44
P-06-79 Forsmark site investigation Boremap mapping of telescopic drilled borehole KFM06C Jesper Petersson, Göran Skogsmo, Johan Berglund, Ilka von Dalwigk, Anders Wängnerud, Peter Danielsson SwedPower AB Allan Stråhle, Geosigma AB May 2006 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

Forsmark site investigation Boremap mapping of telescopic ... fileP-06-79 Forsmark site investigation Boremap mapping of telescopic drilled borehole KFM06C Jesper Petersson, Göran

  • Upload
    duongtu

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

P-06-79

Forsmark site investigation

Boremap mapping of telescopic drilled borehole KFM06C

Jesper Petersson, Göran Skogsmo, Johan Berglund,

Ilka von Dalwigk, Anders Wängnerud, Peter Danielsson

SwedPower AB

Allan Stråhle, Geosigma AB

May 2006

Svensk Kärnbränslehantering ABSwedish Nuclear Fueland Waste Management CoBox 5864SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00Fax 08-661 57 19 +46 8 661 57 19

CM

Gru

ppen

AB

, Bro

mm

a, 2

006

ISSN 1651-4416

SKB P-06-79

Forsmark site investigation

Boremap mapping of telescopic drilled borehole KFM06C

Jesper Petersson, Göran Skogsmo, Johan Berglund,

Ilka von Dalwigk, Anders Wängnerud, Peter Danielsson

SwedPower AB

Allan Stråhle, Geosigma AB

May 2006

Keywords: KFM06C, Geology, Drill core mapping, BIPS, Boremap, Fractures, Forsmark, AP PF 400-05-079.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

This report presents the results from the Boremap logging of telescopic drilled borehole KFM06C. The borehole is located north of Bolundsfjärden, in the northeastern part of Forsmark site investigation area, and plunges 60° towards NNE. The main purpose for the location of this borehole was to define the northeastern margin of the tectonic lens that largely coincides with the site investigation area. The full length of KFM06C is 1,000.43 metres. The BIPS-image usable for mapping covers the interval 102.13–996.91 metres after length adjustment. The lowermost metres of the drill core were mapped in Boremap without any complementary BIPS-image. All intersected structures and litholo-gies have been documented in detail by integrating information from the drill core and the BIPS-image.

KFM06C is drilled from the tectonic lens into a wide belt of aplitic metagranite. The bound-ary between the two domains is gradual at a borehole length of about 410 metres (i.e. a true depth of 340–350 metres). Above this level, the borehole is dominated by medium-grained metagranite with subordinate occurrences of pegmatitic granite and metadiorite/quartz metadiorite. The aplitic metagranite that predominates below 410 metres length has been variably affected by intense albitization. This alteration has locally rendered the recognition of the protolith almost impossible, and some of the affected intervals are inferred to be the medium-grained metagranite, especially in the lowermost 100 metres of the borehole. Other rock units that form continuous occurrences of volumetric importance within the belt of aplitic metagranite include pegmatitic granite and fine- to finely medium-grained metagranitoids. In addition, there is a noteworthy occurrence of amphibolite associated with an intermediate, fine-grained rock inferred to be metavolcanic. Virtually all rocks in the borehole have experienced Svecofennian metamorphism under amphibolite facies condi-tions.

Structurally, KFM06C is characterised by composite L-S fabrics, with a predominance of linear mineral fabrics in the medium-grained metagranite, and a slight predominance of tectonic foliation in the aplitic metagranite that occurs below 410 metres length. Totally 20 narrow zones of more intense ductile and brittle-ductile deformation have been regis-tered in KFM06C. A concentration of deformation zones is found at 220.5–229.4 metres length.

The total number of fractures registered outside crush zones and sealed networks during the boremap-logging of KFM06C amounts to 4,457. Of these are 1,122 open, 74 partly open and 3,261 sealed. In addition, there are 294 sealed networks, nine crush zones, nine breccias and three cataclasites registered in the mapped interval. The total length of all sealed networks amount to 106.4 metres (i.e. about 12% of the mapped interval). All nine crush zones occur in the upper 540 metres of the borehole. Chlorite and calcite are the most frequent fracture filling minerals within KFM06C. A typical mineral assemblage, commonly found in fractures inferred to be sealed, consists of hematite stained adularia together with calcite, chlorite, and locally pyrite and quartz. Other minerals preferably found in the sealed fractures are prehnite, laumontite, epidote and biotite. Minerals largely restricted to open fractures include clay minerals, asphaltite down to ca 124 metres borehole length, sericite, fluorite and Fe-hydroxide. Pyrite occurs in both sealed and open fractures.

Sammanfattning

Föreliggande rapport redovisar resultaten från boremapkarteringen av teleskopborrhål KFM06C. Borrhålet är beläget norr om Bolundsfjärden, i norra delen av undersöknings-område Forsmark, och stupar 60° mot NNO. Det huvudsakliga syftet med borrhålets placering var att definiera den nordöstra begränsningen av den tektoniska lins som i hög grad sammanfaller med undersökningsområdet. Den totala längden av KFM06C är 1 000,43 meter och den BIPS-bild som är användbar för kartering täcker intervallet 102,13–996,91 meter, efter längdjustering. De understa 3,3 metrarna av borrhålet är karterade med Boremap utan kompletterande BIPS-bild. Alla strukturer och litologier i det Boremapkarterade intervallet har dokumenterats i detalj genom att integrera information från borrkärnorna och BIPS-bilderna.

KFM06C har borrats från den tektoniska linsen in i ett brett stråk av aplitisk metagranit. Gränsen mellan de två bergartsdomänerna är gradvis och uppträder på en borrhålslängd av ungefär 410 meter. Över denna nivå domineras borrhålet av medelkornig metaganit med underordnade förekomster av pegmatitisk granit och metadiorit/kvartsmetadiorit. Den aplitiska graniten, som dominerar under 410 meters längd, har i varierande utsträckning genomgått albitisering. Ställvis är det nära nog omöjligt att urskilja ursprungsbergarten och vissa omvandlade delar uppvisar texturalla likheter med den medelkorniga metagraniten, speciellt i de understa 100 metrarna av borrhålet. Andra bergarter av volymmässig betydelse i stråket med aplitisk metagranit inkluderar pegmatitisk granit och fin- till fint medelkorniga metagranitoider. Dessutom finns en anmärkningsvärd förekomst av amfibolit associerad med en intermediär, finkornig bergart som bedömts vara av vulkaniskt ursprung. Största delen av berggrunden i området har genomgått Svekofennisk amfibolitfacies-metamorfos.

KFM06C karaktäriseras vidare av en sammansatt L-S-struktur, med en dominerande mineralstänglighet i den medelkorniga metagraniten och en något förhärskande foliations-komponent i den aplitiska metagraniten som uppträder under 410 meters längd. Totalt har 20 mindre zoner med plastisk och spröd-plastisk deformation har registrerats i KFM06C, med en koncentration mellan 220,5 och 229,4 meters längd.

Det totala antalet sprickor som registrerats och inte ingår i krosszoner eller läkta sprick-nätverk vid boremapkarteringen av KFM06C, uppgår till 4 457. Av dessa är 1 122 öppna, 74 partiellt öppna och 3 261 läkta. Dessutom har 294 läkta spricknätverk, nio krosszoner, nio breccior och tre kataklsiter registrerats i det karterade intervallet. Den totala längden av de läkta spricknätverken uppgår till 106,4 meter (dvs. ungefär 12 % av det karterade intervallet). Alla nio krosszoner uppträder i de övre 540 metrarna av borrhålet. Klorit och kalcit är de överlägset vanligaste sprickmineralen i KFM06C. En typisk mineralassociation, som vanligtvis uppträder i sprickor som bedömts vara läkta, utgörs av hematitimpregnerad adularia tillsammans med kalcit och klorit, samt lokalt pyrit och kvarts. Andra mineral som främst påträffats i läkta sprickor är prehnit, laumontit, epidot och biotit. Mineral som till största delen är begränsade till öppna sprickor är lermineral, bergbeck förekommer ner till 124 meters borrhålslängd, sericit, fluorit och järnhydroxid. Pyrit är vanligt förekommande både i läkta och öppna sprickor.

Contents

1 Introduction 7

2 Objectiveandscope 9

3 Equipment 113.1 Description of equipment/interpretation tools 11

4 Execution 134.1 General 134.2 Preparations 134.3 Data handling 134.4 Analyses and interpretations 144.5 Nonconformities 15

5 Results 175.1 Lithology 175.2 Ductile structures 205.3 Alteration 205.4 Fractures 21

5.4.1 Fracture frequencies and orientations 215.4.2 Fracture mineralogy 22

References 25

Appendix1 WellCAD image 27Appendix2 Borehole diameters 35Appendix3 Downhole deviation measurements 37Appendix4 Length reference marks 51

1 Introduction

Since 2002, SKB investigates two potential sites at Forsmark and Oskarshamn, for a deep repository in the Swedish Precambrian basement. In order to characterise the bedrock down to a depth of about 1 km in the central part of the Forsmark site investigation area, three deep telescopic boreholes, denoted KFM01A, KFM02A and KFM03A, were drilled. Each borehole starts with 100 metres of percussion drilling, followed by core drilling down to about 1,000 metres depth (cf SKB MD 620.004). After completion of these initial drillings, SKB launched a more extensive, complementary drilling programme, aiming to solve more specific geological issues. Hitherto, six additional telescopic boreholes have been drilled (KFM04A–KFM08A and KFM06C). An important aspect is to define the northeastern margin of the tectonic lens, which largely coincides with the boundary of the site investigation area. To obtain such information, borehole KFM06C was drilled north of Bolundsfjärden with 60° inclination towards NNE (26°) (Figure 1-1). The borehole has a total length of about 1,000 metres.

The drilling activities in KFM06C were finished 29 June 2005, and the geological logging of the borehole started 12 September and ended 24 November 2005.

A detailed geological logging of the drill cores obtained through the drilling programs is essential for subsequent sampling and borehole investigations, and consequently, for the three-dimensional modelling of the site geology. For this purpose, the so-called Boremap system has been developed. The system integrates results from geological drill core logging, or alternatively, the drill cuttings, when a core is not available, with information from BIPS-logging (Borehole Image Processing System) and calculates the absolute position and orientation of fractures and various planar lithological features (SKB MD 143.006 and 146.005).

This document reports the results gained by the geological logging of KFM06C, which is one of the activities performed within the site investigation at Forsmark. The work was carried out in accordance with activity plan AP PF 400-05-079. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descrip-tions are SKB’s internal controlling documents.

Table1‑1. Controllingdocumentsfortheperformanceoftheactivity.

Activityplan Number Version

Boremapkartering av teleskopborrhål KFM06C AP PF 400-05-079 1.0

Methoddocuments Number VersionMetodbeskrivning för Boremap-kartering SKB MD 143.006 2.0Nomenklatur vid Boremap-kartering SKB MD 143.008 1.0Mätsystembeskrivning för Boremapkartering, Boremap v 3.0 SKB MD 146.005 1.0

Figure 1-1. Generalized geological map over Forsmark site investigation area and the projection of KFM06C in relation to other cored boreholes from the drilling programme.

2 Objectiveandscope

Borehole KFM06C starts with percussion drilling (Ø = 251 mm) to a length of 100.40 metres, followed by core drilling at Ø = 86 mm to a length of 102.08 metres, and at Ø = 77 mm down to full borehole length at 1,000.43 metres. The diameters of the two drill cores are 70 and 51 mm, respectively, under ideal conditions. The soil cover is approximately 1.9 metres. Material from the percussion-drilled part is not included in the mapping engagement. The BIPS-image usable for geological logging covers the length interval 102.10–992.15 metres (after adjustment 102.13–996.91 metres). Thus, remaining part of the drill core, from 996.92 to 1,000.43 metres (1,000.22 metres after adjustment), was mapped by Boremap without any complementary BIPS-image.

The aim of the geological borehole logging is to obtain a detailed documentation of all structures and lithologies in the interval that was core drilled at Ø = 77 mm. These data will serve as a platform for forthcoming analyses of the drill cores, aimed at investigating geological, petrophysical and mechanical aspects of the rock volume, as well as site descriptive three-dimensional modelling.

11

3 Equipment

3.1 Descriptionofequipment/interpretationtoolsAll BIPS-based mapping was performed in Boremap v 3.6. This software contains the bedrock and mineral standard used by the Geological Survey of Sweden (SGU) for geological mapping of the surface at the Forsmark site investigation area, to enable correlation with the surface geology. Additional software used during the course of the geological logging of the core was BIPS Viewer v 1.10 and Microsoft Access. The final data presentation was made by Geoplot and WellCAD v 3.2.

The following equipment was used to facilitate the core logging: folding rule, concentrated hydrochloric acid diluted with three parts of water, unglazed porcelain plate, knife, hand lens, paintbrush and tap water.

