32
P-06-81 Forsmark site investigation Comparative geological logging with the Boremap system: 176.5–360.9 m of borehole KFM06C Jesper Petersson, Göran Skogsmo, Johan Berglund SwedPower AB Allan Stråhle, Geosigma AB May 2006 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

Forsmark site investigation Comparative geological logging ... · P-06-81 Forsmark site investigation Comparative geological logging with the Boremap system: 176.5–360.9 m of borehole

  • Upload
    ngokien

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

P-06-81

Forsmark site investigation

Comparative geological logging with the Boremap system: 176.5–360.9 m of borehole KFM06C

Jesper Petersson, Göran Skogsmo, Johan Berglund

SwedPower AB

Allan Stråhle, Geosigma AB

May 2006

Svensk Kärnbränslehantering ABSwedish Nuclear Fueland Waste Management CoBox 5864SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00Fax 08-661 57 19 +46 8 661 57 19

CM

Gru

ppen

AB

, Bro

mm

a, 2

006

ISSN 1651-4416

SKB P-06-81

Forsmark site investigation

Comparative geological logging with the Boremap system: 176.5–360.9 m of borehole KFM06C

Jesper Petersson, Göran Skogsmo, Johan Berglund

SwedPower AB

Allan Stråhle, Geosigma AB

May 2006

Keywords: KFM06C, Geology, Drill core, Comparative mapping, BIPS, Boremap, Fractures, Forsmark, AP PF 400-05-086.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

This report presents the results from four days of geological mapping of KFM06C, a 1 km long telescopic borehole in the Forsmark area, by using the Boremap system. The mapping is part of a project initiated to evaluate possible differences in the geological judgement and the methodology used for the drill core logging at Forsmark and subarea Laxemar site investigation areas. During the four days period, an interval from 176.5 to 360.9 metres of KFM06C was mapped. All lithological features that occur within this interval have been registered and documented with the same criteria used by the SwedPower team during the regular geological logging of boreholes in the Forsmark area.

The 184.4 metres long interval of KFM06C is dominated by a medium-grained metagranite. Other frequent rock types in the interval include pegmatitic granite, amphibolite, aplitic metagranite and fine- to finely medium-grained granite. None of these occurrences exceed a few metres in length along the borehole. Virtually all rocks have experienced Svecofennian metamorphism under amphibolite facies conditions. Structurally, the rocks are characterised by composite L-S fabrics, with a slight predominance of linear mineral fabrics. Seven minor zones of more intense ductile deformation have been registered in the mapped interval of KFM06C. A faint to weak oxidation of feldspars is generally associated with more intensely fractured intervals.

The total number of fractures registered in the 184.4 metres long interval of KFM06C amounts to 646. Of these are 219 open, 14 partly open and 413 sealed. Two rather narrow crush zones occur in the mapped interval. Three fracture sets may be distinguished. (1) Horizontal to sub-horizontal fractures that are mostly open. The maximum aperture of these fractures is 4 millimetres. The most frequent infilling minerals are calcite, chlorite and clay minerals. (2) Steeply dipping fractures, striking roughly N–S. Most of these fractures are inferred to be sealed. Typical infilling minerals are calcite, chlorite, hematite, adularia, laumontite, quartz and pyrite. (3) Sealed, vertical to sub-vertical fractures with ENE–WSW strike. They are mainly restricted to the length interval below ca 280 metres. The majority is sealed by adularia, calcite and chlorite.

Sammanfattning

Föreliggande rapport redovisar resultaten från fyra dagars Boremapkartering av KFM06C, ett 1 km djupt teleskopborrhål i Forsmarksområdet. Karteringen ingår i ett projekt för att utvärdera eventuella skillnader i geologiska bedömningar och metodiken som används vid borrkärnekartering i undersökningsområde Forsmark respektive delområde Laxemar. Under fyradagarsperioden karterades ett längdintervall från 176,5 till 360,9 meter av KFM06C. Alla strukturer och litologiska enheter som förekommer i intervallet registrerades och dokumenterades med samma kriterier som används av SwedPowers geologer vid den reguljära borrhålskarteringen i Forsmark.

Det 184,4 meter långa intervallet i KFM06C domineras av en medelkornig metagranit. Andra vanligt förekommande bergarter i intervallet är pegmatitisk granit, amfibolit, aplitisk metagranit och fin- till fint medelkornig granit. Enskilda förekomster uppgår aldrig till mer än några meters borrhålslängd. I det närmaste alla bergarter har genomgått Svekofennisk amfibolitfacies-metamorfos. Bergarterna karaktäriseras av en sammansatt L-S-struktur, med en något tydligare mineralstänglighet. Sju mindre zoner med mer kraftig duktil deformation har registrerats i det karterade intervallet av KFM06C. En svag till mycket svag oxidation av fältspater uppträder normalt i längdintervall som är mer kraftigt uppspruckna.

Det totala antalet sprickor som registrerats i det 184,4 meter långa intervallet av KFM06C uppgår till 646. Av dessa är 219 öppna, 14 partiellt öppna och 413 läkta. Två mindre krosszoner förekommer i det karterade intervallet. Tre sprickgrupper kan urskiljas. (1) Horisontella till subhorisontella sprickor som till största delen är öppna. Den maximala aperturen hos dessa uppgår till 4 millimeter. De vanligast förekommande sprickfyllnads-mineralen är kalcit, klorit och lermineral. (2) Brant stupande sprickor som stryker ungefär N–S. De flesta av dessa sprickor bedöms vara läkta. Typiska sprickmineral inkluderar kalcit, klorit, hematit, adularia, laumontit, kvarts och pyrit. (3) Läkta, vertikala till sub-vertikala sprickor som stryker ENE–VSV. De är huvudsakligen begränsade till ett längd-intervall under ca 280 meter. Majoriteten av dem är läkta med adularia, kalcit och klorit.

