

       

    G

    G

    min( , ) min( , )2 2

    1 1

    min( , ) min( , )min( , )2 2

    1 1

    log / log /( )

    1( )

    log / max( , ) log / max( , )

     L N L N  N N 

    m W m W  

    m mT 

     L N    L N  L N UT 

    m W    m W m   m

    P N P N  C 

    C P L N    P L N 

     

         

     

     

     

    G

    G

    2 2

    max max

    min( , ) min( , )2 2

    1 1

    max

    min( , )

    1

    ( ) log 1 / / / log ( )

    ( ) log 1 / max( , ) / max( , ) log ( )

    ( ) ( )max( , ) for 1 or for 1

    ( ) ( )

    T a W W e

     L N L N 

    UT a m W m W e

    m m

    T T 

     L N 

    UT UT  m

    m

    C P P a

    C P L N P L N a

    C C  L N N L L N 

    C C 

     

     

     

     

    G

    G

    G G

    G G

  • 8/20/2019 F_MIMO

    19/64

    ECSE610 MIMO - 19

    SIMO, MISO: capacity

    DIVERSITY-ON-RECEIVE SIMO CHANNEL:

    MT=1, MR =L, h=[h1,h2,…,hL]T, y=hx+w, R W=W2 IL: white Gaussian noise

    C=Eh{log[1+(P/W2)tr{hHh}]}=Eh{log[1+(Ph2 /W2)]}, P/W2=Es /No  Additional Rx antennas provides only a log-increase in capacity. Channel knowledge at Tx for SIMO channels has no capacity benefit.

    tr{hhH}= h12+h22+h32+…+hL2=h2: sum of eigen values of hHh The result confirms the maximal-ratio combining (MRC) principle.

    DIVERSITY-ON-TRANSMIT MISO CHANNEL: MT=N, h=[h1,h2,…,hN]

    T, P/W2=Es /No h unknown at Tx: equal power, P/N, over N Tx antennas

    C= Eh{log[1+(Ph2 /NW2)]}: no improvement in capacity over a SISOchannel.

    h known at Tx: C= Eh{log[1+(Ph2 /W2)]}, same as in SIMO

  • 8/20/2019 F_MIMO

    20/64

    ECSE610 MIMO - 20

    Diversity in MIMO:

    Diversity techniques rely on transmitting the signal over multiple (ideally)independently fading paths (in time/frequency/space).

    Spatial (or antenna) diversity is preferred over time/frequency diversity as it

    does not incur an expenditure in transmission time or bandwidth. Each of MR MT pairs of Tx-Rx antennas provides a signal path from transmitter

    to receiver. By sending the SAME information through different paths, d independently-

    faded replicas of the Tx signal can be obtained and combined at the receiver

    such that the resultant signal exhibits considerably reduced amplitudevariability in comparison to a SISO link and we have a diversity order d ,where 1 ≤ d ≤ MR MT

    Diversity gain (order) d implies that in the high SNR region, Pe   ∼ 1/SNR d as

    opposed to 1/SNR for a SISO system: The higher the diversity gain, the lower

    the Pe Extracting spatial diversity gain in the absence of channel knowledge at the

    transmitter is possible using suitably designed transmit signals, e.g., space–time coding techniques

  • 8/20/2019 F_MIMO

    21/64

    ECSE610 MIMO - 21

    MIMO: Diversity &

    Multiplexing gains

    Spatial Diversity:

    Sending the SAME information through different paths (selected from thetotal of MR MT pairs) to obtain a diversity of d to reduce Pe (∼ 1/SNR 

    d): Gofor Reliability, Counter fading

    Spatial Multiplexing :

    We can convert a general MIMO model to an equivalent diagonal model ofsome rank M ≤ min( MT,MR ) and send DIFFERENT information overdifferent links (selected from M) to increase the transmission rate, i.e., gofor Multiplexing (optimistic approach using rich scattering/fading toadvantage)

    Diversity/Multiplexing Tradeoff in MIMO

  • 8/20/2019 F_MIMO

    22/64

  • 8/20/2019 F_MIMO

    23/64

    ECSE610 MIMO - 23

    Space-Time Coding (STC)

    Channel coding (FEC): with redundancy in time with coding rate rc 1: spatial multiplexing mode (max transmission rate)

    Spectral efficiency BW=(f s Rrc rs)/B= Rrc rs in bits/s/Hz

    1

    2

    MT

    Channel

    coding, r c

    Symbol

    mapping

    Space-

    Time

    Coding

    (STC)

    .

    .