1�

4 Execution

4.1 GeneralDuring the core logging, the 900 metres drill core obtained from the interval 102.08–1,000.43 metres of KFM06C was available in its full length on roller tables in the core-mapping accommodation at Forsmark (the Llentab hall, near the SKB/SFR-office). The BIPS-based mapping of KFM06C was preceded by an overview mapping made by Kenneth Åkerström. No thin-sections were available from the drill cores, and all litho-logical descriptions are based on ocular inspection. Most of the mapping was done by two geologists at a time, forming a core logging team. One of the geologists did the core logging while the other registered the information in Boremap.

The core logging of KFM06C was performed in Boremap v 3.6 according to activity plan AP PF 400-05-079 (SKB internal document) following the SKB method description/instruction for Boremap mapping, SKB MD 143.006 (v 2.0) and 143.008 (v 1.0). A WellCAD summary of the mapping is presented in Appendix 1.

4.2 PreparationsThe length registered in the BIPS-image deviates from the true borehole length with increasing depth, and the difference at the bottom of KFM06C is about 5 metres. It was, therefore, necessary to adjust the length in KFM06C with reference to groove millings cut into the borehole wall at every 50 metres, with the deepest slot at a length of 960 metres. The precise level of each reference mark can be found in SKB’s database SICADA (Appendix 4). However, the adjusted length is still not completely identical with the one given in the drill core boxes, as the core recovery may yield erroneous lengths. The difference may locally exceed 2 dm.

Data necessary for calculations of absolute orientation of structures in the borehole includes borehole diameter, azimuth and inclination, and these data were imported directly from SKB’s database SICADA (Appendices 2 and 3).

4.3 DatahandlingTo obtain the best possible data security, the mapping was performed on the SKB intranet, with regular back-ups on the local drives.

In order to avoid that some broken fractures had not been registered, the number of broken fractures in the drill core was regularly checked against the number of registered fractures. The quality routines include also daily controls of the mapping by detailed examination of Boremap generated variable/summary reports and WellCad log to match. The final quality check of the mapping was done by a routine in the Boremap software. The primary data were subsequently exported to the SKB database SICADA, where they are traceable by the activity plan number.

1�

4.4 AnalysesandinterpretationsA major flaw in Boremap system is the lack of distinction between fractures that intersect the whole borehole (‘infinite fractures’) and those that end within the drill core (‘finite fractures’). The latter category includes fractures that (1) are slightly curved and run more or less parallel with the borehole axis, (2) ends in other fractures, (3) splays from other fractures and (4) ends in the drill core. For modelling purposes, it was decided to separate those fractures that intersect the central borehole axis from those that never reach the centre. Fractures limited to less than half of the borehole are, therefore, marked by ‘#’ in the attached comments.

Another problem with the core logging system is related to geological features (mainly fractures) that can be observed only in the drill core. This problem usually arises from poor resolution in the BIPS-image, which in the present case often is caused by the occurrence of suspension from drilling, brownish black coating from the drilling rods on the borehole walls and/or disturbances in the movement of the BIPS-camera (see Section 4.5). However, even in the most perfect BIPS-image, it is sometimes difficult to distinguish a thin fracture, sealed by a low contrast mineral. All fractures observed in the drill core, but not recognized in the BIPS-image, have been registered as ‘not visible in BIPS’ in Boremap, to prevent them from being used in forthcoming fracture orientation analysis. If possible, they are still oriented relative to other structures with known orientations. Fractures supposed to be induced by the drilling activities fall within this category. Obviously drilling-induced fractures are not included in the mapping.

The resolution of the BIPS-image does generally make it possible to estimate the width of fractures with an error of ± 0.5 mm. Thus, reliable measurements of fracture widths/apertures less than 1 millimetre are possible to obtain in the drill core. The minimum width/aperture given is therefore 0.5 mm, in accordance with the nomenclature for Boremap mapping (SKB MD 143.008; v 1.0).

The fracture mapping focuses on the division into broken and unbroken fractures, depend-ing on whether they are parting the core or not. Broken fractures include both open fractures and originally sealed fractures, which were broken during the drilling or the following treatment of the core. To decide if a fracture was open, partly open or sealed in the rock volume (i.e. in situ), SKB has developed a confidence classification expressed at three levels, ‘possible’, ‘probable’ and ‘certain’, on the basis of the weathering of the fracture surface and fit of the fracture planes. The criteria for this classification are given in SKB method description for Boremap mapping, SKB MD 143.006 (v 2.0).

Up to four infilling minerals can be registered in the database for each fracture. As far as possible, they are given in order of decreasing abundance in the fracture. Additional minerals (i.e. five or more), which occur in a few fractures, are noted in the attached comment. However, it must be emphasized that this provides no information of the volumetric amount of individual minerals. In a fracture with two minerals, the mineral registered as ‘second mineral’ may range from sub-microscopic staining up to amounts equal to that of the mineral registered as ‘first mineral’. Hematite, for example, occur consistently as extremely thin coatings or impurities in other fracture minerals, such as adularia and laumontite.

1�

4.5 NonconformitiesSeveral fractures within KFM06C are sealed by laumontite (Ca-zeolite). These fractures occur as both broken and unbroken, but dehydration of laumontite tends to produce volumetric changes, and the sealing will eventually crackle and break the drill core. Thus, laumontite-bearing fractures suspected to have been sealed originally are registered as unbroken.

Some fracture filling minerals are more conspicuous than other. For example, the distinct red tinting shown by sub-microscopic hematite reveals extremely low concentrations of the mineral. Also the use of diluted hydrochloric acid for identification of calcite makes it possible to detect amounts that are macroscopically invisible. The amount of fractures filled with other less conspicuous minerals may, on the other hand, be underestimated. Pyrite, which typically forms up to millimetre-sized, isolated, idiomorphic crystals, might for example be underrepresented in unbroken fractures.

As in previous cored boreholes, the mapping of KFM06C was locally hampered by suspended drill cuttings, brownish black coatings on the borehole wall as well as over exposure and poor contrast in the BIPS-image. The most crucial quality-reducing factor is the dark coating. It is frequent below 510 metres in the borehole, and ubiquitous in the interval between 733 and 971 metres, where it locally obscures more than half of the borehole wall. Typically, it occurs a spiral pattern or a single band along the borehole axis. This coating phenomenon is obviously drill induced, and the explanation proposed is that the coatings originate from metal fragments abraded from the drill rods. Another, more local problem, is mottling of the BIPS-image. Such mottled intervals occur at four levels: 201.64–202.14, 230.58–232.16, 269.25–271.80, 284.45–286.68 metres (adjusted length). Geological features (e.g. fractures) depicted in these mottled intervals are typically distorted and sometimes difficult to distinguish /see Figure 4-1 in Petersson et al. 2005e/. The mottling is obviously a result of disturbances in the normally constant movement of the BIPS-camera.

Drill induced crushes have been noted at 284.66–285.11, 398.95–399.07, 698.85–699.21 metres of KFM6C. Several pieces of the crushed material in the uppermost interval have fracture coating. These fractures were registered as broken fractures.

Both during the mapping and the subsequent work with the mapping data, we noted a few inexplicable errors in the database. These were all corrected, though there might still be unnoticed errors. We disclaim the responsibility for all such errors caused by the short-comings in the software.

1�

5 Results

5.1 LithologyBorehole KFM06C is located in the northeastern part of the site investigation area and plunges 60° northeastward, towards the ductile, high-strain belt, which is equivalent to rock domain 32 /cf SKB 2004/ and defines the northeastern margin of the tectonic lens of less intense ductile strain (i.e. rock domain 29). The boundary between the two domains is gradual at a borehole length of about 410 metres (i.e. a true depth of 340–350 metres). The distinction between the two domains in KFM06C is rather based on textural and lithological arguments than on the structural character of the rock. The upper 410 metres of the borehole, within rock domain 29, are dominated by medium-grained metagranite (rock code 101057) with subordinate occurrences of pegmatitic granite (rock code 101061), metadiorite/quartz metadiorite (rock code 101033), amphibolite (rock code 102017) and fine- to finely medium-grained granite (rock code 111058). The remaining part of KFM06C consists mainly of aplitic metagranite (rock code 101058), which has been variably affected by intense albitization. This alteration has locally rendered the recognition of the protolith almost impossible, and some of the affected intervals are inferred to be medium-grained metagranite (rock code 101057), especially in the lowermost 100 metres of the borehole. Other rock units that form continuous occurrences of volumetric importance in this part of the borehole (i.e. below 410 metres) include pegmatitic granite (rock code 101061) and fine- to finely medium-grained metagranitoids (rock code 101051) of granodioritic composition. Another noteworthy occurrence, which extends from 745 to 796 metres length, consists of amphibolite associated with an intermediate, fine-grained rock inferred to be metavolcanic. In addition, there are a number of minor occurrences within the bore-hole, none exceeding a few metres in length. Except for a few late veins or dykes, all rocks have experienced Svecofennian metamorphism under amphibolite facies conditions.

The medium-grained metagranite(-granodiorite) (rock code 101057) is similar with the predominant variety of metagranite-granodiorite in the other deep boreholes located in rock domain 29. It is typically granitic with a tendency to be slightly granodioritic. Texturally, the rock is rather equigranular with elongated quartz aggregates, alternating with feldspar-dominated aggregates and thin streaks of biotite. The colour of the rock ranges from greyish red to grey. However, completely grey varieties, lacking the reddish tint, are sparse and typically associated with metadiorites/metagabbros (e.g. at 220.3–225.8 metres length) and amphibolites. Minor sections variably speckled by fine-grained, whitish plagioclase occur sporadically throughout the borehole. Microscopic examination of similar rocks from KFM01A and KFM03A suggests that the feature is a result of retrograde sericitization /Petersson et al. 2004c/. The metagranite(-granodiorite) in the lowermost 100 metres of the borehole are generally more fine-grained and apparently affected by albitization, which obliterates much of the original magmatic texture.

Aplitic metagranite (rock code 101058) is generally restricted to the lower 600 metres of the borehole. There are, however, a few minor occurrences above that level, but only one of them at 307.7–309.5 metres exceeds one metre in length. The rock is typically equi-granular and greyish red to reddish grey in colour. A significant amount is variably bleached and characterized by flecks of stretched aggregates of ferromagnesian minerals (Figure 5-1). The overall appearance of this rock variety is highly reminiscent of the albitized rock in the lower parts of KFM06A, KFM08A and outcrops along the northeastern margin of the investigation site /cf Petersson et al. 2005abd/. Bleached and/or biotite flecked intervals were, therefore, mapped as ‘albitized’. However, defining the relative intensity of the

1�

albitization by ocular inspection is more difficult, but the majority has been mapped as ‘weak’ to ‘medium’. The alteration is evidently pre- or syn-metamorphic with no apparent relationship to existing brittle structures. Thus, some late veins and dykes of pegmatitic granite (rock code 101061) and fine- to finely medium-grained granitoids (rock code 101051) appear unaffected by the alteration.

Amphibolites (rock code 102017) and metadiorites/quartz metadiorites (rock code 101033) occupy almost 9% of the mapped interval of KFM06C. However, about half of the total rock volume is concentrated into a more or less continuous amphibolite body at 745.0– 785.5 metres. Metadiorites/quartz diorites constitute about 20% of the rocks in this group. Except for one occurrence at 467.4–469.8 metres, all metadiorites/quartz metadiorites are restricted to a length interval between 225 and 261.5 metres. Generally, the amphibolites are fine-grained, equigranular with a large proportion of biotite. Occurrences mapped as metadiorites/quartz metadiorites, on the other hand, are typically slightly porphyritic, quartz-bearing, less hornblende-rich and have a slightly coarser grain-size relative to the amphibolites. Extensions and contacts of both the amphibolites and the metadiorites/quartz metadiorites are more or less parallel with the tectonic fabric, and some occurrences are surrounded by up to one decimetre wide rims of whitish, leucogranitic material, similar to the whitened, ‘albite rock’ described above. Disseminations of pyrite and/or pyrrhotite are macroscopically visible in some of the occurrences.

Figure 5-1. Photographs showing an albitized section of aplitic metagranite (rock code 101058) at 889.35–889.66 metres length. The characteristic flecks of biotite are here arranged in well-defined linear structures, which in turn describe a fold structure; (b) is rotated about 90° relative to (a) and shows that lineation is parallel with the inferred foldaxis. Photos by Alf Sevastik.

1�

Fine- to finely medium-grained metagranitoids (rock code 101051) of mostly granodioritic composition occupy about 8% of KFM06C. Major occurrences of these rocks are restricted to the intervals at 474–623 and 812–885 metres. Occurrences outside the intervals are scarce and are typically less than one metre wide. Some of these rocks show a slightly feldspar porphyritic texture, though the majority is equigranular. The mineral fabric is commonly linear and external contacts are typically discordant to the tectonic foliation in the wall rock.