Contents

1 Introduction 7

2 Objectiveandscope 9

3 Equipment 113.1 Description of equipment/interpretation tools 11

4 Execution 134.1 General 134.2 Preparations 134.3 Data handling 134.4 Analyses and interpretations 144.5 Nonconformities 14

5 Results 175.1 Core lithology 175.2 Ductile structures 175.3 Alteration 185.4 Fractures 18

5.4.1 Fracture frequencies and orientations 185.4.2 Fracture mineralogy 19

Appendix1 WellCAD image 21Appendix2 Borehole diameters 25Appendix3 Downhole deviation measurements 27Appendix4 Length reference marks 39

1 Introduction

Since 2002, SKB investigates two potential sites at Forsmark and Oskarshamn, for a deep repository in the Swedish Precambrian basement. In order to characterise the bedrock down to a depth of about 1 km at the two site investigation areas, SKB launched several extensive drilling programmes. A detailed geological logging of the drill cores obtained through the drilling programs is essential for subsequent sampling and borehole investigations, and consequently, for the three-dimensional modelling of the two sites. For this purpose, the so-called Boremap system has been developed. The system integrates results from geologi-cal drill core logging, or alternatively, the drill cuttings when a core is not available, with information from BIPS-logging (Borehole Image Processing System) and calculates the absolute position and orientation of fractures and various planar lithological features (SKB MD 143.006 and 146.005).

To assure the comparability between the two site investigation areas, it is essential that there is a general consensus in the geological judgements and the methodology used for the drill core logging. The subject has arisen as the geologists involved in the logging have been strictly tied to one of the site investigation areas, and the exchange of experiences is rather limited. In order to evaluate possible differences in the mapping, SKB initiated a project where the core logging teams at the two sites were switching locality to work with a drill core from the other site investigation area. The two boreholes chosen for the mapping were telescopic drilled borehole KFM06C from the Forsmark site investigation area and core drilled borehole KLX07B from the subarea Laxemar, which is part of the Simpevarp site investigation area at Oskarshamn.

This document reports the results from the comparative geological logging of borehole KFM06C performed by geologists from SwedPower AB. The activity is part of the site investigation at Forsmark. The work was carried out in accordance with activity plan AP PF 400-05-086. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB’s internal controlling documents.

Table1‑1. Controllingdocumentsfortheperformanceoftheactivity.

Activityplan Number Version

Jämförande Boremapkartering på del av teleskopborrhål KFM06C och KLX07B

AP PF 400-05-086 1.0

Methoddocuments Number VersionMetodbeskrivning för Boremap-kartering SKB MD 143.006 2.0Nomenklatur vid Boremap-kartering SKB MD 143.008 1.0Mätsystembeskrivning för Boremapkartering, Boremap v 3.0 SKB MD 146.005 1.0

2 Objectiveandscope

Borehole KFM06C is a ca 1 km long, telescopic borehole drilled in the northern part of the Forsmark site investigation area with 60° inclination towards NNE (026°). It starts with percussion drilling (Ø = 251 mm) to a length of 100.40 metres, followed by core drilling at Ø = 86 millimetres to a length of 102.08 metres, and at Ø = 77 millimetres down to full borehole length at 1,000.43 metres. The diameters of the two drill cores are 70 and 51 millimetres, respectively, under ideal conditions. The available BIPS-image of KFM06C covers the core drilled length interval at Ø = 77 millimetres.

The comparative geological logging of KFM06C starts at 176.5 metres adjusted length, and should proceed for 4×8 hours. This includes 15–20 minutes of daily mapping controls by examination of Boremap generated variable/summary reports and a WellCad log to match. The length of the interval, which was mapped during the four days, amounts to 184.4 metres (176.5–360.9 meters). All structures and lithologies that occur within this interval have been registered and documented with the same criteria used by the SwedPower team during the regular geological logging of the boreholes in the Forsmark area.

11

3 Equipment

3.1 Descriptionofequipment/interpretationtoolsAll BIPS-based mapping was performed in Boremap v 3.6. This software contains the bedrock and mineral standard used by the Geological Survey of Sweden (SGU) for geologi-cal mapping of the surface at the Forsmark site investigation area, to enable correlation with the surface geology. Additional software used during the course of the geological logging was BIPS Viewer v 1.10 and Microsoft Access. The final data presentation was made by Geoplot and WellCAD v 3.2.

The following equipment was used to facilitate the core logging: folding rule, concentrated hydrochloric acid diluted with three parts of water, unglazed porcelain plate, knife, hand lens, paintbrush and tap water.

1�

4 Execution

4.1 GeneralDuring the core logging, the ca 900 metres drill core obtained from the interval 102.08–1,000.43 metres of KFM06C was available in its full length on roller tables in the core-mapping accommodation at Forsmark (the Llentab hall, near the SKB/SFR-office). No thin-sections were available from the drill cores, and all lithological descriptions are based on ocular inspection. The mapping was done by two geologists; one did the core logging while the other registered the information in Boremap.

The core logging of KFM06C was performed in Boremap v 3.6 according to activity plan AP PF 400-05-086 (SKB internal document) following the SKB method description/instruc-tion for Boremap mapping, SKB MD 143.006 (v 2.0) and 143.008 (v 1.0). A WellCAD summary of the mapping is presented in Appendix 1.

4.2 PreparationsThe length registered in the BIPS-image deviates from the true borehole length with increasing depth, and the difference at the bottom of KFM06C is about 5 metres. It was, therefore, necessary to adjust the length in KFM06C with reference to groove millings cut into the borehole wall at every 50 metres. The precise level of each reference mark can be found in SKB’s database SICADA (Appendix 4). This adjustment was done already during the start of the regular mapping of KFM06C. Consequently, it was copied directly into the database used for the comparative mapping.

Data necessary for calculations of absolute orientation of structures in the borehole includes borehole diameter, azimuth and inclination, and these data were imported directly from SKB’s database SICADA (Appendices 2 and 3).

4.3 DatahandlingTo obtain the best possible data security, the mapping was performed on the SKB intranet, with regular back-ups on the local drives.

To avoid that any broken fractures become unregistered, the number of broken fractures in the drill core was regularly checked against the number of registered fractures in Boremap. The quality routines include also daily controls of the mapping by detailed examination of Boremap generated variable/summary reports and WellCad log to match. The final quality check of the mapping was done by a routine in the Boremap software. The primary data were subsequently exported to the SKB database SICADA, where they are traceable by the activity plan number.

1�

4.4 AnalysesandinterpretationsA major flaw in Boremap system is the distinction between fractures that intersect the whole borehole (‘infinite fractures’) and those that end within the drill core (‘finite fractures’). The latter category includes fractures that (1) are slightly curved and runs more or less parallel with the borehole axis, (2) ends in other fractures, (3) splays from other fractures and (4) with no immediately obvious reason ends in the drill core. For modelling purposes, it was decided to separate those fractures that intersect the central borehole axis from those that never reach the centre. Fractures limited to less than half of the borehole are, therefore, marked by ‘#’ in the attached comments.