    Rbits/symbol

    f s

  • 8/20/2019 F_MIMO

    24/64

    ECSE610 MIMO - 24

     Alamouti 2x2 Orthogonal Space-Time Block Codefor 2 Tx antennas

    Unitarity=Complex orthogonality

    linearity:

    S: transmission matrix:orthogonal in both the space

    and time

    *

    1 2

    *

    2 1

    s s

    s s

     

    S

    (Siavash M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications”, IEEE JSAC, Oct.1998, pp.1451-1458)

    * * * *

    2 2 2 211 2 1 2 1 2

    1 2 2x2 1 2* *

    2 1 2 1 2 1

    / H H s s s s s s

    s s s ss s s s s s

    S SS I S S

    *

    * *1 2

    1 1 2 2*

    2 1

    1 0 0 0 0 0 0 1

    0 0 0 1 1 0 0 0

    s ss s s s

    s s

       

    S

  • 8/20/2019 F_MIMO

    25/64

    ECSE610 MIMO - 25

    Decoding Alamouti OSTBC

    For 1x2 complex channel G=[G1,G2], and Tx vector s=[s1,s2]T,

    Rx signals in 2 consecutive time slots, Y 1, Y 2 are

    Z1, Z2 can be independently decoded for s1,s2 , respectively

    1 1 1 2 2 1 1 1 1 2 2 1 1 2 1 1

    * * * * * * * *

    2 1 2 2 1 2 1 2 2 1 2 2 1 2 2

    1 1 2 1 1 2

    * * * *

    2 2 1

    *

    2

    *

    2 2 1

     H 

    Y G s G s W Y G s G s W G G s W  

    Y G s G s W G s G s W G G s W  

     Z G G Y G G

     Z G G   Y    G

    G

    1 2 1 1 2 1

    * * * * *

    2 1 2 2 1 2

    * *2 21 1 1 1 2 2

    1 2 * *2 2 2 1 1 2

     H H G G s G G W  

    G G s G G W  

     Z s   G W G W  G G

     Z s   G W G W  

     

     

    2 * *

    1 2 1 1 2 2

    * * * * * *

    2 1 1 2 1 1 2 2 2 1 1 2

    2* * * * * *

    1 1 2 2 1 1 1 1 2 2 1 1 1

    For iid zero-mean Gaussian noise components, W , W with variance , and

     are Gaussian components with E{ } E{ } 0 and

    E =E

    W    G W G W  

    G W G W G W G W G W G W  

    G W G W G W G W G W G W G

       

     

     

    2 2* * * * 2

    1 2 2 2 2 2 2 1 2

    2 2 2* * 2

    2 1 1 2 1 2E

    W G W G W G W G G

    G W G W G G

     

     

  • 8/20/2019 F_MIMO

    26/64

    ECSE610 MIMO - 26

    Decoding Alamouti OSTBC: ML decision

    Equally probable Tx of s1, s2 from A={ak , k=1,2,…,K}

    Receiver knows G, computes Euclidean distances: Z j -(G12+G22)ak 2

    ML decision rule: select ak  for the shortest Euclidean distance.

    Rx SNR: (G4Es /2)/(G2No)=(G2 /2)/(Es /No) E{(G2 /2)(Es /No)}=(Es /No)  Absence of channel knowledge does not provide array gain

    For Rayleigh fading channel, avg. symbol error rate diversity order of 2 and noarray gain

    Full diversity, full-rate complex STBC, i.e., code rate=1.

    For MT=2, MR =1, the Alamouti code is the only optimal STBC that satisfies the

    capacity formula (3dB worse than MRC diversity-on-receive channel with MT=1,MR =2)

    It is the only orthogonal STBC that achieves rate 1, i.e., can achieve its fulldiversity gain without needing to sacrifice its data rate.

    2 2

    0 0

    ( ) exp2 4

    s s

    e

    dE dE  P aQ a

     N N 

       

    G GG

  • 8/20/2019 F_MIMO

    27/64

    ECSE610 MIMO - 27

    ST coding in MIMO frequency flat fading channels

    no channel knowledge at Tx over N Tx antennas, L Rx antennas, J symbol time intervals.

    Symbol set A={ai, i=1,2,…, 2q}

    Block of qk information bits encoded to qn bits.