Dykes, veins and segregations of pegmatite, pegmatitic granite, aplite and leucogranitic material are frequent throughout the borehole. Most occurrences are some decimetre or less, but several pegmatites/pegmatitic granites reach up to a few metres in width. The pegmatitic granites are generally texturally heterogeneous, often with a highly variable grain-size, and some occurrences include intervals of finely medium-grained, equigranular granite. Rather coarse magnetite, and subordinately hematite, has been identified in some pegmatites. A few pegmatites also contain accessory amounts of sulphides, such as pyrite, and some probable garnet. Despite the textural variability and temporal span within this unit, most of these rocks were grouped as ‘pegmatite, pegmatitic granite’ (rock code 101061). Rocks related to the pegmatitic material, such as fine to finely medium-grained leucogranite (111058) and some minor aplites, constitute about 2% of the mapped interval. Some of the leucogranites are highly reminiscent of the more granitic varieties of the abovementioned fine- to finely medium-grained metagranitoids (rock code 101051). A distinctive criterion apart from their late-tectonic character is, however, their anomalously high natural gamma radiation. The aplites (rock code 1062), on the other hand, were distinguished from the previously described aplitic metagranite (rock code 101058) by the fact that they are more massive. Quartz-dominated segregations or veins were coded as 8021.

Occurrences of a fine-grained, intermediate rock of inferred volcanic origin (rock code 103076) are restricted to three intervals of KFM06C: 120–127, 644–708 and 785–797 metres. The latter interval consists of a single, continuous occurrence intimately associated with the lower contact of a 40 metres long amphibolite. Other occurrences range up to 1.7 metres in length. The rock is generally equigranular, dark grey in colour and all contacts are parallel with the tectonic fabric. All occurrences are structureless, and except for the grain-size, there is no textural or structural macroscopic feature that unambiguously points towards a volcanic origin of the rocks.

Some minor occurrences of skarn-like material (rock code 108019) sporadically occurs below 444 metres length in KFM06C. These are mainly concentrated into two length inter-vals: 727–739 and 814–816.5 metres. Occurrences outside these intervals are found at the following lengths: 444.82–444.95, 674.20–674.21 and 993.94–993.97 metres. They are all vaguely defined and distinguished by their visible content of epidote and/or prehnite. Other components are feldspars, quartz, magnetite and probable garnet. None of the occurrences exceed seven decimetres in core-length, though the majority is less than one decimetre in length. All of them occur in intervals, variably affected by albitization.

In addition, there are a few minor occurrences of granite, granodiorite, tonalite and quartz diorite in KFM06C. None of them appears to fit into the bedrock nomenclature defined by SKB (‘Regler för bergarters benämningar vid platsundersökningarna i Simpevarp och Forsmark’, v 1.0). Instead they were coded as 1058 (unspecified granite), 1056 (unspecified granodiorite), 1053 (unspecified tonalite) and 1038 (unspecified quartz diorite). A 1.2 cm wide occurrence of massive magnetite, coded as 109014, occurs at 859.35–859.36 metres length.

20

5.2 DuctilestructuresThe rocks in KFM06C are characterized by composite L-S fabrics, with a predominance of linear mineral fabrics in the medium-grained metagranite (rock code 101057), and a slight predominance of tectonic foliation in the aplitic metagranite (rock code 101058) that occurs below 410 metres length. However, the relative intensity of the two components is locally highly variable. The intensity of the deformational fabric is mostly weak to medium, and more rarely faint. It must, however, be emphasized that the distinctness of a fabric does not necessarily reflect the intensity of the strain. The fact that a rock may appear massive does not necessarily implicate that they actually are unaffected by strain. It is, for example, often difficult to distinguish tectonic fabric visually in the pegmatites and some of the fine-grained mafic rocks. Some rocks have also undergone varying degrees of post-kinematic recrystallization.

The structural orientation in KFM06C is rather constant throughout the borehole. Most registered foliations are striking ESE and dip moderately to steeply towards the south. None of the linear fabrics have been possible to register with the present methodology, but the general impression is that they are gently to moderately dipping.

Totally 20 narrow zones of more intense ductile and brittle-ductile deformation have been registered in KFM06C. Fourteen of them are registered as ductile shear zones, five as brittle-ductile shear zones and one as mylonite. The latter is distinguished from the shear zones by the fact that the protolith is unidentifiable. A concentration of ductile deformation zones is found at 220.5–229.4 metres length. The remaining zones occur rather sporadically throughout the borehole. Except for one 1.4 metre borehole intercept at 223.60–225.02 metres, they are all less than a few decimetres in width. The protolith in the zones seems mainly to be a highly deformed and grain-size reduced variety of the metagranite (rock code 101057), but also younger rock units such as the pegmatitic granite (rock code 101061) and fine- to finely medium-grained granite (rock code 111058) have been affected. Most ductile shear zones strike roughly N–S south and dip moderately to steeply towards the south (i.e. more or less parallel with the local tectonic foliation).

5.3 AlterationExcept for the pre-/syn-metamorphic albitization as discussed in Section 5.1, the most common alteration encountered in KFM06C is varying degrees of oxidation or red pig-mentation of feldspars by sub-microscopic hematite. It is generally associated with more intensely fractured intervals, especially in the uppermost 85 metres of the borehole. More than 40% of the mapped interval of KFM06C has been affected by oxidation. Normally this oxidation is faint to weak in intensity, and more rarely medium to strong. Another frequent, but volumetrically trivial alteration, is epidotization. It is mainly found to be related to the aplitic metagranite (rock code 101058) and the skarn-like occurrences (rock code 108019) in the lower half of the borehole. Similar to the albitization, it appears to be associated with the regional metamorphism. Individual occurrences are generally less than a few decimetres wide.

Other types of alterations within KFM06C include chloritization, argillization, a green-ish yellow alteration mapped as ‘sassuritization’ in Boremap and an occurrence of quartz dissulotion. Totally ten intervals of chloritization have been registered KFM06C. They are not restricted to any specific rock unit and none of them are wider than a few decimetres. Clay dominated or argillic alteration is limited to two shorter intervals at 416.47–416.68 and 430.02–430.04 metres length. The greenish yellow alteration has affected some minor

21

occurrences of felsic rocks that occur between 754.0 and 756.3 metres within an amphibo-lite. The mineralogy of this alteration is presently unknown. An interval of vuggy, syenitic rock at 451.46–452.22 metres length is more or less identical to the rock found in borehole KFM02A /Möller et al. 2003, Petersson et al. 2003a/, and according to the IUGS recom-mendations /Le Maitre 2002/ it should be denoted ‘episyenite’ as it apparently was formed by hydrothermal processes involving the selective removal of quartz. The occurrence was, therefore, mapped as ‘quartz dissolution’, though other types of alteration have also affected it.

5.4 Fractures5.4.1 Fracturefrequenciesandorientations

The total number of open (broken fractures with aperture > 0), partly open (unbroken fractures with aperture > 0) and sealed fractures (broken and unbroken fractures with aperture = 0) registered outside crush zones and sealed networks during the boremap- logging of KFM06C amounts to 4,457, i.e. about 5.0 fractures/metres. Of these are 1,122 open, 74 partly open and 3,261 sealed. It should be emphasized that there is a certain degree of uncertainty in whether a fracture actually is open or sealed.

In addition, there are 294 sealed networks, nine breccias and three cataclasites registered in the mapped interval. The distinction between breccia/cataclasite and sealed network is not straight forward, but normally zones with none or minor rotation of individual rock fragments has been mapped as sealed network. Breccias and cataclasites, on the other hand, are distinguished by their volumetric content of matrix; occurrences with more than 90% matrix have been mapped as cataclasites. The total length of all sealed networks in KFM06C amount to 106.4 metres (i.e. about 12% of the mapped interval). The piece length (i.e. the distance between individual fractures) within these networks is typically about 2.5 cm, but ranges up to 6 cm. This makes more than 4,000 additional sealed fractures in the mapped interval of the borehole. Breccias and cataclasites occur sporadically throughout the borehole, and individual occurrences range up to 44 cm in width. However, most of them are less than one decimetre wide. Except for the registered breccia and cataclasite zones, fractures with measurable displacements, indicating that they have been initiated or reactivated as shear fractures, are found at 15 levels in KFM06C.

Totally 9 crush zones have been observed in KFM06C. Four of them are concentrated in a rather short interval at 534.8–537.7 metres. The remaining five zones occur in the upper 400 metres of the borehole. Except for a four decimetres wide zone at 537.34–537.74 metres, they are all one decimetre or less in width. The five uppermost zones are sub-horizontal to gently dipping, whereas the zones in the interval at 534.8–537.7 metres strike roughly ESE and dip moderately towards the south.

Throughout the borehole, the frequency of open and sealed fractures varies rather coher-ently, with an increased number of open fractures in intervals with concentrations of sealed fractures (Appendix 1). There are several intervals with anomalously high fracture frequen-cies throughout the borehole, though few of them are especially well-defined, and all are dominated by sealed fractures, many included in sealed fracture networks. Most of them occur below 410 metres length, within the interval dominated by the aplitic metagranite. There are, however, at least two anomalous intervals in the medium-grained metagranite, above 410 metres length: ca 102–170 and 360–400 metres length.

22

It is reasonable to expect that mechanical discontinuities, such as lithological contacts, should be the locus of fracture formation more frequently than within a homogeneous rock. For this reason we have noted the proportion of fractured amphibolite contacts. About 42% of the contacts in the mapped interval of KFM06C are fractured. This can be compared with other cored boreholes from the Forsmark drilling programme, in which 22–35% of the contacts are fractured /Petersson et al. 2003ab, 2004ab, 2005bcd/.

Inferred core discing occurs at the following lengths along KFM06C: 114.37–114.52, 258.22, 424.83–425.04, 425.05–425.08, 523.40–523.44, 658.76–658.81, 659.11, 706.03, 738.86–738.93, 866.04–866.16, 998.84–999.15 metres. Some intervals include also what appears to be initial core discing that not actually breaks the core. None of the intervals exceed 31 cm in width, and the typical dimension of individual discs range between 7 and 15 mm. The fractures are all planar to slightly saddle-shaped.

5.4.2 Fracturemineralogy

Chlorite and/or calcite are found in about 72% of the total number of the registered fractures in KFM06C. Other infilling minerals, in order of decreasing abundance, include adularia, sub-microscopic hematite, quartz, clay minerals, pyrite, prehnite, laumontite, epidote, biotite, asphalt, sericite, sulphides, fluorite, iron hydroxide, magnetite, fibrous serpentine, white feldspar, zeolite and muscovite. In addition, there are three fractures with unknown mineral filling. Analyses by XRD of similar material from the previously mapped cored boreholes in the area have revealed that most such filling are mineral mixtures, or in some cases, feldspars, apophyllite or analcime /Sandström et al. 2004/. There are also 293 fractures that are virtually free from visible mineral coatings. These are mostly open, though there are also sealed fractures with no visible mineral sealing.

The various clay minerals are more or less restricted to open fractures. Most fractures with clay minerals are found in the upper half of the borehole. Clay minerals registered in fractures at greater depths are typically corrensite and illite, often intimately associated with chlorite. Other minerals preferably found in open fractures are asphalt, sericite, fluorite, Fe-hydroxide, unspecified sulphides. Most of them are restricted to rather short intervals at shallow levels: asphaltite above 124 metres length, Fe-hydroxide to 143.0–143.8 metres length, fluorite to 161.9–162.3 and 217.1 metres length, and sericite to 287.2–366.3 metres length. However a fracture with Fe-hydroxide is also registered at 635.55 metres length.

Pyrite is frequent in both sealed and open fractures. The presence of other sulphides, including chalcopyrite, galena, pyrrhotite and ‘unspecified sulphides’, are rare and restricted to twelve fractures. Minerals mapped as unspecified sulphides include pyrite, chalcopyrite and/or pyrrhotite.

All other minerals, as well as oxidized walls, are preferentially associated with fractures inferred to be sealed. A typical mineral assemblage, commonly found both in individual fractures and sealed fracture networks consists of adularia stained by hematite together with calcite, chlorite, and locally pyrite and quartz. However, the exact assemblage varies locally. Laumontite, which is known to be frequent in some of the other deep boreholes in the area (e.g. KFM01A, KFM04A and KFM07A), has been registered in about 2% of the fractures and 4% of the sealed fracture networks. Several of these fractures occur in the length interval 170–340 metres of KFM06C. A number of very thin (<< 1 mm), sealed fractures are typically only revealed by their oxidized walls. Several of these thin fractures are sealed by a mineral inferred to be hematite, but it might well be hematite-stained laumontite or adularia. This interpretation is based on the fact the hematite within KFM06C typically occurs in two main varieties: (1) thin, reddish coatings, preferentially found in flat lying fractures, and (2) staining of various silicates, such as adularia and laumontite.