Another problem with the core logging system is related to geological features (mainly fractures) that can be observed only in the drill core. This problem usually arises from poor resolution in the BIPS-image, which in the present case often is caused by the occurrence of suspension from drilling, brownish black coating from the drilling rods on the borehole walls and/or disturbances in the movement of the BIPS-camera. However, even in the most perfect BIPS-image, it is sometimes difficult to distinguish a thin fracture, sealed by a low contrast mineral. All fractures observed in the drill core, but not recognized in the BIPS-image, have been registered as ‘not visible in BIPS’ in Boremap, to prevent them from being used in forthcoming fracture orientation analysis. If possible, they are still oriented relative to other structures. Fractures supposed to be induced by the drilling activities fall within this category. Obviously drilling-induced fractures are not included in the mapping.

The resolution of the BIPS-image does generally make it possible to estimate the width of fractures with an error of ± 0.5 millimetres. Thus, reliable measurements of fracture widths/apertures less than 1 millimetre are possible to obtain in the drill core, and the minimum width/aperture given is therefore 0.5 millimetre.

The fracture mapping focuses on the division into broken and unbroken fractures, depend-ing on whether they are parting the core or not. Broken fractures include both open fractures and originally sealed fractures, which were broken during the drilling. To decide if a fracture was open, partly open or sealed in the rock volume (i.e. in situ), SKB has developed a confidence classification expressed at three levels, ‘possible’, ‘probable’ and ‘certain’, on the basis of the weathering of the fracture surface and fit of the fracture planes. The criteria for this classification are given in SKB method description for Boremap mapping, SKB MD 143.006 (v 2.0).

Up to four infilling minerals can be registered in the database for each fracture. As far as possible, they are given in order of decreasing abundance in the fracture. Additional miner-als (i.e. five or more), which occur in a few fractures, are noted in the attached comment. However, it must be emphasized that this provides no information of the volumetric amount of individual minerals. In a fracture with two minerals, the mineral registered as ‘second mineral’ may range from sub-microscopic staining up to amounts equal to that of the mineral registered as ‘first mineral’. Hematite, for example, occur consistently as extremely thin coatings or impurities in other fracture minerals, such as adularia and laumontite.

1�

4.5 NonconformitiesSome fracture filling minerals are more conspicuous than other. For example, the distinct red tinting shown by sub-microscopic hematite reveals extremely low concentrations of the mineral. Also the use of diluted hydrochloric acid for identification of calcite makes it possible to detect amounts that are macroscopically invisible. The amount of fractures filled with other less conspicuous minerals may, on the other hand, be underestimated. Pyrite, which typically forms up to millimetre-sized, isolated crystals, might for example be under-represented in unbroken fractures.

As in previous cored boreholes, the comparative mapping of KFM06C was locally ham-pered by brownish black coatings on the borehole walls as well as mottling of the BIPS-image. The dark coating is frequent in the mapped interval, where it typically forms a spiral pattern or a single band along the borehole axis. This coating phenomenon is obviously drill induced, and the explanation proposed is that the coatings originate from metal frag-ments abraded from the drill rods. Intervals with mottled BIPS-image occur at four levels: 201.64–202.14, 230.58–232.16, 269.25–271.80, 284.45–286.68 metres (adjusted length). Geological features (e.g. fractures) depicted in these mottled intervals are typically distorted and sometimes difficult to distinguish (Figure 4-1). The mottling is obviously a result of disturbances in the normally constant movement of the BIPS-camera.

Figure 4-1.  Mottling of the BIPS-image, due to disturbances in the logging movement of the BIPS-camera.

1�

5 Results

5.1 CorelithologyThe 184.4 metres long interval of KFM06C, which was subjected to the comparative map-ping, is dominated by a medium-grained metagranite (rock code 101057) with a tendency to be slightly granodioritic. Other frequent rock units in the interval includes pegmatitic granite (rock code 101061), amphibolite (rock code 102017), aplitic metagranite (rock code 101058) and fine- to finely medium-grained granite (rock code 111058). The maxi-mum length of individual occurrences is ca 6.8 metres, though the vast majority are less than a few metres in length. Except for some late veins or dykes, all rocks have experienced Svecofennian metamorphism under amphibolite facies conditions.

The medium-grained metagranite (101057) is rather equigranular with elongated quartz domains, alternating with feldspar-dominated domains and thin streaks of biotite. The colour of the rock varieties ranges from greyish red to grey, whereas completely grey varieties, lacking the reddish tint, are sparse and typically associated with amphibolites.

Amphibolites (102017) and related rocks are generally fine-grained, equigranular and with a large proportion of biotite. All extensions and contacts are broadly parallel with the tectonic fabric.

Dykes, veins and segregations of pegmatite, pegmatitic granite, aplite and leucogranitic material are frequent throughout the interval. Most occurrences are some decimetre or less, but several pegmatites/pegmatitic granites reach up to a few metres in length. The pegmatitic granites are generally texturally heterogeneous, often with a highly variable grain-size, and some occurrences include intervals of finely medium-grained, equigranular granite. Rather coarse magnetite, and subordinately hematite, has been identified in some pegmatites. Despite the textural variability and temporal span within this unit, most of these rocks were grouped as ‘pegmatite, pegmatitic granite’ (101061). Other, related rocks, which includes aplitic metagranite (101058), fine- to finely medium-grained granite (111058) and aplite (1062) are often highly reminiscent of each other. A distinctive criterion apart from the late-tectonic character of the aplite (1062) and the fine- to finely medium-grained granite (111058), is the anomalously high natural gamma radiation of fine- to finely medium-grained granite. Quartz-dominated segregations or veins were coded as 8021.

In addition, there are a few minor occurrences of granodiorite and tonalite in the interval. None of them appears to fit into the bedrock nomenclature defined by SKB (‘Regler för bergarters benämningar vid platsundersökningarna i Simpevarp och Forsmark’, v 1.0). Instead they were coded as 1056 (unspecified granodiorite) and 1053 (unspecified tonalite).

5.2 DuctilestructuresMost rocks in the mapped interval of KFM06C are characterised by composite L-S fabrics, with a slight predominance of linear mineral fabrics. However, the relative intensity of the two components is locally variable. The intensity of the deformational fabric is mostly weak to medium. It must, however, be emphasized that it often is difficult to distinguish tectonic fabric visually in the pegmatites and some of the fine-grained mafic rocks. The fact that they may appear massive does not necessarily implicate that they actually are

18

post-kinematic. The foliation is generally E–W trending with a moderate dip towards south. None of the linear fabrics have been possible to register with the present methodology, but the general impression is that they are gently to moderately dipping.