    Received LxJ matrix Y =[ y(1), y(2),…, y(J)]=GS+W, Transmitted NxJ matrix S=[ s(1), s(2),…, s(J)], E{s}=Es /N=PTs /N

    LxJ noise matrix: W= [w(1), w(2),…, w(J)]

     y(j)=Gs(j)+w(j), j=1, 2,…,J; w(j): zero-mean WGN with NoIL G: LxN channel matrix with E{g

    ln}=0, E{g

    ln2}=1

    Rx ML decoding: Rx knows G 2 2

    1

    arg min arg min ( ) ( ) J 

     j

     j j

      S S

    Y Y - GS y - Gs

  • 8/20/2019 F_MIMO

    28/64

    ECSE610 MIMO - 28

    PEP: pairwise error probability:

    for G, : Gaussian

         

    2/ 42

    2 2 2

    1

    Pr / 2 ,

    where =tr 

    where ( ) and

     Notes: Kronecker product of mxn matrix and m'xn' matrix mm'xnn' ma

    o N 

    o

     L H   H H H 

    l l

    l

    T T 

     L

    Q N e

    vec

    γΣ

    S S' G G S - S'

    G S - S' g S - S' S - S' g G S - S' γΣ Σ γ γΣ

    γ G Σ I S - S'

    A B

       

    11 1

    1 2

    1

    1

    2

    trix

    = , , ,

    ( ) :stack the mxn matrix into a mnx1 vector columwise

    Pr Pr det / 4

    n

    n

    m mn

    n

     L H H 

    G NL G o

    a a

    a a

    vec

     E I E N 

    B B

    C = A B A a a a

    B B

    a

    aA A

    a

    S S' S S' G Σ γ γΣ

  • 8/20/2019 F_MIMO

    29/64

    ECSE610 MIMO - 29

    ST code design criteria:

    For iid spatial white channel G= GW, i.e., E{glngij*}=(l-i)(n-j)

    determinant criterion: coding gain depends on ; therefore tomaximize the coding gain, we maximize the minimum of the determinant of

    rank criterion: spatial diversity gain is indicated by LI(S,S’), with I(S,S’)N;therefore, design code for difference matrix of any pair (S,S’) to be full-rank,i.e., I(S,S’)=N

     V. Tarokh, N. Seshadri, A. R. Calderbank, “Space–Time Codes for High Data Rate Wireless Communication: Performance

    Criterion and Code Construction”, IEEE Transactions on Information Theory , Vol. 44, No. 2, March 1998, pp. 744-765

         

    ( ')

    1

    1th

    Pr det / 4 1 ( ') / 4 /

    where ( ') is the i non-zero eigenvalue of / ' ' for i=1,2,..., ( ')

     for high / >>1 r   (, P

     H H H 

    G

     L I  L

     H 

     NL o i s oi

     H 

    i s

    s o   i

     E 

     I N N E N 

     E N I 

     E N 

     

     

     

     

    S,S

    Σ γ γΣ Σ Σ

    S S' Σ Σ S, S

    S, S S S S S S, S

    S S'   (

    ( ')

    1

    ')

    /' / 4)  L

     L

    s o

     I 

    i

     I 

     E N N 

     

    S,S

    SS,

    S, S

    ( ')

    1

    ( ') I 

    i

    i

     

    S,S

    S, S

    ' '  H 

    S S S S

  • 8/20/2019 F_MIMO

    30/64

    ECSE610 MIMO - 30

    Orthogonal STBC Designs  Alamouti code: 2x2orthogonal STBC, spatial rate=1

    (s – s’: codeword different matrix) effective channel is rendered orthogonal regardless of the channel realization Rx: simple

    scalar ML detection

    achieve full-diversitywithout wasting bandwidth achieve full-rate(two symbols over two time slots)

    Extension to the case of more than 2 antennas?

    For N=4: 4x4 orthogonal STBC, spatial rate=1 (full-rate)

    1 2 3 4

    2 1 4 3

    3 4 1 2

    4 3 2 1

     For N=4, , : real-valued ' orthogonal,i

    s s s s

    s s s ss

    s s s s

    s s s s

    S S S

    V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–Time Block Codes from Orthogonal Designs”, IEEE Trans on Info. The., July 1999, pp. 1456-1467

        *

    2 21 21 2 2x2*

    2 1

    ' ' ' : orthogonal H s s s ss s

    S S S S S I S S

           

    1 2

    1 2 2

    ( ') 4, / ' / for high / >>1,( '

    Pr / ' / / / 4 ' / / 4 , 4

    ) s s o LN  LN 

     LN 

    s s o o

    i I N E N N E N 

     E N N E N N N N N 

     

     

         

    S, S S S

    S S' S S S S

    S,S

  • 8/20/2019 F_MIMO

    31/64

    ECSE610 MIMO - 31

    orthogonal STBC with spatial rate2

    does not exist for spatial rate=1,

    exist for spatial rate 1/2

     V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space–Time Block Codes from Orthogonal Designs”, IEEE Transactions onInformation Theory , Vol. 45, No. 5, July 1999, pp. 1456-1467

    * * * *1 2 3 4 1 2 3 4

    * * * *

    2 1 4 3 2 1 4 3

    * * * *

    3 4 1 2 3 4 1 2

    spatial rate=1/2, N=3

    s s s s s s s s

    s s s s s s s s

    s s s s s s s s

    S

    * * *2 21 2 3 3

    * *22 1 3

    spatial rate=3/4, N=3

    / /

    /

    s s s s

    s s sS * 23* * * *

    2 23 3 1 1 2 2 1 1 2 2

    /

    / / / 2 / 2

    s

    s s s s s s s s s s

  • 8/20/2019 F_MIMO

    32/64

    ECSE610 MIMO - 32

    Orthogonal STBC Designs (cont.) For N = 8: 8x4 STBC, complex-value, spatial rate=1/2

    It is not always possible to find full-rate, full-diversity STBC using (square)orthogonal designs.