2�

Another, less common, but yet characteristic assemblage mainly found in the sealed fractures is epidote + calcite + chlorite ± quartz ± adularia. Prehnite are with few excep-tions limited to thin, sealed fractures found within amphibolites and related rocks. Some of the light greenish mineral mapped as prehnite might well be adularia. Biotite is found in fractures inferred to be late-, rather than post-metamorphic. These fractures are typically mono-mineralic or includes minor amounts of pyrite and/or secondary chlorite.

2�

References

LeMaitreRW(ed),2002.Igneous rocks: A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge University Press, 240 pp.

MöllerC,SnällS,StephensMB,2003.Forsmark site investigation. Dissolution of quartz, vug formation and new grain growth associated with post-metamorphic hydrothermal alteration in KFM02A. SKB P-03-77. Svensk Kärnbränslehantering AB.

PeterssonJ,WängnerudA,2003.Forsmark site investigation. Boremap mapping of telescopic drilled borehole KFM01A. SKB P-03-23. Svensk Kärnbränslehantering AB.

PeterssonJ,WängnerudA,StråhleA,2003a.Forsmark site investigation. Boremap mapping of telescopic drilled borehole KFM02A. SKB P-03-98. Svensk Kärnbränslehantering AB.

PeterssonJ,WängnerudA,DanielssonP,StråhleA,2003b.Forsmark site investiga-tion. Boremap mapping of telescopic drilled borehole KFM03A and core drilled borehole KFM03B. SKB P-03-116. Svensk Kärnbränslehantering AB.

PeterssonJ,BerglundJ,WängnerudA,DanielssonP,StråhleA,2004a.Forsmark site investigation. Boremap mapping of telescopic drilled borehole KFM04A. SKB P-04-115. Svensk Kärnbränslehantering AB.

PeterssonJ,BerglundJ,WängnerudA,DanielssonP,StråhleA,2004b.Forsmark site investigation. Boremap mapping of telescopic drilled borehole KFM05A. SKB P-04-295. Svensk Kärnbränslehantering AB.

PeterssonJ,BerglundJ,DanielssonP,WängnerudA,TullborgE-L,MattssonH,ThunehedH,IsakssonH,LindroosH,2004c.Forsmark site investigation. Petrography, geochemistry, petrophysics and fracture mineralogy of boreholes KFM01A, KFM02A and KFM03A+B. SKB P-04-103. Svensk Kärnbränslehantering AB.

PeterssonJ,BerglundJ,DanielssonP,SkogsmoG,2005a.Forsmark site investigation. Petrographic and geochemical characteristics of bedrock samples from boreholes KFM04A–06A, including a whitened alteration rock. SKB P-05-156. Svensk Kärnbränslehantering AB.

PeterssonJ,SkogsmoG,BerglundJ,WängnerudA,StråhleA,2005b.Forsmark site investigation. Boremap mapping of telescopic drilled borehole KFM06A and core drilled borehole KFM06B. SKB P-05-101. Svensk Kärnbränslehantering AB.

PeterssonJ,SkogsmoG,WängnerudA,BerglundJ,StråhleA,2005c.Forsmark site investigation. Boremap mapping of telescopic drilled borehole KFM07A. SKB P-05-102. Svensk Kärnbränslehantering AB.

PeterssonJ,SkogsmoG,BerglundJ,WängnerudA,DanielssonP,StråhleA,2005d.Forsmark site investigation. Boremap mapping of telescopic drilled borehole KFM08A and core drilled borehole KFM08B. SKB P-05-203. Svensk Kärnbränslehantering AB.

26

PeterssonJ,SkogsmoG,BerglundJ,StråhleA,2005e.Forsmark site investigation. Comparative geological logging with the Boremap system: 176.5–360.9 metres of borehole KFM06C. SKB P-05-81. Svensk Kärnbränslehantering AB.

SandströmB,SavolainenM,TullborgE-L,2004.Forsmark site investigation. Fracture mineralogy: Results of fracture minerals and wall rock alteration in boreholes KFM01A, KFM02A, KFM03A and KFM03B. SKB P-04-149. Svensk Kärnbränslehantering AB.

SKB,2004.Preliminary site description. Forsmark area – version 1.1. SKB R-04-15. Svensk Kärnbränslehantering AB.

2�

Appendix1

WellCADimageAppendix: 1

2�

Signed dataDate of coremapping 2005-08-29 08:00:00

Coordinate System RT90-RHB70

Length [m] 1000.430

Title GEOLOGY IN KFM06C

Elevation [m.a.s.l.] 4.08Diameter [mm] 77

Inclination [°]

Borehole KFM06CSite FORSMARK

Northing [m] 6699740.95Easting [m] 1632437.04

Appendix: 1

Bearing [°]

Plot Date 2005-12-21 00:27:17Drilling Stop Date 2005-06-30 13:44:00Drilling Start Date 2005-03-09 08:30:00

Rocktype data from p_rock

1:500

LEN

GTH

TYP

E

Stru

ctur

e

Text

ure

Gra

insi

ze

Stru

ctur

eO

rient

atio

nD

ip d

ir./ D

ip

0 90

Roc

k Ty

pe<

1m

Alte

ratio

n

Inte

nsity

ROCKTYPE

Prim

ary

Min

eral

Seco

ndar

yM

iner

alTh

irdM

iner

alFo

urth

Min

eral

Alte

ratio

nan

dD

ip d

irect

ion

0 90

Frac

ture

Freq

uenc

y(fr

/1m

)

0 20

SEALED FRACTURES

Prim

ary

Min

eral

Seco

ndar

yM

iner

alTh

irdM

iner

alFo

urth

Min

eral

Rou

ghne

ss

Sur

face

Alte

ratio

nan

dD

ip d

irect

ion

0 90

Ape

rture

(mm

)

0 5

Frac

ture

Fr

eque

ncy

(fr/1

m)

0 20

OPEN AND PARTLY OPEN FRACTURES

Alte

ratio

n

Pie

ceLe

ngth

/ m

m

CRUSH

(fr/1m)

0 50

SEA

LED

NET

WO

RK

CO

REL

OSS

110

120

130

140

150

160

170

180

190

200

10

Page 1

2�

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

10

5

Page 2

�0

360

370

380

390

400

410

420

430

440

450

460

470

480

490

10

10

Page 3

�1

500

510

520

530

540

550

560

570

580

590

600

610

620

630

4

5

15

15

Page 4

�2

640

650

660

670

680

690

700

710

720

730

740

750

760

770

Page 5

��

780

790

800

810

820

830

840

850

860

870

880

890

900

910

Page 6

��

920

930

940

950

960

970

980

990

1000

Page 7

��

Appendix2

BoreholediametersHoleDiamT–Drilling:boreholediameterKFM06C,2005‑04‑2714:30:00–2005‑06‑3013:44:00(100.400–1,000.430m).

Subsecup(m)

Subseclow(m)

Holediam(m)

Comment

100.400 102.080 0.086102.080 1000.430 0.077

Printout from SICADA 2005-10-12 16:50:52.

��

App

endi

x3

Dow

nhol

ede

viat

ion

mea

sure

men

tsM

axib

orT

–B

oreh

ole

devi

atio

n:M

axib

orK

FM06

C,2

005‑

08‑0

211

:01:

00–

200

5‑08

‑02

20:1

9:00

(3.0

00–9

78.0

00m

).

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

3.00

6699

742.

3016

3243

7.69

–1.4

8R

T90-

RH

B70

–60.

1226

.06

0.00

000.

0000

0.00

00

6.00

6699

743.

6516

3243

8.34

1.12

RT9

0-R

HB

70–6

0.01

25.8

61.

4900

0.00

000.

0000

9.00

6699

744.

9916

3243

9.00

3.72

RT9

0-R

HB

70–6

0.03

25.9

12.

9900

-0.0

100

0.01

00

12.0

066

9974

6.34

1632

439.

656.

31R

T90-

RH

B70

–60.

0726

.14

4.49

00-0

.010

00.

0100

15.0

066

9974

7.69

1632

440.

318.

91R

T90-

RH

B70

–60.

0026

.49

5.99

00-0

.010

00.

0100

18.0

066

9974

9.03

1632

440.

9811

.51

RT9

0-R

HB

70–5

9.87

26.6

57.

4900

0.00

000.

0200

21.0

066

9975

0.38

1632

441.

6614

.11

RT9

0-R

HB

70–5

9.82

26.7

19.

0000

0.02

000.

0300

24.0

066

9975

1.72

1632

442.

3316

.70

RT9

0-R

HB

70–5

9.75

26.7

110

.500

00.

0400

0.05

00

27.0

066

9975

3.07

1632

443.

0119

.29

RT9

0-R

HB

70–5

9.67

26.8

212

.010

00.

0500

0.07

00

30.0

066

9975

4.42

1632

443.

7021

.88

RT9

0-R

HB

70–5

9.61

27.0

613

.530

00.

0700

0.09

00

33.0

066

9975

5.78

1632

444.

3924

.47

RT9

0-R

HB

70–5

9.56

27.1

915

.050

00.

1000

0.12

00

36.0

066

9975

7.13

1632

445.

0827

.06

RT9

0-R

HB

70–5

9.54

27.2

416

.570

00.

1300

0.15

00

39.0

066

9975

8.48

1632

445.

7829

.64

RT9

0-R

HB

70–5

9.49

27.2

318

.090

00.

1600

0.18

00

42.0

066

9975

9.83

1632

446.

4732

.23

RT9

0-R

HB

70–5

9.43

27.2

119

.610

00.

1900

0.21

00

45.0

066

9976

1.19

1632

447.

1734

.81

RT9

0-R

HB

70–5

9.42

27.2

021

.140

00.

2200

0.25

00

48.0

066

9976

2.55

1632

447.

8737

.39

RT9

0-R

HB

70–5

9.35

27.2

122

.660

00.

2500

0.28

00

51.0

066

9976

3.91

1632

448.

5739

.97

RT9

0-R

HB

70–5

9.25

27.3

324

.190

00.

2800

0.32

00

54.0

066

9976

5.27

1632

449.

2742

.55

RT9

0-R

HB

70–5

9.10

27.4

225

.720

00.

3200

0.37

00

57.0

066

9976

6.64

1632

449.

9845

.12

RT9

0-R

HB

70–5

8.97

27.5

227

.260

00.

3500

0.42

00

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

60.0

066

9976

8.01

1632

450.

7047

.70

RT9

0-R

HB

70–5

8.79

27.4

428

.810

00.

3900

0.48

00

63.0

066

9976

9.39

1632

451.

4150

.26

RT9

0-R

HB

70–5

8.58

27.2

930

.360

00.

4300

0.55

00

66.0

066

9977

0.78

1632

452.

1352

.82

RT9

0-R

HB

70–5

8.49

27.3

031

.930

00.

4600

0.63

00

69.0

066

9977

2.17

1632

452.

8555

.38

RT9

0-R

HB

70–5

8.46

27.4

133

.500

00.

5000

0.71

00

72.0

066

9977

3.57

1632

453.

5757

.94

RT9

0-R

HB

70–5

8.41

27.4

935

.060

00.

5300

0.80

00

75.0

066

9977

4.96

1632

454.

3060

.49

RT9

0-R

HB

70–5

8.30

27.5

836

.640

00.

5700

0.89

00

78.0

066

9977

6.36

1632

455.

0363

.04

RT9

0-R

HB

70–5

8.22

27.6

238

.210

00.

6100

0.98

00

81.0

066

9977

7.76

1632

455.

7665

.59

RT9

0-R

HB

70–5

8.30

27.5

139

.790

00.

6600

1.08

00

84.0

066

9977

9.16

1632

456.

4968

.15

RT9

0-R

HB

70–5

8.28

27.2

541

.370

00.

7000

1.18

00

87.0

066

9978

0.56

1632

457.

2170

.70

RT9

0-R

HB

70–5

8.19

27.1

342

.940

00.

7300

1.27

00

90.0

066

9978

1.97

1632

457.

9373

.25

RT9

0-R

HB

70–5

8.15

27.2

144

.520

00.

7600

1.38

00

93.0

066

9978

3.37

1632

458.

6675

.80

RT9

0-R

HB

70–5

8.05

27.2

446

.110

00.

7900

1.48

00

96.0

066

9978

4.79

1632

459.

3878

.34

RT9

0-R

HB

70–5

8.01

27.2

347

.690

00.

8200

1.59

00

99.0

066

9978

6.20

1632

460.

1180

.89

RT9

0-R

HB

70–5

8.24

27.0

449

.280

00.

8600

1.70

00

102.