Totally seven narrow zones of more intense ductile deformation have been registered in the mapped interval of KFM06C. All of them are found in a ca 50 metres long interval between 180 and 230 metres (adjusted length). Except for a 1.4 metre wide zone at 223.6–225.0 metres adjusted length, individual zones range up to about three decimetres. The protolith in the zones seems mainly to be a highly deformed and grain-size reduced variety of the metagranite (101057). All shear zones are more or less parallel with the local tectonic foliation.

5.3 AlterationExcept for a decimetre-wide occurrence of pre-metamorphic albitization in the aplitic metagranite (101058), the only alteration encountered in the mapped interval of KFM06C is varying degrees of oxidation, manifested as red pigmentation of feldspars. It is generally associated with more intensely fractured intervals, and is most frequent in the length inter-val 262–297 metres (adjusted length). The oxidation is normally faint to weak in intensity.

5.4 Fractures5.4.1 Fracturefrequenciesandorientations

Excluding crush zones and sealed networks, the total number of open (broken fractures with aperture > 0), partly open (unbroken fractures with aperture > 0) and sealed fractures (broken and unbroken fractures with aperture = 0) registered during the comparative map-ping of KFM06C amounts to 646, i.e. about 3.5 fractures/m. Of these are 483 visible in the BIPS-image. Moreover, they can be separated in 219 open, 14 partly open and 413 sealed fractures. It should be emphasized that there is a certain degree of uncertainty whether a fracture actually is open or sealed. Throughout the borehole, the frequency of open and sealed fractures varies rather coherently, with an increased number of open fractures in intervals with concentrations of sealed fractures (Appendix 1). Considering the fracture distribution along the mapped interval of KFM06C, there is two sections with somewhat increased fracture frequency: 204–228 and 285–305 metres adjusted length. None of these intervals are especially well-defined, and both are dominated by fractures inferred to be sealed.

The fracture orientations vary considerably throughout the mapped interval of KFM06C, though a stereographic projection in Figure 5-1 reveal three rather distinct fracture sets. The proportion of open and sealed fractures differs significantly between the sets. The first fracture set consists of horizontal to sub-horizontal fractures. Fractures of this set are found throughout both borehole, and most of these fractures are inferred to be open. The maximum aperture of these fractures is 4 millimetres. A second fracture set consists steeply dipping fractures, striking N–S. The majority of these fractures are sealed. A third, well-defined fracture set, mainly restricted to the length interval below ca 280 metres, consists of vertical to sub-vertical fractures with ENE–WSW strike. In addition, there are a number of fractures with varying dips towards south. A considerable amount of these fractures are inferred to be open.

1�

Two rather narrow crush zones occur at 284.66–284.76 and 346.53–346.57 metres (adjusted length) in the mapped interval of KFM06C. Both are gently dipping with an approximate NE–SW trending strike. There is also a drill induced crush in the adjusted length interval 284.66–285.11 metres, which hence overlaps with the upper of the two crush zones.

Five sealed networks with fractures of highly variable orientation have been registered in the mapped interval of KFM06C. The width of individual networks ranges up to a few decimetres.

One fracture inferred to be core discing has been observed at 258.22 metres adjusted length.

5.4.2 Fracturemineralogy

Chlorite and/or calcite are found in about 75% of the total number of the registered fractures in the mapped interval of KFM06C. They are found in all fracture sets discussed above (cf Figure 5-1). Other infilling minerals, in order of decreasing abundance, include clay minerals, prehnite, adularia, pyrite, quartz, laumontite, sub-microscopic hematite, biotite, sericite, epidote, fluorite, galena and unspecified sulphides. There are also 80 fractures that are virtually free from visible mineral coatings and oxidized walls. These are mostly open, and a considerable proportion belongs to the horizontal to sub-horizontal fracture set.

The various clay minerals occur typically in open, flat-lying fractures. It is generally impossible to be more specific regarding the type of clay minerals. However, clay minerals registered in more steeply dipping fractures are mostly corrensite, often intimately associ-ated with chlorite.

Figure 5-1.  Lower hemisphere, equal-area stereographic projections showing the poles to all sealed (blue squares) and open (red squares) fractures in the adjusted length interval 176.5–360.9 metres of borehole KFM06C. A filled, black circle mark the orientation of the borehole axis.

20

All other minerals, as well as the presence of oxidized walls, are preferentially associated with sealed fractures. A typical mineral assemblage is calcite + chlorite ± hematite stained adularia ± pyrite. The assemblage is found in all the fracture sets discussed above, though the third fracture set is dominated by hematite-stained adularia with subordinate amounts of calcite and chlorite. Laumontite and to some extent quartz tend to be associated with this assemblage. Fractures containing this assemblage often exhibit oxidized walls. A number of very thin (<< 1 millimetre), sealed fractures are only revealed by their oxidized walls. Except for staining of various silicates, such as adularia and laumontite, hematite may occur as thin, reddish coatings, preferentially found in flat lying fractures.

Prehnite is more or less restricted to sealed fractures in amphibolites. Most of these fractures are rather thin (< 1 millimetre). The identification is therefore difficult and some of the light greenish mineral mapped as prehnite might be adularia or possibly epidote.

21

Appendix1

WellCADimage

Appendix: 1

22

Dateofcoremapping

CoordinateSystem RT90-RHB70

Length[m]

Title GEOLOGYINKFM06C

Diameter[mm] 77.0Elevation[m.a.s.l.]

Borehole KFM06C

Inclination[°] -60.0

Site FORSMARKNorthing[m]Easting[m]

Fracturedatafrom

Appendix: 1

DrillingStopDatePlotDate

Bearing[°] 26.1

Rocktypedatafrom

DrillingStartDate

1:500

DEP

TH.

TYP

E

Stru

ctur

e

Text

ure

Gra

insi

ze

Stru

ctur

eO

rient

atio

n

Roc

k Ty

pe<

1m

Alte

ratio

n

Inte

nsity

ROCKTYPE

Prim

ary

Min

eral

Sec

onda

ryM

iner

al

Third

Min

eral

Four

thM

iner

al

Alte

ratio

nO

rient

atio

n

SEALEDFRACTURES

Prim

ary

Min

eral

Sec

onda

ryM

iner

al

Third

Min

eral

Four

thM

iner

al

Rou

ghne

ss

Sur

face

Alte

ratio

nO

rient

atio

n

Ape

rture

(mm

)

NATURAL FRACTURES

Alte

ratio

n

Pie

ce

Cor

elos

s

CRUSHZONE

Frequency (fr/m)

0 20

FRACTURE

180

190

200

210

220

230

240

250

260

270

280

290

10.0

Page 1

2�

300

310

320

330

340

350

360

5.0

Page 2

2�

Appendix2

BoreholediametersHoleDiamT–Drilling:BoreholediameterKFM06C,2005‑04‑2714:30:00–2005‑06‑3013:44:00(100.400–1,000.430m).