    For real constellation (PAM), full-rate, full-diversity designs exist for N = 2, 4, 8

    For complex constellation (e.g. QAM, 8-PSK…), full-rate designs exist if and onlyif N = 2 (Alamouti scheme)

    *

    1

    *

    2

    *

    3

    *

    4

    *

    2

    *

    1

    *

    4

    *

    3

    *

    3

    *

    4

    *

    1

    *

    2

    *

    4

    *

    3

    *

    2

    *

    1

    1234

    2143

    3412

    4321

    S

    ssss

    ssss

    ssss

    ssssssss

    ssss

    ssss

    ssss

  • 8/20/2019 F_MIMO

    33/64

    ECSE610 MIMO - 33

    Space-Time Trellis Codes (STTC)

    Trellis codes applied to MIMO

     A basic trellis structure determining the coded symbols to be transmittedfrom different antennas

    Memorized from one block to another

    Coding advantage vs. Decoding complexity

    S ll C d

  • 8/20/2019 F_MIMO

    34/64

    ECSE610 MIMO - 34

    Space-Time Trellis Codes(STTC) design: 2b/s/Hz, with4PSK and N=2:

    INPUT SIGNAL: 0 1 2 3

    OUTPUTSIGNALS:

    s0as0b s1as1b s2as2b s3as3b

    4-STATE

    8-STATE

    16-STATE

    32-STATEV. Tarokh, N. Seshadri, A. R. Calderbank, “Space–Time Codes for High Data Rate Wireless Communication: Performance

    Criterion and Code Construction”, IEEE Transactions on Information Theory, Vol. 44, No. 2, March 1998, pp. 744-765

    b/ / h d f

  • 8/20/2019 F_MIMO

    35/64

    ECSE610 MIMO - 35

    STTC 2b/s/Hz, with 4PSK and N=2: performance

    Performance: simulation results

    Frame of 130 transmissions out of each transmit antenna

     V. Tarokh, N. Seshadri, A. R. Calderbank, “Space–Time Codes for High Data Rate Wireless Communication: PerformanceCriterion and Code Construction”, IEEE Transactions on Information Theory , Vol. 44, No. 2, March 1998, pp. 744-765

    L=2L=1

  • 8/20/2019 F_MIMO

    36/64

    ECSE610 MIMO - 36

    DELAY DIVERSITY CODING: L=1, N=2

    00,01,02,03,04,05,06,07

    10,11,12,13,14,15,16,17

    20,21,22,23,24,25,26,27

    30,31,32,33,34,35,36,37

    40,41,42,43,44,45,46,47

    50,51,52,53,54,55,56,57

    60,61,62,63,64,65,66,67

    70,71,72,73,74,75,76,77

    1 2 3

    1 2 3

    ... 0

    0 ...

     J 

     J 

    s s s s

    s s s s

     

    S

    STTCrepresentation:e.g., 8PSK

    Transmitting the symbol stream over 1st antenna

    and its one-symbol delayed version over the 2nd

    antenna.

    [S-S’] has rank 2 diversity order of 2L=2

    Rx: y=GS+w, G=[g1,g2], ML decoding: find S for min y-GS2:complex

    y=[y1,y2,…], y1=g1s1+w1, yi+1=g2si+g1si+1+wi+1

    Channel model:

    ZF-DFE (Zero-Forcing Decision-Feedback Equalizer) using

    Symbol ML decoding and iterative canceling:

    select s1 for miny1-g1s12: SLICER (symbol MLD) using previously detected si’ to compute zi+1=yi+1-g2si (DFE)

    and find si+1 for minzi+1-g1si2

    (SLICER) If g1>g2: minimum-phase channel: good. Otherwise, error

    propagation, use all-pass filter (g2+g1D-1)/ (g1+g2D

    -1)

    Case:g1>g2

    Case:g1

  • 8/20/2019 F_MIMO

    37/64

    ECSE610 MIMO - 37

    ST coding for spatial multiplexing

    objective of spatial multiplexing: to maximize transmission rate.