0066

9978

7.61

1632

460.

8383

.44

RT9

0-R

HB

70–5

8.56

26.7

350

.860

00.

8800

1.80

00

105.

0066

9978

9.00

1632

461.

5386

.00

RT9

0-R

HB

70–5

8.53

26.7

152

.430

00.

9000

1.88

00

108.

0066

9979

0.40

1632

462.

2388

.56

RT9

0-R

HB

70–5

8.43

26.9

453

.990

00.

9200

1.96

00

111.

0066

9979

1.80

1632

462.

9591

.11

RT9

0-R

HB

70–5

8.36

27.1

855

.560

00.

9400

2.05

00

114.

0066

9979

3.20

1632

463.

6793

.67

RT9

0-R

HB

70–5

8.34

27.3

157

.140

00.

9700

2.14

00

117.

0066

9979

4.60

1632

464.

3996

.22

RT9

0-R

HB

70–5

8.31

27.3

658

.710

01.

0100

2.23

00

120.

0066

9979

6.00

1632

465.

1198

.77

RT9

0-R

HB

70–5

8.22

27.4

460

.290

01.

0400

2.33

00

123.

0066

9979

7.40

1632

465.

8410

1.32

RT9

0-R

HB

70–5

8.12

27.6

361

.870

01.

0800

2.43

00

126.

0066

9979

8.81

1632

466.

5810

3.87

RT9

0-R

HB

70–5

8.00

27.8

363

.450

01.

1300

2.53

00

129.

0066

9980

0.21

1632

467.

3210

6.41

RT9

0-R

HB

70–5

7.90

28.0

265

.040

01.

1700

2.64

00

132.

0066

9980

1.62

1632

468.

0710

8.95

RT9

0-R

HB

70–5

7.75

28.1

766

.630

01.

2300

2.76

00

135.

0066

9980

3.03

1632

468.

8211

1.49

RT9

0-R

HB

70–5

7.63

28.3

768

.230

01.

2900

2.88

00

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

138.

0066

9980

4.44

1632

469.

5911

4.03

RT9

0-R

HB

70–5

7.52

28.6

269

.840

01.

3500

3.01

00

141.

0066

9980

5.86

1632

470.

3611

6.56

RT9

0-R

HB

70–5

7.42

28.8

571

.450

01.

4200

3.14

00

144.

0066

9980

7.27

1632

471.

1411

9.08

RT9

0-R

HB

70–5

7.33

29.0

973

.060

01.

5000

3.28

00

147.

0066

9980

8.69

1632

471.

9212

1.61

RT9

0-R

HB

70–5

7.26

29.3

374

.680

01.

5900

3.43

00

150.

0066

9981

0.10

1632

472.

7212

4.13

RT9

0-R

HB

70–5

7.18

29.6

076

.300

01.

6800

3.58

00

153.

0066

9981

1.52

1632

473.

5212

6.65

RT9

0-R

HB

70–5

7.14

29.8

377

.920

01.

7800

3.73

00

156.

0066

9981

2.93

1632

474.

3312

9.17

RT9

0-R

HB

70–5

7.12

30.0

679

.550

01.

8900

3.88

00

159.

0066

9981

4.34

1632

475.

1513

1.69

RT9

0-R

HB

70–5

7.07

30.2

481

.170

02.

0000

4.03

00

162.

0066

9981

5.75

1632

475.

9713

4.21

RT9

0-R

HB

70–5

7.02

30.3

382

.800

02.

1200

4.19

00

165.

0066

9981

7.16

1632

476.

7913

6.73

RT9

0-R

HB

70–5

6.97

30.4

084

.430

02.

2400

4.35

00

168.

0066

9981

8.57

1632

477.

6213

9.24

RT9

0-R

HB

70–5

6.90

30.4

786

.060

02.

3600

4.51

00

171.

0066

9981

9.98

1632

478.

4514

1.76

RT9

0-R

HB

70–5

6.80

30.6

787

.690

02.

4900

4.67

00

174.

0066

9982

1.39

1632

479.

2914

4.27

RT9

0-R

HB

70–5

6.69

30.8

389

.330

02.

6200

4.84

00

177.

0066

9982

2.81

1632

480.

1314

6.77

RT9

0-R

HB

70–5

6.61

31.0

390

.970

02.

7600

5.02

00

180.

0066

9982

4.22

1632

480.

9814

9.28

RT9

0-R

HB

70–5

6.53

31.2

392

.610

02.

9000

5.19

00

183.

0066

9982

5.64

1632

481.

8415

1.78

RT9

0-R

HB

70–5

6.45

31.4

594

.260

03.

0500

5.38

00

186.

0066

9982

7.05

1632

482.

7115

4.28

RT9

0-R

HB

70–5

6.37

31.6

895

.910

03.

2100

5.56

00

189.

0066

9982

8.47

1632

483.

5815

6.78

RT9

0-R

HB

70–5

6.31

31.8

897

.570

03.

3700

5.75

00

192.

0066

9982

9.88

1632

484.

4615

9.28

RT9

0-R

HB

70–5

6.27

32.1

199

.220

03.

5400

5.94

00

195.

0066

9983

1.29

1632

485.

3416

1.77

RT9

0-R

HB

70–5

6.19

32.3

410

0.88

003.

7100

6.14

00

198.

0066

9983

2.70

1632

486.

2416

4.26

RT9

0-R

HB

70–5

6.10

32.5

510

2.54

003.

9000

6.33

00

201.

0066

9983

4.11

1632

487.

1416

6.75

RT9

0-R

HB

70–5

5.98

32.7

910

4.20

004.

0900

6.53

00

204.

0066

9983

5.52

1632

488.

0516

9.24

RT9

0-R

HB

70–5

5.84

33.0

010

5.87

004.

2800

6.74

00

207.

0066

9983

6.93

1632

488.

9617

1.72

RT9

0-R

HB

70–5

5.74

33.2

110

7.54

004.

4900

6.95

00

210.

0066

9983

8.35

1632

489.

8917

4.20

RT9

0-R

HB

70–5

5.63

33.4

410

9.21

004.

7000

7.17

00

213.

0066

9983

9.76

1632

490.

8217

6.68

RT9

0-R

HB

70–5

5.56

33.5

811

0.89

004.

9100

7.40

00

�0

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

216.

0066

9984

1.17

1632

491.

7617

9.15

RT9

0-R

HB

70–5

5.54

33.7

511

2.58

005.

1300

7.62

00

219.

0066

9984

2.59

1632

492.

7018

1.62

RT9

0-R

HB

70–5

5.53

33.9

711

4.26

005.

3600

7.85

00

222.

0066

9984

3.99

1632

493.

6518

4.10

RT9

0-R

HB

70–5

5.52

34.1

811

5.94

005.

6000

8.07

00

225.

0066

9984

5.40

1632

494.

6118

6.57

RT9

0-R

HB

70–5

5.50

34.4

311

7.62

005.

8400

8.30

00

228.

0066

9984

6.80

1632

495.

5718

9.04

RT9

0-R

HB

70–5

5.48

34.6

611

9.30

006.

0800

8.53

00

231.

0066

9984

8.20

1632

496.

5319

1.52

RT9

0-R

HB

70–5

5.45

34.8

812

0.98

006.

3400

8.75

00

234.

0066

9984

9.59

1632

497.

5119

3.99

RT9

0-R

HB

70–5

5.41

35.0

912

2.66

006.

6000

8.98

00

237.

0066

9985

0.99

1632

498.

4919

6.46

RT9

0-R

HB

70–5

5.37

35.2

712

4.35

006.

8600

9.21

00

240.

0066

9985

2.38

1632

499.

4719

8.92

RT9

0-R

HB

70–5

5.32

35.4

312

6.03

007.

1400

9.44

00

243.

0066

9985

3.77

1632

500.

4620

1.39

RT9

0-R

HB

70–5

5.28

35.6

112

7.71

007.

4200

9.67

00

246.

0066

9985

5.16

1632

501.

4620

3.86

RT9

0-R

HB

70–5

5.23

35.7

912

9.40

007.

7000

9.90

00

249.

0066

9985

6.55

1632

502.

4620

6.32

RT9

0-R

HB

70–5

5.20

35.9

613

1.08

007.

9900

10.1

300

252.

0066

9985

7.93

1632

503.

4620

8.78

RT9

0-R

HB

70–5

5.17

36.1

513

2.77

008.

2800

10.3

700

255.

0066

9985

9.32

1632

504.

4721

1.25

RT9

0-R

HB

70–5

5.14

36.3

613

4.46

008.

5800

10.6

100

258.

0066

9986

0.70

1632

505.

4921

3.71

RT9

0-R

HB

70–5

5.10

36.5

813

6.15

008.

8900

10.8

400

261.

0066

9986

2.08

1632

506.

5121

6.17

RT9

0-R

HB

70–5

5.08

36.7

713

7.83

009.

2000

11.0

800

264.

0066

9986

3.45

1632

507.

5421

8.63

RT9

0-R

HB

70–5

5.05

36.9

713

9.52

009.

5200

11.3

200

267.

0066

9986

4.83

1632

508.

5722

1.09

RT9

0-R

HB

70–5

5.00

37.1

414

1.21

009.

8500

11.5

600

270.

0066

9986

6.20

1632

509.

6122

3.55

RT9

0-R

HB

70–5

4.92

37.2

614

2.90

0010

.180

011

.800

0

273.

0066

9986

7.57

1632

510.

6622

6.00

RT9

0-R

HB

70–5

4.86

37.3

814

4.59

0010

.510

012

.040

0

276.

0066

9986

8.94

1632

511.

7022

8.45

RT9

0-R

HB

70–5

4.84

37.4

814

6.28

0010

.850

012

.280

0

279.

0066

9987

0.31

1632

512.

7623

0.91

RT9

0-R

HB

70–5

4.86

37.5

714

7.97

0011

.190

012

.530

0

282.

0066

9987

1.68

1632

513.

8123

3.36

RT9

0-R

HB

70–5

4.86

37.7

514

9.67

0011

.540

012

.780

0

285.

0066

9987

3.05

1632

514.

8723

5.81

RT9

0-R

HB

70–5

4.83

37.8

615

1.36

0011

.890

013

.020

0

288.

0066

9987

4.41

1632

515.

9323

8.27

RT9

0-R

HB

70–5

4.77

37.9

915

3.05

0012

.240

013

.260

0

291.

0066

9987

5.77

1632

516.

9924

0.72

RT9

0-R

HB

70–5

4.72

38.1

715

4.74

0012

.600

013

.510

0

�1

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

294.

0066

9987

7.14

1632

518.

0624

3.17

RT9

0-R

HB

70–5

4.66

38.3

915

6.44

0012

.960

013

.760

0

297.

0066

9987

8.50

1632

519.

1424

5.61

RT9

0-R

HB

70–5

4.58

38.6

315

8.13

0013

.330

014

.010

0

300.

0066

9987

9.85

1632

520.

2324

8.06

RT9

0-R

HB

70–5

4.51

38.8

815

9.83

0013

.710

014

.270

0

303.

0066

9988

1.21

1632

521.

3225

0.50

RT9

0-R

HB

70–5

4.43

39.0

816

1.53

0014

.100

014

.520

0

306.

0066

9988

2.57

1632

522.

4225

2.94

RT9

0-R

HB

70–5

4.34

39.2

416

3.23

0014

.490

014

.780

0

309.

0066

9988

3.92

1632

523.

5225

5.38

RT9

0-R

HB

70–5

4.24

39.4

416

4.93

0014

.890

015

.040

0

312.

0066

9988

5.27

1632

524.

6425

7.81

RT9

0-R

HB

70–5

4.13

39.6

816

6.64

0015

.290

015

.310

0

315.

0066

9988

6.63

1632

525.

7626

0.24

RT9

0-R

HB

70–5

4.05

39.9

316

8.34

0015

.710

015

.580

0

318.

0066

9988

7.98

1632

526.

8926

2.67

RT9

0-R

HB

70–5

3.96

40.1

917

0.05

0016

.130

015

.850

0

321.

0066

9988

9.33

1632

528.

0326

5.10

RT9

0-R

HB

70–5

3.86

40.3

717

1.77

0016

.560

016

.130

0

324.

0066

9989

0.67

1632

529.

1826

7.52

RT9

0-R

HB

70–5

3.82

40.4

917

3.48

0017

.000

016

.410

0

327.

0066

9989

2.02

1632

530.

3326

9.94

RT9

0-R

HB

70–5

3.75

40.6

917

5.20

0017

.440

016

.690

0

330.

0066

9989

3.37

1632

531.

4827

2.36

RT9

0-R

HB

70–5

3.66

40.8

917

6.91

0017

.890

016

.970

0

333.

0066

9989

4.71

1632

532.