Subsecup(m)

Subseclow(m)

Holediam(m)

Comment

100.400 102.080 0.086102.080 1,000.430 0.077

Printout from SICADA 2005-10-12 16:50:52.

2�

App

endi

x3

Dow

nhol

ede

viat

ion

mea

sure

men

tsM

axib

orT

–B

oreh

ole

devi

atio

n:M

axib

orK

FM06

C,2

005‑

08‑0

211

:01:

00–

200

5‑08

‑02

20:1

9:00

(3.0

00–9

78.0

00m

).

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

3.00

6699

742.

3016

3243

7.69

–1.4

8R

T90-

RH

B70

–60.

1226

.06

0.00

000.

0000

0.00

006.

0066

9974

3.65

1632

438.

341.

12R

T90-

RH

B70

–60.

0125

.86

1.49

000.

0000

0.00

00

9.00

6699

744.

9916

3243

9.00

3.72

RT9

0-R

HB

70–6

0.03

25.9

12.

9900

-0.0

100

0.01

0012

.00

6699

746.

3416

3243

9.65

6.31

RT9

0-R

HB

70–6

0.07

26.1

44.

4900

-0.0

100

0.01

0015

.00

6699

747.

6916

3244

0.31

8.91

RT9

0-R

HB

70–6

0.00

26.4

95.

9900

-0.0

100

0.01

0018

.00

6699

749.

0316

3244

0.98

11.5

1R

T90-

RH

B70

–59.

8726

.65

7.49

000.

0000

0.02

0021

.00

6699

750.

3816

3244

1.66

14.1

1R

T90-

RH

B70

–59.

8226

.71

9.00

000.

0200

0.03

0024

.00

6699

751.

7216

3244

2.33

16.7

0R

T90-

RH

B70

–59.

7526

.71

10.5

000

0.04

000.

0500

27.0

066

9975

3.07

1632

443.

0119

.29

RT9

0-R

HB

70–5

9.67

26.8

212

.010

00.

0500

0.07

0030

.00

6699

754.

4216

3244

3.70

21.8

8R

T90-

RH

B70

–59.

6127

.06

13.5

300

0.07

000.

0900

33.0

066

9975

5.78

1632

444.

3924

.47

RT9

0-R

HB

70–5

9.56

27.1

915

.050

00.

1000

0.12

0036

.00

6699

757.

1316

3244

5.08

27.0

6R

T90-

RH

B70

–59.

5427

.24

16.5

700

0.13

000.

1500

39.0

066

9975

8.48

1632

445.

7829

.64

RT9

0-R

HB

70–5

9.49

27.2

318

.090

00.

1600

0.18

0042

.00

6699

759.

8316

3244

6.47

32.2

3R

T90-

RH

B70

–59.

4327

.21

19.6

100

0.19

000.

2100

45.0

066

9976

1.19

1632

447.

1734

.81

RT9

0-R

HB

70–5

9.42

27.2

021

.140

00.

2200

0.25

0048

.00

6699

762.

5516

3244

7.87

37.3

9R

T90-

RH

B70

–59.

3527

.21

22.6

600

0.25

000.

2800

51.0

066

9976

3.91

1632

448.

5739

.97

RT9

0-R

HB

70–5

9.25

27.3

324

.190

00.

2800

0.32

0054

.00

6699

765.

2716

3244

9.27

42.5

5R

T90-

RH

B70

–59.

1027

.42

25.7

200

0.32

000.

3700

57.0

066

9976

6.64

1632

449.

9845

.12

RT9

0-R

HB

70–5

8.97

27.5

227

.260

00.

3500

0.42

0060

.00

6699

768.

0116

3245

0.70

47.7

0R

T90-

RH

B70

–58.

7927

.44

28.8

100

0.39

000.

4800

28

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

63.0

066

9976

9.39

1632

451.

4150

.26

RT9

0-R

HB

70–5

8.58

27.2

930

.360

00.

4300

0.55

0066

.00

6699

770.

7816

3245

2.13

52.8

2R

T90-

RH

B70

–58.

4927

.30

31.9

300

0.46

000.

6300

69.0

066

9977

2.17

1632

452.

8555

.38

RT9

0-R

HB

70–5

8.46

27.4

133

.500

00.

5000

0.71

0072

.00

6699

773.

5716

3245

3.57

57.9

4R

T90-

RH

B70

–58.

4127

.49

35.0

600

0.53

000.

8000

75.0

066

9977

4.96

1632

454.

3060

.49

RT9

0-R

HB

70–5

8.30

27.5

836

.640

00.

5700

0.89

0078

.00

6699

776.

3616

3245

5.03

63.0

4R

T90-

RH

B70

–58.

2227

.62

38.2

100

0.61

000.

9800

81.0

066

9977

7.76

1632

455.

7665

.59

RT9

0-R

HB

70–5

8.30

27.5

139

.790

00.

6600

1.08

0084

.00

6699

779.

1616

3245

6.49

68.1

5R

T90-

RH

B70

–58.

2827

.25

41.3

700

0.70

001.

1800

87.0

066

9978

0.56

1632

457.

2170

.70

RT9

0-R

HB

70–5

8.19

27.1

342

.940

00.

7300

1.27

0090

.00

6699

781.

9716

3245

7.93

73.2

5R

T90-

RH

B70

–58.

1527

.21

44.5

200

0.76

001.

3800

93.0

066

9978

3.37

1632

458.

6675

.80

RT9

0-R

HB

70–5

8.05

27.2

446

.110

00.

7900

1.48

0096

.00

6699

784.

7916

3245

9.38

78.3

4R

T90-

RH

B70

–58.

0127

.23

47.6

900

0.82

001.

5900

99.0

066

9978

6.20

1632

460.

1180

.89

RT9

0-R

HB

70–5

8.24

27.0

449

.280

00.

8600

1.70

0010

2.00

6699

787.

6116

3246

0.83

83.4

4R

T90-

RH

B70

–58.

5626

.73

50.8

600

0.88

001.

8000

105.

0066

9978

9.00

1632

461.

5386

.00

RT9

0-R

HB

70–5

8.53

26.7

152

.430

00.