    MIMO channels offer a linear increase in capacity for no additional power orbandwidth expenditure, Rate (SNR) = r log SNR.

    The gain, r, referred to as spatial multiplexing gain (spatial rate), is realized bytransmitting independent data signals from the individual antennas, rN. Under conducive channel conditions, such as rich scattering, the receiver can

    separate the different streams, yielding a linear increase in capacity.

    Rx performs ML decoding of each Rx signal (codeword)

      J=1, Nx1 codeword difference matrix S-S’, [S-S’] [S-S’]H: rank 1   no coding gain, diversity order of L

     

    1

    2

    only one ( ') : non-zero eigenvalue of / ' ' for i= ( ') 1

     for high / >>1, Pr ( ') / / 4 ' / 4

     H 

    s

     L L L

    s o s o o

     E N I 

     E N E N N N 

     

     

     

    S, S S S S S S, S

    S S' S,S S S

  • 8/20/2019 F_MIMO

    38/64

    ECSE610 MIMO - 38

     Vertical Bell Labs Layered Space-Time (V-BLAST) Coding

    Encoding with symbol set

     A={ai, i=1,2,…, 2q} and block of qkinfo bits.

    Transmitter: Split data into MT=N

    streams

    Rx: Y=GS+W

    ML decoding: select S corresponding to

    the min Y-GS 2: very complex

    1:NDEMUX

    TEMPORALENCODER  INTER-LEAVER  SYMBOLMAPPER 

    qk infobits

    TEMPORALENCODER 

    INTER-LEAVER 

    SYMBOLMAPPER 

    1

    N

    qk/N info bits

    qk/N info bits

    n/N coded symbols

    n/N coded symbols

    N independentrow codewords

    If G can be GS-decomposed,G=QB, then

    Z=QHY=BS+QHW

    Gram-Schmidt (GS) decomposition: An mxnmatrix A

    with rank n can be factored uniquely as A =QB where Q

    is an mxnmatrix whose columns are unit length andorthogonal and span the range of A, andQHQ=I.

    Layered decoding:

    1st row: z1=b11s1+n1 can be independently decoded for s1’

    2nd row: removings1(using the previously decoded s

    1’) from z

    2   z2-b21s1=b22s2+n2 can be decoded for s2’ , … ith row: removings1,s2,…,si-1 (using their previously decoded values s1’,s2’,…,s i-1’) from zi   zi-(bi1s1+ bi2s2+…+bi(i-1)si-1)=biis i+n i can be decoded for s i’  A small value of bii could yield unreliable decoded si’, which will create a chain effect in decoding the

    subsequent rows.

    1 2

    11

    21 22

    1 2

    ( 1)1 ( 1)2 ( 1)( 1)

    1 2

    , , ,

    0 0 0

    0 0

    , , ,0

    n

    n

    n n n n

    n n nn

    b

    b b

    b b b

    b b b

    A a a a QB

    q q q

    G Foschini “Layered space time architecture for wireless communication in a

  • 8/20/2019 F_MIMO

    39/64

    ECSE610 MIMO - 39

    diagonal D-BLAST In V-BLAST, there is no coding across these sub-channels: outage therefore occurs whenever one of these

    sub-channels is in a deep fade and cannot support the rate of the stream using that sub-channel. D-BLAST: achievable diversity order of ML for optimum temporal coding and rotation with infinite block-size

    Gaussian code books,

    coding gain from temporal code; achievable array gain of L

    1:NDEMUX

    TEMPORALENCODER  INTER-LEAVER  SYMBOLMAPPER 

    qk infobits

    TEMPORALENCODER 

    INTER-LEAVER 

    SYMBOLMAPPER 

    Out 1

    Out N

    qk/N info bits

    qk/N info bits

    s11

    ,s12

    ,…,s1J R 

    OT A TOR 

    sN1,sN2,…,sNJ

    Out 1: s11 s21 s31 s41 s15 s25 s35 s45 0 0 0

    Out 2: 0 s12 s22 s32 s42 s16 s26 s36 s46 0 0

    Out 3: 0 0 s13 s23 s33 s43 s17 s27 s37 s47 0

    Out 4: 0 0 0 s14 s24 s34 s44 s18 s28 s38 s48

    The coded stream from Tx#nis

    subdivided into J blocks of

    several symbols snj.

    The rotator fills the ST codeword

    from N coded streams in a block-diagonal fashion as shown in the

    following example with J=8, N=4.

    ROTATOR OUTPUTS with N=4:

    Rx: Diagonal-Layer decoding: 2 ways:

    • column by column tentative decisions and cancellation, and then decoding the complete stream, or 

    • (more complex, better performance) detecting the diagonally layered stream, and applying cancellation of

    previously detected streams

    By coding across the sub-channels, D-BLAST can average over the randomness of the individual sub-channels

    and get better outage performance. The D-BLAST scheme suffers from a rate loss because in the initialization

    phase some of the antennas have to be kept silent.