6527

4.78

RT9

0-R

HB

70–5

3.56

41.0

517

8.63

0018

.340

017

.260

0

336.

0066

9989

6.05

1632

533.

8227

7.19

RT9

0-R

HB

70–5

3.45

41.2

418

0.35

0018

.800

017

.550

0

339.

0066

9989

7.40

1632

534.

9927

9.60

RT9

0-R

HB

70–5

3.34

41.4

018

2.08

0019

.270

017

.840

0

342.

0066

9989

8.74

1632

536.

1828

2.01

RT9

0-R

HB

70–5

3.24

41.4

818

3.80

0019

.740

018

.140

0

345.

0066

9990

0.08

1632

537.

3728

4.41

RT9

0-R

HB

70–5

3.16

41.5

718

5.53

0020

.220

018

.440

0

348.

0066

9990

1.43

1632

538.

5628

6.81

RT9

0-R

HB

70–5

3.09

41.7

618

7.27

0020

.700

018

.750

0

351.

0066

9990

2.77

1632

539.

7628

9.21

RT9

0-R

HB

70–5

3.04

41.9

418

9.00

0021

.190

019

.060

0

354.

0066

9990

4.12

1632

540.

9729

1.61

RT9

0-R

HB

70–5

2.99

42.1

419

0.74

0021

.680

019

.370

0

357.

0066

9990

5.46

1632

542.

1829

4.00

RT9

0-R

HB

70–5

2.94

42.3

719

2.47

0022

.180

019

.680

0

360.

0066

9990

6.79

1632

543.

4029

6.40

RT9

0-R

HB

70–5

2.91

42.6

219

4.21

0022

.690

019

.990

0

363.

0066

9990

8.12

1632

544.

6229

8.79

RT9

0-R

HB

70–5

2.87

42.8

619

5.94

0023

.210

020

.300

0

366.

0066

9990

9.45

1632

545.

8530

1.18

RT9

0-R

HB

70–5

2.81

43.1

019

7.68

0023

.730

020

.610

0

369.

0066

9991

0.77

1632

547.

0930

3.57

RT9

0-R

HB

70–5

2.76

43.2

819

9.41

0024

.260

020

.930

0

�2

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

372.

0066

9991

2.10

1632

548.

3430

5.96

RT9

0-R

HB

70–5

2.70

43.4

820

1.14

0024

.800

021

.240

0

375.

0066

9991

3.42

1632

549.

5930

8.35

RT9

0-R

HB

70–5

2.64

43.6

820

2.88

0025

.340

021

.560

0

378.

0066

9991

4.73

1632

550.

8531

0.73

RT9

0-R

HB

70–5

2.60

43.8

920

4.61

0025

.890

021

.870

0

381.

0066

9991

6.04

1632

552.

1131

3.12

RT9

0-R

HB

70–5

2.55

44.1

220

6.35

0026

.450

022

.190

0

384.

0066

9991

7.35

1632

553.

3831

5.50

RT9

0-R

HB

70–5

2.50

44.3

220

8.08

0027

.010

022

.510

0

387.

0066

9991

8.66

1632

554.

6531

7.88

RT9

0-R

HB

70–5

2.48

44.5

420

9.82

0027

.590

022

.820

0

390.

0066

9991

9.96

1632

555.

9432

0.26

RT9

0-R

HB

70–5

2.42

44.8

221

1.55

0028

.170

023

.140

0

393.

0066

9992

1.26

1632

557.

2332

2.63

RT9

0-R

HB

70–5

2.35

45.0

921

3.28

0028

.750

023

.460

0

396.

0066

9992

2.55

1632

558.

5232

5.01

RT9

0-R

HB

70–5

2.26

45.3

121

5.01

0029

.350

023

.780

0

399.

0066

9992

3.85

1632

559.

8332

7.38

RT9

0-R

HB

70–5

2.12

45.4

821

6.75

0029

.960

024

.100

0

402.

0066

9992

5.14

1632

561.

1432

9.75

RT9

0-R

HB

70–5

2.00

45.6

421

8.48

0030

.570

024

.430

0

405.

0066

9992

6.43

1632

562.

4633

2.11

RT9

0-R

HB

70–5

1.89

45.8

122

0.22

0031

.190

024

.760

0

408.

0066

9992

7.72

1632

563.

7933

4.47

RT9

0-R

HB

70–5

1.80

46.0

222

1.97

0031

.810

025

.090

0

411.

0066

9992

9.01

1632

565.

1333

6.83

RT9

0-R

HB

70–5

1.72

46.2

122

3.71

0032

.450

025

.430

0

414.

0066

9993

0.29

1632

566.

4733

9.19

RT9

0-R

HB

70–5

1.64

46.3

922

5.46

0033

.090

025

.770

0

417.

0066

9993

1.58

1632

567.

8234

1.54

RT9

0-R

HB

70–5

1.58

46.5

722

7.20

0033

.730

026

.110

0

420.

0066

9993

2.86

1632

569.

1734

3.89

RT9

0-R

HB

70–5

1.52

46.7

422

8.95

0034

.390

026

.450

0

423.

0066

9993

4.14

1632

570.

5334

6.24

RT9

0-R

HB

70–5

1.47

46.9

023

0.69

0035

.050

026

.800

0

426.

0066

9993

5.42

1632

571.

8934

8.58

RT9

0-R

HB

70–5

1.45

47.0

523

2.44

0035

.710

027

.140

0

429.

0066

9993

6.69

1632

573.

2635

0.93

RT9

0-R

HB

70–5

1.39

47.1

923

4.19

0036

.380

027

.490

0

432.

0066

9993

7.96

1632

574.

6335

3.28

RT9

0-R

HB

70–5

1.27

47.3

723

5.93

0037

.060

027

.830

0

435.

0066

9993

9.23

1632

576.

0235

5.62

RT9

0-R

HB

70–5

1.20

47.5

723

7.68

0037

.740

028

.180

0

438.

0066

9994

0.50

1632

577.

4035

7.95

RT9

0-R

HB

70–5

1.15

47.8

123

9.43

0038

.430

028

.540

0

441.

0066

9994

1.77

1632

578.

8036

0.29

RT9

0-R

HB

70–5

1.14

48.0

124

1.18

0039

.120

028

.890

0

444.

0066

9994

3.02

1632

580.

2036

2.63

RT9

0-R

HB

70–5

1.11

48.2

324

2.92

0039

.830

029

.240

0

447.

0066

9994

4.28

1632

581.

6036

4.96

RT9

0-R

HB

70–5

1.02

48.4

024

4.67

0040

.540

029

.590

0

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

450.

0066

9994

5.53

1632

583.

0136

7.29

RT9

0-R

HB

70–5

0.95

48.5

624

6.41

0041

.250

029

.940

0

453.

0066

9994

6.78

1632

584.

4336

9.62

RT9

0-R

HB

70–5

0.87

48.7

724

8.16

0041

.980

030

.290

0

456.

0066

9994

8.03

1632

585.

8537

1.95

RT9

0-R

HB

70–5

0.80

48.9

624

9.91

0042

.710

030

.650

0

459.

0066

9994

9.28

1632

587.

2837

4.27

RT9

0-R

HB

70–5

0.72

49.2

025

1.65

0043

.450

031

.000

0

462.

0066

9995

0.52

1632

588.

7237

6.60

RT9

0-R

HB

70–5

0.65

49.4

325

3.40

0044

.190

031

.360

0

465.

0066

9995

1.75

1632

590.

1737

8.92

RT9

0-R

HB

70–5

0.64

49.6

425

5.15

0044

.950

031

.720

0

468.

0066

9995

2.99

1632

591.

6238

1.24

RT9

0-R

HB

70–5

0.64

49.8

225

6.89

0045

.710

032

.080

0

471.

0066

9995

4.21

1632

593.

0738

3.56

RT9

0-R

HB

70–5

0.65

50.0

025

8.63

0046

.470

032

.430

0

474.

0066

9995

5.44

1632

594.

5338

5.88

RT9

0-R

HB

70–5

0.65

50.2

126

0.37

0047

.250

032

.780

0

477.

0066

9995

6.65

1632

595.

9938

8.20

RT9

0-R

HB

70–5

0.61

50.4

426

2.11

0048

.020

033

.130

0

480.

0066

9995

7.87

1632

597.

4639

0.51

RT9

0-R

HB

70–5

0.59

50.6

426

3.84

0048

.810

033

.480

0

483.

0066

9995

9.07

1632

598.

9339

2.83

RT9

0-R

HB

70–5

0.55

50.8

726

5.57

0049

.600

033

.830

0

486.

0066

9996

0.28

1632

600.

4139

5.15

RT9

0-R

HB

70–5

0.53

51.0

526

7.30

0050

.400

034

.170

0

489.

0066

9996

1.48

1632

601.

8939

7.46

RT9

0-R

HB

70–5

0.49

51.2

726

9.03

0051

.210

034

.520

0

492.

0066

9996

2.67

1632

603.

3839

9.78

RT9

0-R

HB

70–5

0.46

51.4

627

0.76

0052

.020

034

.860

0

495.

0066

9996

3.86

1632

604.

8740

2.09

RT9

0-R

HB

70–5

0.42

51.6

427

2.48

0052

.840

035

.210

0

498.

0066

9996

5.05

1632

606.

3740

4.40

RT9

0-R

HB

70–5

0.39

51.8

027

4.21

0053

.670

035

.550

0

501.

0066

9996

6.23

1632

607.

8840

6.72

RT9

0-R

HB

70–5

0.37

51.9

827

5.93

0054

.500

035

.890

0

504.

0066

9996

7.41

1632

609.

3840

9.03

RT9

0-R

HB

70–5

0.35

52.1

627

7.65

0055

.330

036

.230

0

507.

0066

9996

8.58

1632

610.

8941

1.34

RT9

0-R

HB

70–5

0.34

52.3

627

9.37

0056

.170

036

.570

0

510.

0066

9996

9.75

1632

612.

4141

3.65

RT9

0-R

HB

70–5

0.31

52.5

628

1.09

0057

.020

036

.910

0

513.

0066

9997

0.92

1632

613.

9341

5.95

RT9

0-R

HB

70–5

0.30

52.7

528

2.80

0057

.880

037

.250

0

516.

0066

9997

2.08

1632

615.

4641

8.26

RT9

0-R

HB

70–5

0.28

52.9

928

4.51

0058

.740

037

.580

0

519.

0066

9997

3.23

1632

616.

9942

0.57

RT9

0-R

HB

70–5

0.24

53.2

528

6.22

0059

.610

037

.910

0

522.

0066

9997

4.38

1632

618.

5342

2.88

RT9

0-R

HB

70–5

0.16

53.5

028

7.93

0060

.480

038

.250

0

525.

0066

9997

5.52

1632

620.

0742

5.18

RT9

0-R

HB

70–5

0.10

53.7

528

9.63

0061

.370

038

.580

0

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

528.

0066

9997

6.66

1632

621.

6242

7.48

RT9

0-R

HB

70–5

0.07

53.9

929

1.34

0062

.260

038

.910

0

531.

0066

9997

7.79

1632

623.

1842

9.78

RT9

0-R

HB

70–5

0.06

54.2

229

3.04

0063

.160

039

.240

0

534.

0066

9997

8.92

1632

624.

7443

2.08

RT9

0-R

HB

70–5

0.04

54.4

429

4.74

0064

.070

039

.560

0

537.

0066

9998

0.04

1632

626.

3143

4.38

RT9

0-R

HB

70–5

0.00

54.6

429

6.43

0064

.990

039

.890

0

540.

0066

9998

1.15

1632

627.

8843

6.68

RT9

0-R

HB

70–4

9.94

54.8

229

8.13

0065

.910

040

.210

0

543.

0066

9998

2.27

1632

629.

4643

8.98

RT9

0-R

HB

70–4

9.91

55.0

229

9.82

0066

.840

040

.540

0

546.

0066

9998

3.37

1632

631.

0444

1.27

RT9

0-R

HB

70–4

9.87

55.2

030

1.51

0067

.780

040

.860

0

549.

0066

9998

4.48

1632

632.

6344

3.56

RT9

0-R

HB

70–4

9.84

55.4

230

3.20

0068

.720

041

.180

0

552.

0066

9998

5.57

1632

634.

2244

5.86

RT9

0-R

HB

70–4

9.83

55.6

030

4.89

0069

.670

041

.500

0

555.

0066

9998

6.67

1632

635.

8244

8.15

RT9

0-R

HB

70–4

9.82

55.7

930

6.57

0070

.620

041

.820

0

558.

0066

9998

7.76

1632

637.

4245

0.44

RT9

0-R

HB

70–4

9.81

55.9

530

8.25

0071

.580

042

.130

0

561.

0066

9998

8.84

1632

639.

0345

2.73

RT9

0-R

HB

70–4

9.79

56.1

030

9.93

0072

.540

042

.450

0

564.