9000

1.88

0010

8.00

6699

790.

4016

3246

2.23

88.5

6R

T90-

RH

B70

–58.

4326

.94

53.9

900

0.92

001.

9600

111.

0066

9979

1.80

1632

462.

9591

.11

RT9

0-R

HB

70–5

8.36

27.1

855

.560

00.

9400

2.05

0011

4.00

6699

793.

2016

3246

3.67

93.6

7R

T90-

RH

B70

–58.

3427

.31

57.1

400

0.97

002.

1400

117.

0066

9979

4.60

1632

464.

3996

.22

RT9

0-R

HB

70–5

8.31

27.3

658

.710

01.

0100

2.23

0012

0.00

6699

796.

0016

3246

5.11

98.7

7R

T90-

RH

B70

–58.

2227

.44

60.2

900

1.04

002.

3300

123.

0066

9979

7.40

1632

465.

8410

1.32

RT9

0-R

HB

70–5

8.12

27.6

361

.870

01.

0800

2.43

0012

6.00

6699

798.

8116

3246

6.58

103.

87R

T90-

RH

B70

–58.

0027

.83

63.4

500

1.13

002.

5300

129.

0066

9980

0.21

1632

467.

3210

6.41

RT9

0-R

HB

70–5

7.90

28.0

265

.040

01.

1700

2.64

0013

2.00

6699

801.

6216

3246

8.07

108.

95R

T90-

RH

B70

–57.

7528

.17

66.6

300

1.23

002.

7600

135.

0066

9980

3.03

1632

468.

8211

1.49

RT9

0-R

HB

70–5

7.63

28.3

768

.230

01.

2900

2.88

0013

8.00

6699

804.

4416

3246

9.59

114.

03R

T90-

RH

B70

–57.

5228

.62

69.8

400

1.35

003.

0100

141.

0066

9980

5.86

1632

470.

3611

6.56

RT9

0-R

HB

70–5

7.42

28.8

571

.450

01.

4200

3.14

0014

4.00

6699

807.

2716

3247

1.14

119.

08R

T90-

RH

B70

–57.

3329

.09

73.0

600

1.50

003.

2800

2�

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

147.

0066

9980

8.69

1632

471.

9212

1.61

RT9

0-R

HB

70–5

7.26

29.3

374

.680

01.

5900

3.43

0015

0.00

6699

810.

1016

3247

2.72

124.

13R

T90-

RH

B70

–57.

1829

.60

76.3

000

1.68

003.

5800

153.

0066

9981

1.52

1632

473.

5212

6.65

RT9

0-R

HB

70–5

7.14

29.8

377

.920

01.

7800

3.73

0015

6.00

6699

812.

9316

3247

4.33

129.

17R

T90-

RH

B70

–57.

1230

.06

79.5

500

1.89

003.

8800

159.

0066

9981

4.34

1632

475.

1513

1.69

RT9

0-R

HB

70–5

7.07

30.2

481

.170

02.

0000

4.03

0016

2.00

6699

815.

7516

3247

5.97

134.

21R

T90-

RH

B70

–57.

0230

.33

82.8

000

2.12

004.

1900

165.

0066

9981

7.16

1632

476.

7913

6.73

RT9

0-R

HB

70–5

6.97

30.4

084

.430

02.

2400

4.35

0016

8.00

6699

818.

5716

3247

7.62

139.

24R

T90-

RH

B70

–56.

9030

.47

86.0

600

2.36

004.

5100

171.

0066

9981

9.98

1632

478.

4514

1.76

RT9

0-R

HB

70–5

6.80

30.6

787

.690

02.

4900

4.67

0017

4.00

6699

821.

3916

3247

9.29

144.

27R

T90-

RH

B70

–56.

6930

.83

89.3

300

2.62

004.

8400

177.

0066

9982

2.81

1632

480.

1314

6.77

RT9

0-R

HB

70–5

6.61

31.0

390

.970

02.

7600

5.02

0018

0.00

6699

824.

2216

3248

0.98

149.

28R

T90-

RH

B70

–56.

5331

.23

92.6

100

2.90

005.

1900

183.

0066

9982

5.64

1632

481.

8415

1.78

RT9

0-R

HB

70–5

6.45

31.4

594

.260

03.

0500

5.38

0018

6.00

6699

827.

0516

3248

2.71

154.

28R

T90-

RH

B70

–56.

3731

.68

95.9

100

3.21

005.

5600

189.

0066

9982

8.47

1632

483.

5815

6.78

RT9

0-R

HB

70–5

6.31

31.8

897

.570

03.

3700

5.75

0019

2.00

6699

829.

8816

3248

4.46

159.

28R

T90-

RH

B70

–56.

2732

.11

99.2

200

3.54

005.

9400

195.

0066

9983

1.29

1632

485.

3416

1.77

RT9

0-R

HB

70–5

6.19

32.3

410

0.88

003.

7100

6.14

0019

8.00

6699

832.

7016

3248

6.24

164.

26R

T90-

RH

B70

–56.

1032

.55

102.

5400

3.90

006.

3300

201.

0066

9983

4.11

1632

487.

1416

6.75

RT9

0-R

HB

70–5

5.98

32.7

910

4.20

004.

0900

6.53

0020

4.00

6699

835.

5216

3248

8.05

169.

24R

T90-

RH

B70

–55.

8433

.00

105.

8700

4.28

006.

7400

207.

0066

9983

6.93

1632

488.

9617

1.72

RT9

0-R

HB

70–5

5.74

33.2

110

7.54

004.

4900

6.95

0021

0.00

6699

838.

3516

3248

9.89

174.

20R

T90-

RH

B70

–55.

6333

.44

109.

2100

4.70

007.

1700

213.

0066

9983

9.76

1632

490.

8217

6.68

RT9

0-R

HB

70–5

5.56

33.5

811

0.89

004.

9100

7.40

0021

6.00

6699

841.

1716

3249

1.76

179.

15R

T90-

RH

B70

–55.

5433

.75

112.

5800

5.13

007.

6200

219.

0066

9984

2.59

1632

492.

7018

1.62

RT9

0-R

HB

70–5

5.53

33.9

711

4.26

005.

3600

7.85

0022

2.00

6699

843.

9916

3249

3.65

184.

10R

T90-

RH

B70

–55.

5234

.18

115.

9400

5.60

008.

0700

225.

0066

9984

5.40

1632

494.

6118

6.57

RT9

0-R

HB

70–5

5.50

34.4

311

7.62

005.

8400

8.30

0022

8.00

6699

846.