    G. Foschini, Layered space-time architecture for wireless communication in a

    fading environment when using multi-element antennas”,Bell Labs Tech. J.,

    pp.41-59, 1996

  • 8/20/2019 F_MIMO

    40/64

    ECSE610 MIMO - 40

    horizontal encoding

    achievable diversity order >L ,

    coding gain from temporal code; achievable array gain of L

    can reach optimality since each info bit can potentially be spread across allantennas, but requires complex joint decoding of the sub-streams

    1:NDEMUX

    TEMPORALENCODER 

    INTER-LEAVER 

    SYMBOLMAPPER 

    qk infobits

    1

    N

    STC for frequency selective fading:

  • 8/20/2019 F_MIMO

    41/64

    ECSE610 MIMO - 41

    STC for frequency-selective fading:

    gln(t ): equivalent baseband impulse response of the channel from Tx antenna n to Rxantenna l: gln(t )=0 for t  DTs 

    01

    ( ) : signal transmitted from Tx antenna ,

    signal received at Rx antenna : ( ) ( ) ( ) ( ), 1,2,...,s

    n

     DT 

    n

    ln l

     N 

    l n

     x t n

    l y t g x t d w t l L  

     

    Discrete-time representation: 1  ( ) ( ) ( ) ( ), 1, 2,...,

    l ln n

     N 

    ln

     y t i t i w t l L

    g x

     

    ( ) ( ), ( 1 ), , ( )  T 

    n n n ncolumn vector t x t D x t D x t   x    

    ( ), ( 1), , (0)ln ln ln lng D g D g g   : symbol-spaced  samples of the equivalent baseband impulse

    response of the channel from Tx antenna n  to Rx antenna l:  assumed to be zero-mean

    complex circular Gaussian. At time t, for a block of T contiguous symbol intervals

    11 1 1

    1

    ( ), ( 1), , ( 1) , ,

    ( ) ( 1) ( 1)

    : signal block from Tx antenna( 1) ( ) ( 2)

    ( ) ( 1) ( 1)

     N 

     L LN N 

    n n n

    n

    n n n

    n n n

    t t t T  

     x t D x t D x t D T 

     x t x t x t T 

     x t x t x t T 

         

    g g S

    Y y y y GS W G S

    g g S

    S

    n

     

  • 8/20/2019 F_MIMO

    42/64

  • 8/20/2019 F_MIMO

    43/64

    ECSE610 MIMO - 43

    Delay diversity codes for frequency-selective fading:standard delay diversity code: Transmitting the symbol stream over 1st  antenna, its 1-symboldelayed version over the 2nd antenna, and its 2-symbol delayed version over the 3rd antenna, and soon.e.g., N=2, L=1, D=1, T=4

    1 1 1 1 1 1 2 3 4

    2 1 2 2 2 2 2 1 2 3 4

    antenna 1: ( ), ( 1), ( 2), ( 3), ( 4), , , , ,0,

    antenna 2: ( ) ( 1) ( ), ( 1), ( 2), ( 3), ( 4), 0, , , , ,

     Note: addit

    0 0

    0 0

    ional

     x t x t x t x t x t s s s s

     x t d x t d x t x t x t x t x t s s s s

    1 2 3 4

    1 2 3 41

    2 1 2 3 4

    1 2 3 4

      at the end for guard of D=10 0

    0: row 1= row 4, rank of 3 (low)

    0 0

    0

    0

    00

    s s s s

    s s s s

    s s s s

    s s s s

    SS

    S

     

    generalized delay diversity code: Transmitting the symbol stream over 1st antenna, its (D+1)-

    symbol delayed version over the 2nd antenna, and its 2(D+1)-symbol delayed version over the 3rd

    antenna, and so on.e.g., N=2, L=1, D=1

    1 1 1 1 1 1 1 2 3 4

    2 2 2 2 2 1 1 2 3 4

    antenna 1: ( ), ( 1), ( 2), ( 3), ( 4), ( 5), , , , , 0,0,

    antenna 2: ( ), ( 1), ( 2), ( 3), ( 4), ( 5), 0,0, , , , ,

     Note: additional 0 at the end for guard of 1

    0 0

    0 0

    s t s t s t s t s t s t s s s s

    s t s t s t s t s t s t s s s s

     D

    S

    1 2 3 4

    1 2 3 41

    2 1 2 3 4

    1 2 3 4

    0 0 0

    0 0 0: full rank of 4=( 1)

    0 00

    0 00

    s s s s

    s s s s D LN 

    s s s s

    s s s s

    S

    S

     