0066

9998

9.92

1632

640.

6345

5.02

RT9

0-R

HB

70–4

9.77

56.2

531

1.61

0073

.510

042

.760

0

567.

0066

9999

1.00

1632

642.

2445

7.31

RT9

0-R

HB

70–4

9.72

56.3

931

3.28

0074

.490

043

.070

0

570.

0066

9999

2.07

1632

643.

8645

9.60

RT9

0-R

HB

70–4

9.63

56.5

231

4.95

0075

.470

043

.380

0

573.

0066

9999

3.14

1632

645.

4846

1.89

RT9

0-R

HB

70–4

9.56

56.7

031

6.63

0076

.450

043

.690

0

576.

0066

9999

4.21

1632

647.

1146

4.17

RT9

0-R

HB

70–4

9.47

56.8

731

8.30

0077

.440

044

.010

0

579.

0066

9999

5.28

1632

648.

7446

6.45

RT9

0-R

HB

70–4

9.36

57.0

531

9.98

0078

.440

044

.330

0

582.

0066

9999

6.34

1632

650.

3846

8.73

RT9

0-R

HB

70–4

9.25

57.2

332

1.65

0079

.450

044

.640

0

585.

0066

9999

7.40

1632

652.

0347

1.00

RT9

0-R

HB

70–4

9.18

57.4

132

3.33

0080

.460

044

.960

0

588.

0066

9999

8.45

1632

653.

6847

3.27

RT9

0-R

HB

70–4

9.15

57.6

232

5.00

0081

.480

045

.280

0

591.

0066

9999

9.51

1632

655.

3447

5.54

RT9

0-R

HB

70–4

9.12

57.8

132

6.68

0082

.510

045

.600

0

594.

0067

0000

0.55

1632

657.

0047

7.81

RT9

0-R

HB

70–4

9.09

57.9

532

8.35

0083

.540

045

.920

0

597.

0067

0000

1.59

1632

658.

6648

0.08

RT9

0-R

HB

70–4

9.05

58.0

433

0.01

0084

.580

046

.240

0

600.

0067

0000

2.63

1632

660.

3348

2.34

RT9

0-R

HB

70–4

9.02

58.1

433

1.68

0085

.620

046

.560

0

603.

0067

0000

3.67

1632

662.

0048

4.61

RT9

0-R

HB

70–4

8.96

58.2

833

3.35

0086

.670

046

.870

0

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

606.

0067

0000

4.71

1632

663.

6848

6.87

RT9

0-R

HB

70–4

8.91

58.4

133

5.01

0087

.720

047

.190

0

609.

0067

0000

5.74

1632

665.

3648

9.13

RT9

0-R

HB

70–4

8.88

58.5

633

6.68

0088

.770

047

.510

0

612.

0067

0000

6.77

1632

667.

0449

1.39

RT9

0-R

HB

70–4

8.84

58.7

133

8.34

0089

.830

047

.830

0

615.

0067

0000

7.80

1632

668.

7349

3.65

RT9

0-R

HB

70–4

8.79

58.8

534

0.01

0090

.900

048

.140

0

618.

0067

0000

8.82

1632

670.

4249

5.91

RT9

0-R

HB

70–4

8.74

58.9

434

1.67

0091

.970

048

.460

0

621.

0067

0000

9.84

1632

672.

1149

8.16

RT9

0-R

HB

70–4

8.68

59.0

234

3.33

0093

.040

048

.780

0

624.

0067

0001

0.86

1632

673.

8150

0.41

RT9

0-R

HB

70–4

8.64

59.0

834

4.99

0094

.120

049

.090

0

627.

0067

0001

1.88

1632

675.

5150

2.67

RT9

0-R

HB

70–4

8.61

59.1

734

6.65

0095

.200

049

.410

0

630.

0067

0001

2.89

1632

677.

2250

4.92

RT9

0-R

HB

70–4

8.57

59.3

134

8.32

0096

.280

049

.730

0

633.

0067

0001

3.91

1632

678.

9250

7.17

RT9

0-R

HB

70–4

8.52

59.4

734

9.98

0097

.370

050

.050

0

636.

0067

0001

4.92

1632

680.

6450

9.41

RT9

0-R

HB

70–4

8.47

59.6

135

1.64

0098

.460

050

.370

0

639.

0067

0001

5.92

1632

682.

3551

1.66

RT9

0-R

HB

70–4

8.42

59.7

935

3.29

0099

.560

050

.690

0

642.

0067

0001

6.92

1632

684.

0751

3.90

RT9

0-R

HB

70–4

8.37

59.9

335

4.95

0010

0.67

0051

.010

0

645.

0067

0001

7.92

1632

685.

8051

6.15

RT9

0-R

HB

70–4

8.32

60.0

435

6.60

0010

1.78

0051

.330

0

648.

0067

0001

8.92

1632

687.

5251

8.39

RT9

0-R

HB

70–4

8.28

60.1

335

8.26

0010

2.89

0051

.640

0

651.

0067

0001

9.91

1632

689.

2652

0.63

RT9

0-R

HB

70–4

8.27

60.2

635

9.91

0010

4.01

0051

.960

0

654.

0067

0002

0.90

1632

690.

9952

2.86

RT9

0-R

HB

70–4

8.25

60.4

236

1.56

0010

5.13

0052

.280

0

657.

0067

0002

1.89

1632

692.

7352

5.10

RT9

0-R

HB

70–4

8.22

60.5

636

3.21

0010

6.26

0052

.590

0

660.

0067

0002

2.87

1632

694.

4752

7.34

RT9

0-R

HB

70–4

8.18

60.6

836

4.86

0010

7.39

0052

.910

0

663.

0067

0002

3.85

1632

696.

2152

9.58

RT9

0-R

HB

70–4

8.14

60.8

136

6.51

0010

8.53

0053

.220

0

666.

0067

0002

4.83

1632

697.

9653

1.81

RT9

0-R

HB

70–4

8.12

60.9

536

8.15

0010

9.67

0053

.530

0

669.

0067

0002

5.80

1632

699.

7153

4.04

RT9

0-R

HB

70–4

8.11

61.0

936

9.79

0011

0.82

0053

.850

0

672.

0067

0002

6.77

1632

701.

4653

6.28

RT9

0-R

HB

70–4

8.11

61.2

337

1.43

0011

1.97

0054

.160

0

675.

0067

0002

7.73

1632

703.

2253

8.51

RT9

0-R

HB

70–4

8.11

61.3

537

3.07

0011

3.12

0054

.460

0

678.

0067

0002

8.69

1632

704.

9854

0.74

RT9

0-R

HB

70–4

8.10

61.4

837

4.71

0011

4.28

0054

.770

0

681.

0067

0002

9.65

1632

706.

7454

2.98

RT9

0-R

HB

70–4

8.07

61.6

137

6.34

0011

5.44

0055

.070

0

�6

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

684.

0067

0003

0.60

1632

708.

5054

5.21

RT9

0-R

HB

70–4

8.05

61.7

137

7.97

0011

6.61

0055

.370

0

687.

0067

0003

1.55

1632

710.

2754

7.44

RT9

0-R

HB

70–4

8.04

61.8

137

9.60

0011

7.77

0055

.680

0

690.

0067

0003

2.50

1632

712.

0454

9.67

RT9

0-R

HB

70–4

8.03

61.9

338

1.23

0011

8.95

0055

.980

0

693.

0067

0003

3.45

1632

713.

8155

1.90

RT9

0-R

HB

70–4

8.00

62.0

438

2.85

0012

0.12

0056

.270

0

696.

0067

0003

4.39

1632

715.

5855

4.13

RT9

0-R

HB

70–4

7.98

62.1

538

4.48

0012

1.30

0056

.570

0

699.

0067

0003

5.33

1632

717.

3555

6.36

RT9

0-R

HB

70–4

7.96

62.2

738

6.10

0012

2.48

0056

.870

0

702.

0067

0003

6.26

1632

719.

1355

8.59

RT9

0-R

HB

70–4

7.97

62.3

638

7.72

0012

3.67

0057

.160

0

705.

0067

0003

7.19

1632

720.

9156

0.82

RT9

0-R

HB

70–4

7.98

62.4

438

9.34

0012

4.86

0057

.460

0

708.

0067

0003

8.12

1632

722.

6956

3.04

RT9

0-R

HB

70–4

7.98

62.5

539

0.96

0012

6.05

0057

.750

0

711.

0067

0003

9.05

1632

724.

4756

5.27

RT9

0-R

HB

70–4

7.96

62.6

939

2.57

0012

7.24

0058

.040

0

714.

0067

0003

9.97

1632

726.

2656

7.50

RT9

0-R

HB

70–4

7.91

62.8

139

4.18

0012

8.44

0058

.330

0

717.

0067

0004

0.89

1632

728.

0556

9.73

RT9

0-R

HB

70–4

7.84

62.9

639

5.80

0012

9.65

0058

.610

0

720.

0067

0004

1.80

1632

729.

8457

1.95

RT9

0-R

HB

70–4

7.79

63.0

939

7.41

0013

0.85

0058

.900

0

723.

0067

0004

2.71

1632

731.

6457

4.17

RT9

0-R

HB

70–4

7.76

63.2

239

9.02

0013

2.07

0059

.190

0

726.

0067

0004

3.62

1632

733.

4457

6.39

RT9

0-R

HB

70–4

7.72

63.3

540

0.62

0013

3.29

0059

.480

0

729.

0067

0004

4.53

1632

735.

2457

8.61

RT9

0-R

HB

70–4

7.69

63.4

640

2.23

0013

4.51

0059

.760

0

732.

0067

0004

5.43

1632

737.

0558

0.83

RT9

0-R

HB

70–4

7.68

63.5

740

3.83

0013

5.74

0060

.050

0

735.

0067

0004

6.33

1632

738.

8658

3.05

RT9

0-R

HB

70–4

7.67

63.6

740

5.44

0013

6.96

0060

.330

0

738.

0067

0004

7.23

1632

740.

6758

5.27

RT9

0-R

HB

70–4

7.65

63.7

640

7.04

0013

8.20

0060

.620

0

741.

0067

0004

8.12

1632

742.

4858

7.49

RT9

0-R

HB

70–4

7.63

63.8

440

8.63

0013

9.43

0060

.900

0

744.

0067

0004

9.01

1632

744.

3058

9.70

RT9

0-R

HB

70–4

7.62

63.9

541

0.23

0014

0.67

0061

.180

0

747.

0067

0004

9.90

1632

746.

1159

1.92

RT9

0-R

HB

70–4

7.60

64.0

441

1.83

0014

1.91

0061

.460

0

750.

0067

0005

0.78

1632

747.

9359

4.13

RT9

0-R

HB

70–4

7.58

64.1

141

3.42

0014

3.16

0061

.740

0

753.

0067

0005

1.67

1632

749.

7559

6.35

RT9

0-R

HB

70–4

7.61

64.1

741

5.02

0014

4.41

0062

.020

0

756.

0067

0005

2.55

1632

751.

5759

8.56

RT9

0-R

HB

70–4

7.69

64.1

641

6.61

0014

5.65

0062

.290

0

759.

0067

0005

3.43

1632

753.

3960

0.78

RT9

0-R

HB

70–4

7.77

64.0

541

8.20

0014

6.90

0062

.570

0

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

762.

0067

0005

4.31

1632

755.

2060

3.00

RT9

0-R

HB

70–4

7.81

63.9

141

9.79

0014

8.14

0062

.840

0

765.

0067

0005

5.20

1632

757.

0160

5.23

RT9

0-R

HB

70–4

7.80

63.8

342

1.38

0014

9.38

0063

.110

0

768.

0067

0005

6.09

1632

758.

8260

7.45

RT9

0-R

HB

70–4

7.85

63.7

342

2.97

0015

0.61

0063

.380

0

771.

0067

0005

6.98

1632

760.

6360

9.67

RT9

0-R

HB

70–4

7.89

63.6

742

4.56

0015

1.84

0063

.660

0

774.

0067

0005

7.87

1632

762.

4361

1.90

RT9

0-R

HB

70–4

7.92

63.6

542

6.16

0015

3.07

0063

.930

0

777.

0067

0005

8.76

1632

764.

2361

4.12

RT9

0-R

HB

70–4

7.93

63.6

142

7.75

0015

4.30

0064

.200

0

780.

0067

0005

9.66

1632

766.

0361

6.35

RT9

0-R

HB

70–4

7.98

63.5

742

9.35

0015

5.52

0064

.480

0

783.

0067

0006

0.55

1632

767.

8361

8.58

RT9

0-R

HB

70–4

8.03

63.5

743

0.94

0015

6.74

0064

.750

0

786.

0067

0006

1.44

1632

769.