8016

3249

5.57

189.

04R

T90-

RH

B70

–55.

4834

.66

119.

3000

6.08

008.

5300

�0

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

231.

0066

9984

8.20

1632

496.

5319

1.52

RT9

0-R

HB

70–5

5.45

34.8

812

0.98

006.

3400

8.75

0023

4.00

6699

849.

5916

3249

7.51

193.

99R

T90-

RH

B70

–55.

4135

.09

122.

6600

6.60

008.

9800

237.

0066

9985

0.99

1632

498.

4919

6.46

RT9

0-R

HB

70–5

5.37

35.2

712

4.35

006.

8600

9.21

0024

0.00

6699

852.

3816

3249

9.47

198.

92R

T90-

RH

B70

–55.

3235

.43

126.

0300

7.14

009.

4400

243.

0066

9985

3.77

1632

500.

4620

1.39

RT9

0-R

HB

70–5

5.28

35.6

112

7.71

007.

4200

9.67

0024

6.00

6699

855.

1616

3250

1.46

203.

86R

T90-

RH

B70

–55.

2335

.79

129.

4000

7.70

009.

9000

249.

0066

9985

6.55

1632

502.

4620

6.32

RT9

0-R

HB

70–5

5.20

35.9

613

1.08

007.

9900

10.1

300

252.

0066

9985

7.93

1632

503.

4620

8.78

RT9

0-R

HB

70–5

5.17

36.1

513

2.77

008.

2800

10.3

700

255.

0066

9985

9.32

1632

504.

4721

1.25

RT9

0-R

HB

70–5

5.14

36.3

613

4.46

008.

5800

10.6

100

258.

0066

9986

0.70

1632

505.

4921

3.71

RT9

0-R

HB

70–5

5.10

36.5

813

6.15

008.

8900

10.8

400

261.

0066

9986

2.08

1632

506.

5121

6.17

RT9

0-R

HB

70–5

5.08

36.7

713

7.83

009.

2000

11.0

800

264.

0066

9986

3.45

1632

507.

5421

8.63

RT9

0-R

HB

70–5

5.05

36.9

713

9.52

009.

5200

11.3

200

267.

0066

9986

4.83

1632

508.

5722

1.09

RT9

0-R

HB

70–5

5.00

37.1

414

1.21

009.

8500

11.5

600

270.

0066

9986

6.20

1632

509.

6122

3.55

RT9

0-R

HB

70–5

4.92

37.2

614

2.90

0010

.180

011

.800

027

3.00

6699

867.

5716

3251

0.66

226.

00R

T90-

RH

B70

–54.

8637

.38

144.

5900

10.5

100

12.0

400

276.

0066

9986

8.94

1632

511.

7022

8.45

RT9

0-R

HB

70–5

4.84

37.4

814

6.28

0010

.850

012

.280

027

9.00

6699

870.

3116

3251

2.76

230.

91R

T90-

RH

B70

–54.

8637

.57

147.

9700

11.1

900

12.5

300

282.

0066

9987

1.68

1632

513.

8123

3.36

RT9

0-R

HB

70–5

4.86

37.7

514

9.67

0011

.540

012

.780

028

5.00

6699

873.

0516

3251

4.87

235.

81R

T90-

RH

B70

–54.

8337

.86

151.

3600

11.8

900

13.0

200

288.

0066

9987

4.41

1632

515.

9323

8.27

RT9

0-R

HB

70–5

4.77

37.9

915

3.05

0012

.240

013

.260

029

1.00

6699

875.

7716

3251

6.99

240.

72R

T90-

RH

B70

–54.

7238

.17

154.

7400

12.6

000

13.5

100

294.

0066

9987

7.14

1632

518.

0624

3.17

RT9

0-R

HB

70–5

4.66

38.3

915

6.44

0012

.960

013

.760

029

7.00

6699

878.

5016

3251

9.14

245.

61R

T90-

RH

B70

–54.

5838

.63

158.

1300

13.3

300

14.0

100

300.

0066

9987

9.85

1632

520.

2324

8.06

RT9

0-R

HB

70–5

4.51

38.8

815

9.83

0013

.710

014

.270

030

3.00

6699

881.

2116

3252

1.32

250.

50R

T90-

RH

B70

–54.

4339

.08

161.

5300

14.1

000

14.5

200

306.

0066

9988

2.57

1632

522.

4225

2.94

RT9

0-R

HB

70–5

4.34

39.2

416

3.23

0014

.490

014

.780

030

9.00

6699

883.

9216

3252

3.52

255.

38R

T90-

RH

B70

–54.

2439

.44

164.

9300

14.8

900

15.0

400

312.

0066

9988

5.27

1632

524.

6425

7.81

RT9

0-R

HB

70–5

4.13

39.6

816

6.64

0015

.290

015

.310

0

�1

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

315.

0066

9988

6.63

1632

525.

7626

0.24

RT9

0-R

HB

70–5

4.05

39.9

316

8.34

0015

.710

015

.580

031

8.00

6699

887.

9816

3252

6.89

262.

67R

T90-

RH

B70

–53.

9640

.19

170.

0500

16.1

300

15.8

500

321.

0066

9988

9.33

1632

528.

0326

5.10

RT9

0-R

HB

70–5

3.86

40.3

717

1.77

0016

.560

016

.130

032

4.00

6699

890.

6716

3252

9.18

267.

52R

T90-

RH

B70

–53.

8240

.49

173.

4800

17.0

000

16.4

100

327.

0066

9989

2.02

1632

530.

3326

9.94

RT9

0-R

HB

70–5

3.75

40.6

917

5.20

0017

.440

016

.690

033

0.00

6699

893.

3716

3253

1.48

272.

36R

T90-

RH

B70

–53.

6640

.89

176.

9100

17.8

900

16.9

700

333.

0066

9989

4.71

1632

532.

6527

4.78

RT9

0-R

HB

70–5

3.56

41.0

517

8.63

0018

.340

017

.260

033

6.00

6699

896.

0516

3253

3.82

277.

19R

T90-

RH

B70

–53.

4541

.24

180.

3500

18.8

000

17.5

500

339.

0066

9989

7.40

1632

534.

9927

9.60

RT9

0-R

HB

70–5

3.34

41.4

018

2.08

0019

.270

017

.840

034

2.00

6699

898.

7416

3253

6.18

282.

01R

T90-

RH

B70

–53.

2441

.48

183.

8000

19.7

400

18.1

400

345.

0066

9990

0.08

1632

537.