    MIMO-OFDM:SFBC

  • 8/20/2019 F_MIMO

    44/64

    ECSE610 MIMO - 44

    MIMO OFDM:SFBCMIMO-OFDM: N Tx, L Rx, with F tones

    For tone f, f=1,2,…,F

    In frequency domain, ( ) ( ) ( ) ( ) f f f f  y H s v  (1) (1) (1)

    (1) 0 0(2) (2) (2)

    x1 , x1 x1 ZMCSCG x 0 0

    0 0 ( )( ) ( ) ( )

     LF NF LF LF NF 

    F F F F 

     

    y s wH

    y s wy Hs w s w H

    Hy s w

     

    spatial diversity coding: e.g.,  Alamouti code with tone index, N=2, L=1

    Tx:

    * *11 2 2

    * *22 1 1

    (1, ) (1, 1)( ) , ( 1)

    (2, ) (2, 1)

    ss f s f     s s s f f 

    ss f s f     s s s

     

      S S  

    then IFFT+CPI for 2 Tx

    Rx: removes CP and FFT, and processes

    1 2 1

    * ** * * * *

    2 1 2

    * *21 2 1 1 2

    * * *2 1 2 2

    ( ) ( )( ) ( ) ( ) ( ) ( )

    ( 1) ( 1)( 1) ( 1) ( 1) ( 1) ( 1)

    ( ) ( ) ( ) ( 1)( )

    ( 1) ( 1) (

     f 

     H 

     f 

     H f H f s y f f f w f w f 

     H f H f s y f f f w f w f 

     H f H f s   H w f H w f   f 

     H f H f s   H w

     

    H sy

    H s

    y H*

    1

      if ( ) ( 1)) ( 1)

     f f  f H w f 

    H H 

    the noise components are iid ZMCSCG with variance of2( ) o f N H  

    Beamforming (BF)

  • 8/20/2019 F_MIMO

    45/64

    ECSE610 MIMO - 45

    g ( ) BF techniques are used to create a certain required antenna directive pattern

    to give the required performance under the given conditions, e.g., usingphased-array systems.

    Switched BF requires the overall system to determine the direction of arrival ofthe incoming signal and then switch in the most appropriate beam:

    Finite number of fixed predefined patterns

    the fixed beam is unlikely to exactly match the required direction.  Adaptive BF:

    large number of patterns adjusted to the scenario in real time.

    are able to direct the beam in the exact direction needed, and also move

    the beam in real time - this is a particular advantage for moving systems -mobile telecommunications. The cost is the considerable extra complexity

  • 8/20/2019 F_MIMO

    46/64

    MIMO in WiMAX

  • 8/20/2019 F_MIMO

    47/64

    ECSE610 MIMO - 47

  • 8/20/2019 F_MIMO

    48/64

    MIMO in LTE

  • 8/20/2019 F_MIMO

    49/64

    ECSE610 MIMO - 49

    Downlink

    - Single antenna transmission, no MIMO

    - Transmit diversity

    - Open-loop spatial multiplexing, no UE feedback required

    - Closed-loop spatial multiplexing, UE feedback required

    - Multi-user MIMO (more than one user is assigned to the same resource block)

    - N Beamforming

    Uplink - In order to keep the complexity low at the UE end, MU-MIMO is used in the

    uplink. To do this, multiple UEs, each with only one Tx antenna, use the same

    channel.

    SU-MIMO vs. MU-MIMO

  • 8/20/2019 F_MIMO

    50/64

    ECSE610 MIMO - 50

    SU MIMO vs. MU MIMO

    Single - user MIMO

    The data rate is to increased for a single user

    In the 3GPP release 8 (LTE) standard, allows

    us to achieve 300Mbps for DL and 75Mbps

    for UL

    Using the Spatial Multiplexing to combine the

    bandwidth of each antennas.

    Multi- user MIMO: the individual streams

    are assigned to various users.

  • 8/20/2019 F_MIMO

    51/64

    ECSE610 MIMO - 51

    4G Systems: SU-MIMO vs. MU-MIMO

    3GPP LTE: General Structure for Downlink

  • 8/20/2019 F_MIMO

    52/64

    ECSE610 MIMO - 52

    Physical Channels

    Closed Loop MIMO

  • 8/20/2019 F_MIMO

    53/64

    ECSE610 MIMO - 53

    p

    Precoded Spatial Multiplexing: Rank 1

    Closed Loop MIMO

  • 8/20/2019 F_MIMO

    54/64

    ECSE610 MIMO - 54

    Precoded Spatial Multiplexing: Rank 2

    Far-field Analysis of Linear Array

  • 8/20/2019 F_MIMO

    55/64

    ECSE610 MIMO - 55

    N321t   EEEEE   ...

    tE

    00

    3

    30

    2

    2

    1

    1 ...321

    EEEEE 0t N 

     jkr 

     N 

     jkr  jkr  jkr 

    ew

    ew

    ew

    ew

     N 

    In far field region, r i >> array dimension:

    svariationamplitudefor...

    svariation phasefor

    cos)1(

    cos2

    cos

    ...