6362

0.81

RT9

0-R

HB

70–4

8.06

63.5

843

2.53

0015

7.96

0065

.020

0

789.

0067

0006

2.33

1632

771.

4262

3.04

RT9

0-R

HB

70–4

8.09

63.5

743

4.12

0015

9.19

0065

.280

0

792.

0067

0006

3.23

1632

773.

2262

5.27

RT9

0-R

HB

70–4

8.12

63.6

143

5.71

0016

0.41

0065

.550

0

795.

0067

0006

4.12

1632

775.

0162

7.51

RT9

0-R

HB

70–4

8.11

63.6

643

7.30

0016

1.63

0065

.810

0

798.

0067

0006

5.01

1632

776.

8162

9.74

RT9

0-R

HB

70–4

8.08

63.7

643

8.89

0016

2.85

0066

.080

0

801.

0067

0006

5.89

1632

778.

6063

1.97

RT9

0-R

HB

70–4

8.02

63.8

844

0.47

0016

4.07

0066

.340

0

804.

0067

0006

6.78

1632

780.

4163

4.20

RT9

0-R

HB

70–4

7.95

63.9

644

2.06

0016

5.30

0066

.600

0

807.

0067

0006

7.66

1632

782.

2163

6.43

RT9

0-R

HB

70–4

7.87

64.0

244

3.64

0016

6.54

0066

.870

0

810.

0067

0006

8.54

1632

784.

0263

8.66

RT9

0-R

HB

70–4

7.78

64.1

044

5.23

0016

7.78

0067

.140

0

813.

0067

0006

9.42

1632

785.

8364

0.88

RT9

0-R

HB

70–4

7.69

64.1

744

6.82

0016

9.02

0067

.410

0

816.

0067

0007

0.30

1632

787.

6564

3.10

RT9

0-R

HB

70–4

7.62

64.2

644

8.41

0017

0.26

0067

.680

0

819.

0067

0007

1.18

1632

789.

4764

5.31

RT9

0-R

HB

70–4

7.57

64.4

044

9.99

0017

1.51

0067

.950

0

822.

0067

0007

2.05

1632

791.

3064

7.53

RT9

0-R

HB

70–4

7.52

64.5

645

1.58

0017

2.77

0068

.230

0

825.

0067

0007

2.92

1632

793.

1364

9.74

RT9

0-R

HB

70–4

7.48

64.6

945

3.17

0017

4.03

0068

.500

0

828.

0067

0007

3.79

1632

794.

9665

1.95

RT9

0-R

HB

70–4

7.45

64.8

345

4.75

0017

5.30

0068

.770

0

831.

0067

0007

4.65

1632

796.

8065

4.16

RT9

0-R

HB

70–4

7.43

64.9

745

6.33

0017

6.57

0069

.040

0

834.

0067

0007

5.51

1632

798.

6465

6.37

RT9

0-R

HB

70–4

7.41

65.1

145

7.91

0017

7.84

0069

.310

0

837.

0067

0007

6.37

1632

800.

4865

8.58

RT9

0-R

HB

70–4

7.38

65.2

745

9.49

0017

9.12

0069

.580

0

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

840.

0067

0007

7.22

1632

802.

3266

0.79

RT9

0-R

HB

70–4

7.34

65.4

446

1.06

0018

0.41

0069

.840

0

843.

0067

0007

8.06

1632

804.

1766

2.99

RT9

0-R

HB

70–4

7.30

65.5

346

2.64

0018

1.69

0070

.110

0

846.

0067

0007

8.90

1632

806.

0266

5.20

RT9

0-R

HB

70–4

7.23

65.5

946

4.21

0018

2.99

0070

.370

0

849.

0067

0007

9.74

1632

807.

8866

7.40

RT9

0-R

HB

70–4

7.14

65.6

546

5.78

0018

4.28

0070

.630

0

852.

0067

0008

0.59

1632

809.

7466

9.60

RT9

0-R

HB

70–4

7.07

65.7

546

7.35

0018

5.59

0070

.900

0

855.

0067

0008

1.42

1632

811.

6067

1.80

RT9

0-R

HB

70–4

7.02

65.8

546

8.92

0018

6.89

0071

.170

0

858.

0067

0008

2.26

1632

813.

4767

3.99

RT9

0-R

HB

70–4

6.96

65.9

447

0.49

0018

8.20

0071

.440

0

861.

0067

0008

3.10

1632

815.

3467

6.18

RT9

0-R

HB

70–4

6.93

66.0

447

2.06

0018

9.51

0071

.710

0

864.

0067

0008

3.93

1632

817.

2167

8.37

RT9

0-R

HB

70–4

6.90

66.1

647

3.63

0019

0.83

0071

.980

0

867.

0067

0008

4.76

1632

819.

0868

0.56

RT9

0-R

HB

70–4

6.84

66.3

047

5.20

0019

2.15

0072

.250

0

870.

0067

0008

5.58

1632

820.

9668

2.75

RT9

0-R

HB

70–4

6.77

66.4

347

6.77

0019

3.47

0072

.520

0

873.

0067

0008

6.40

1632

822.

8568

4.94

RT9

0-R

HB

70–4

6.72

66.5

247

8.34

0019

4.80

0072

.780

0

876.

0067

0008

7.22

1632

824.

7368

7.12

RT9

0-R

HB

70–4

6.68

66.6

347

9.90

0019

6.14

0073

.050

0

879.

0067

0008

8.04

1632

826.

6268

9.31

RT9

0-R

HB

70–4

6.66

66.7

648

1.46

0019

7.48

0073

.320

0

882.

0067

0008

8.85

1632

828.

5169

1.49

RT9

0-R

HB

70–4

6.63

66.9

248

3.02

0019

8.82

0073

.590

0

885.

0067

0008

9.66

1632

830.

4169

3.67

RT9

0-R

HB

70–4

6.59

67.0

948

4.58

0020

0.17

0073

.850

0

888.

0067

0009

0.46

1632

832.

3169

5.85

RT9

0-R

HB

70–4

6.54

67.2

548

6.14

0020

1.52

0074

.120

0

891.

0067

0009

1.26

1632

834.

2169

8.02

RT9

0-R

HB

70–4

6.47

67.4

148

7.69

0020

2.88

0074

.380

0

894.

0067

0009

2.05

1632

836.

1270

0.20

RT9

0-R

HB

70–4

6.43

67.5

948

9.24

0020

4.24

0074

.640

0

897.

0067

0009

2.84

1632

838.

0370

2.37

RT9

0-R

HB

70–4

6.40

67.7

749

0.79

0020

5.62

0074

.900

0

900.

0067

0009

3.62

1632

839.

9570

4.55

RT9

0-R

HB

70–4

6.34

67.9

149

2.33

0020

6.99

0075

.160

0

903.

0067

0009

4.40

1632

841.

8670

6.72

RT9

0-R

HB

70–4

6.28

68.0

349

3.88

0020

8.37

0075

.410

0

906.

0067

0009

5.18

1632

843.

7970

8.88

RT9

0-R

HB

70–4

6.26

68.1

949

5.42

0020

9.76

0075

.670

0

909.

0067

0009

5.95

1632

845.

7171

1.05

RT9

0-R

HB

70–4

6.23

68.3

449

6.96

0021

1.15

0075

.920

0

912.

0067

0009

6.72

1632

847.

6471

3.22

RT9

0-R

HB

70–4

6.20

68.4

849

8.49

0021

2.55

0076

.170

0

915.

0067

0009

7.48

1632

849.

5771

5.38

RT9

0-R

HB

70–4

6.13

68.6

250

0.03

0021

3.95

0076

.430

0

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rds

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

ol

flag

918.

0067

0009

8.23

1632

851.

5171

7.55

RT9

0-R

HB

70–4

6.05

68.7

450

1.56

0021

5.35

0076

.680

0

921.

0067

0009

8.99

1632

853.

4571

9.71

RT9

0-R

HB

70–4

5.98

68.8

350

3.09

0021

6.77

0076

.930

0

924.

0067

0009

9.74

1632

855.

3972

1.86

RT9

0-R

HB

70–4

5.95

68.9

450

4.62

0021

8.18

0077

.180

0

927.

0067

0010

0.49

1632

857.

3472

4.02

RT9

0-R

HB

70–4

5.88

69.0

950

6.15

0021

9.60

0077

.430

0

930.

0067

0010

1.24

1632

859.

2972

6.17

RT9

0-R

HB

70–4

5.82

69.2

350

7.67

0022

1.03

0077

.680

0

933.

0067

0010

1.98

1632

861.

2572

8.33

RT9

0-R

HB

70–4

5.77

69.3

850

9.20

0022

2.46

0077

.930

0

936.

0067

0010

2.72

1632

863.

2073

0.47

RT9

0-R

HB

70–4

5.73

69.5

351

0.72

0022

3.89

0078

.180

0

939.

0067

0010

3.45

1632

865.

1773

2.62

RT9

0-R

HB

70–4

5.68

69.6

951

2.24

0022

5.33

0078

.430

0

942.

0067

0010

4.18

1632

867.

1373

4.77

RT9

0-R

HB

70–4

5.62

69.8

551

3.76

0022

6.78

0078

.670

0

945.

0067

0010

4.90

1632

869.

1073

6.91

RT9

0-R

HB

70–4

5.55

70.0

251

5.27

0022

8.23

0078

.920

0

948.

0067

0010

5.62

1632

871.

0873

9.05

RT9

0-R

HB

70–4

5.49

70.2

151

6.79

0022

9.69

0079

.160

0

951.

0067

0010

6.33

1632

873.

0674

1.19

RT9

0-R

HB

70–4

5.42

70.3

651

8.30

0023

1.15

0079

.410

0

954.

0067

0010

7.04

1632

875.

0474

3.33

RT9

0-R

HB

70–4

5.35

70.4

951

9.80

0023

2.62

0079

.650

0

957.

0067

0010

7.74

1632

877.

0374

5.46

RT9

0-R

HB

70–4

5.26

70.6

452

1.31

0023

4.10

0079

.890

0

960.

0067

0010

8.44

1632

879.

0274

7.60

RT9

0-R

HB

70–4

5.15

70.7

952

2.81

0023

5.58

0080

.130

0

963.

0067

0010

9.14

1632

881.

0274

9.72

RT9

0-R

HB

70–4

5.05

70.9

552

4.32

0023

7.07

0080

.380

0

966.

0067

0010

9.83

1632

883.

0275

1.85

RT9

0-R

HB

70–4

4.96

71.0

952

5.82

0023

8.57

0080

.620

0

969.

0067

0011

0.52

1632

885.

0375

3.97

RT9

0-R

HB

70–4

4.88

71.2

552

7.32

0024

0.07

0080

.870

0

972.

0067

0011

1.20

1632

887.

0475

6.08

RT9

0-R

HB

70–4

4.80

71.4

252

8.82

0024

1.58

0081

.110

0

978.

0067

0011

2.55

1632

891.

0976

0.30

RT9

0-R

HB

70–4

4.68

71.6

753

1.80

0024

4.62

0081

.600

0

Prin

tout

from

SIC

AD

A 2

005-

10-2

0 14

:33:

16.

�1

App

endi

x4

Leng

thre

fere

nce

mar

ksR

efer

ence

Mar

kT

–R

efer

ence

mar

kin

dril

lhol

eK

FM06

C,2

005‑

06‑2

719

:00:

00–

200

5‑06

‑28

06:0

0:00

(150

.000

–960

.000

m).

Bhl

en

(m)

Rot

atio

nsp

eed

(rpm

)St

artf

low

(l/

min

)St

opfl

ow

(l/m

in)

Stop

pre

ssur

e(b

ar)

Cut

tert

ime

(s)

Trac

ede

tect

able

Cut

terd

iam

eter

(m

m)

Com

men

t

150.

0040

0.00

250

350

28.0

1Ja

200.

0040

0.00

250

350

30.0

1Ja

250.

0040

0.00

250

350

30.0

0Ja

300.

0040

0.00

250

350

30.0

0Ja

350.

0040

0.00

250

400

30.0

0Ja

400.

0040

0.00

300

400

30.0

1Ja

447.

0040

0.00

400

500

30.0

1Ja

500.

0040

0.00

400

550

35.0

0Ja

550.

0040

0.00

400

550

35.0

0Ja

600.

0040

0.00

400

550

35.0

0Ja

652.

0040

0.00

400

600

35.0

1Ja

700.

0040

0.00

400

600

40.0

0Ja

750.

0040

0.00

400

600

40.0

0Ja

800.

0040

0.00

450

600

40.0

1Ja

850.

0040

0.00

400

600

40.0

1Ja

898.

0040

0.00

400

600

40.0

0Ja

960.

0040

0.00

400

600

40.0

0Ja

Prin

tout

from

SIC

AD

A 2

005-

10-1

2 16

:52:

42.