    321

    3

    2

    1

    321

    r r r r r 

    d  N r r 

    d r r 

    d r r 

    r r 

     N 

     N 

     N 

     

     

     

         

                     

    (AF)FactorArray

    cos1cos2

    3

    cos

    21

     point)referenceatelement(single

    ...        d  N  jk 

     N 

    d  jk  jkd  jkr 

    ewewewwr 

    e  

    E

    0t   EE

      Factor Array point)referenceatelement(singletotal     EE

    Reference: C.A. Balanis, Antenna Theory Analysis and Design, 3rd edition, John Wiley & Son, Inc, 2005

    Two-Element Array

  • 8/20/2019 F_MIMO

    56/64

    ECSE610 MIMO - 56

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

    1

    1

    2

    1w

    1

    1

    2

    1w

     jw

    1

    2

    1

     j

    w1

    2

    12 :spacingElement  d 

    3D Radiation Patterns of 2 Element Array

  • 8/20/2019 F_MIMO

    57/64

    ECSE610 MIMO - 57

    11

    21w 1

    1

    21w

     jw

    1

    2

    1

     j

    w1

    2

    1

    2D Radiation Patterns of 2 Element ArrayXZ Cut,  = 0 degree

    XZ Cut,  = 0 degree

  • 8/20/2019 F_MIMO

    58/64

    ECSE610 MIMO - 58

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

      -20

      -15

      -10

      -5

      0

    30

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

    11

    21w

    11

    21w

     jw

    1

    2

    1

     j

    w1

    2

    1

    Four-Element Array, W0

  • 8/20/2019 F_MIMO

    59/64

    ECSE610 MIMO - 59

    2 :spacingElement  d   

    5.05.05.05.05.05.05.05.0

    5.05.05.05.0

    5.05.05.05.0

    0w

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

    3D Radiation Patterns of 4 Element Array

  • 8/20/2019 F_MIMO

    60/64

    ECSE610 MIMO - 60

    5.0

    5.0

    5.0

    5.0

    00w

    5.0

    5.0

    5.0

    5.0

    01w

    5.0

    5.0

    5.0

    5.0

    02w

    5.0

    5.0

    5.0

    5.0

    03w

    2D Patterns of 4 Element Array, W0XZ Cut = 0 degree

    XZ Cut,  = 0 degree

  • 8/20/2019 F_MIMO

    61/64

    ECSE610 MIMO - 61

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    , g

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

      -20

      -15

      -10

      -5

      0

    30

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

    5.0

    5.0

    5.0

    5.0

    00w

    5.0

    5.0

    5.0

    5.0

    01w

    5.0

    5.0

    5.0

    5.0

    02w

    5.0

    5.05.0

    5.0

    03w

    Four Element Array W1

  • 8/20/2019 F_MIMO

    62/64

    ECSE610 MIMO - 62

    Four-Element Array, W1

    2 :spacingElement

     d 

    5.05.05.05.0

    5.05.05.05.0

    5.05.05.05.05.05.05.05.0

    1

     j j

     j j

     j j j j

    w

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

    3D Radiation Patterns of 4 Element Array

  • 8/20/2019 F_MIMO

    63/64

    ECSE610 MIMO - 63

    5.0

    5.0

    5.0

    5.0

    10

     j

     jw

    5.0

    5.0

    5.0

    5.0

    11 j

     j

    w

    5.0

    5.0

    5.0

    5.0

    12

     j

     jw

    5.0

    5.05.0

    5.0

    13 j

     j

    w

    2D Patterns of 4 Element Array, W1XZ Cut,  = 0 degree

    XZ Cut,  = 0 degree

  • 8/20/2019 F_MIMO

    64/64

    ECSE610 MIMO - 64

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

      -20

      -15

      -10

      -5

      0

    30

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

      -20

      -15

      -10

      -5

      0

    30

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    XZ Cut,  = 0 degree

      -20

      -15

      -10

      -5

      030

    150

    60

    120

    90 90

    120

    60

    150

    30

    180

    0

    5.0

    5.0

    5.05.0

    10

     j

     jw

    5.0

    5.0

    5.05.0

    11 j

     j

    w

    5.0

    5.0

    5.0

    5.0

    12

     j

     jw

    5.0

    5.0

    5.0

    5.0

    13 j

     j

    w