3728

4.41

RT9

0-R

HB

70–5

3.16

41.5

718

5.53

0020

.220

018

.440

034

8.00

6699

901.

4316

3253

8.56

286.

81R

T90-

RH

B70

–53.

0941

.76

187.

2700

20.7

000

18.7

500

351.

0066

9990

2.77

1632

539.

7628

9.21

RT9

0-R

HB

70–5

3.04

41.9

418

9.00

0021

.190

019

.060

035

4.00

6699

904.

1216

3254

0.97

291.

61R

T90-

RH

B70

–52.

9942

.14

190.

7400

21.6

800

19.3

700

357.

0066

9990

5.46

1632

542.

1829

4.00

RT9

0-R

HB

70–5

2.94

42.3

719

2.47

0022

.180

019

.680

036

0.00

6699

906.

7916

3254

3.40

296.

40R

T90-

RH

B70

–52.

9142

.62

194.

2100

22.6

900

19.9

900

363.

0066

9990

8.12

1632

544.

6229

8.79

RT9

0-R

HB

70–5

2.87

42.8

619

5.94

0023

.210

020

.300

036

6.00

6699

909.

4516

3254

5.85

301.

18R

T90-

RH

B70

–52.

8143

.10

197.

6800

23.7

300

20.6

100

369.

0066

9991

0.77

1632

547.

0930

3.57

RT9

0-R

HB

70–5

2.76

43.2

819

9.41

0024

.260

020

.930

037

2.00

6699

912.

1016

3254

8.34

305.

96R

T90-

RH

B70

–52.

7043

.48

201.

1400

24.8

000

21.2

400

375.

0066

9991

3.42

1632

549.

5930

8.35

RT9

0-R

HB

70–5

2.64

43.6

820

2.88

0025

.340

021

.560

037

8.00

6699

914.

7316

3255

0.85

310.

73R

T90-

RH

B70

–52.

6043

.89

204.

6100

25.8

900

21.8

700

381.

0066

9991

6.04

1632

552.

1131

3.12

RT9

0-R

HB

70–5

2.55

44.1

220

6.35

0026

.450

022

.190

038

4.00

6699

917.

3516

3255

3.38

315.

50R

T90-

RH

B70

–52.

5044

.32

208.

0800

27.0

100

22.5

100

387.

0066

9991

8.66

1632

554.

6531

7.88

RT9

0-R

HB

70–5

2.48

44.5

420

9.82

0027

.590

022

.820

039

0.00

6699

919.

9616

3255

5.94

320.

26R

T90-

RH

B70

–52.

4244

.82

211.

5500

28.1

700

23.1

400

393.

0066

9992

1.26

1632

557.

2332

2.63

RT9

0-R

HB

70–5

2.35

45.0

921

3.28

0028

.750

023

.460

039

6.00

6699

922.

5516

3255

8.52

325.

01R

T90-

RH

B70

–52.

2645

.31

215.

0100

29.3

500

23.7

800

�2

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

399.

0066

9992

3.85

1632

559.

8332

7.38

RT9

0-R

HB

70–5

2.12

45.4

821

6.75

0029

.960

024

.100

040

2.00

6699

925.

1416

3256

1.14

329.

75R

T90-

RH

B70

–52.

0045

.64

218.

4800

30.5

700

24.4

300

405.

0066

9992

6.43

1632

562.

4633

2.11

RT9

0-R

HB

70–5

1.89

45.8

122

0.22

0031

.190

024

.760

040

8.00

6699

927.

7216

3256

3.79

334.

47R

T90-

RH

B70

–51.

8046

.02

221.

9700

31.8

100

25.0

900

411.

0066

9992

9.01

1632

565.

1333

6.83

RT9

0-R

HB

70–5

1.72

46.2

122

3.71

0032

.450

025

.430

041

4.00

6699

930.

2916

3256

6.47

339.

19R

T90-

RH

B70

–51.

6446

.39

225.

4600

33.0

900

25.7

700

417.

0066

9993

1.58

1632

567.

8234

1.54

RT9

0-R

HB

70–5

1.58

46.5

722

7.20

0033

.730

026

.110

042

0.00

6699

932.

8616

3256

9.17

343.

89R

T90-

RH

B70

–51.

5246

.74

228.

9500

34.3

900

26.4

500

423.

0066

9993

4.14

1632

570.

5334

6.24

RT9

0-R

HB

70–5

1.47

46.9

023

0.69

0035

.050

026

.800

042

6.00

6699

935.

4216

3257

1.89

348.

58R

T90-

RH

B70

–51.

4547

.05

232.

4400

35.7

100

27.1

400

429.

0066

9993

6.69

1632

573.

2635

0.93

RT9

0-R

HB

70–5

1.39

47.1

923

4.19

0036

.380

027

.490

043

2.00

6699

937.

9616

3257

4.63

353.

28R

T90-

RH

B70

–51.

2747

.37

235.

9300

37.0

600

27.8

300

435.

0066

9993

9.23

1632

576.

0235

5.62

RT9

0-R

HB

70–5

1.20

47.5

723

7.68

0037

.740

028

.180

043

8.00

6699

940.

5016

3257

7.40

357.

95R

T90-

RH

B70

–51.

1547

.81

239.

4300

38.4

300

28.5

400

441.

0066

9994

1.77

1632

578.

8036

0.29

RT9

0-R

HB

70–5

1.14

48.0

124

1.18

0039

.120

028

.890

044

4.00

6699

943.

0216

3258

0.20

362.

63R

T90-

RH

B70

–51.

1148

.23

242.

9200

39.8

300

29.2

400

447.

0066

9994

4.28

1632

581.

6036

4.96

RT9

0-R

HB

70–5

1.02

48.4

024

4.67

0040

.540

029

.590

045

0.00

6699

945.

5316

3258

3.01

367.

29R

T90-

RH

B70

–50.

9548

.56

246.

4100

41.2

500

29.9

400

453.

0066

9994

6.78

1632

584.

4336

9.62

RT9

0-R

HB

70–5

0.87

48.7

724

8.16

0041

.980

030

.290

045

6.00

6699

948.

0316

3258

5.85

371.

95R

T90-

RH

B70

–50.

8048

.96

249.

9100

42.7

100

30.6

500

459.

0066

9994

9.28

1632

587.

2837

4.27

RT9

0-R

HB

70–5

0.72

49.2

025

1.65

0043

.450

031

.000

046

2.00

6699

950.

5216

3258

8.72

376.

60R

T90-

RH

B70

–50.

6549

.43

253.

4000

44.1

900

31.3

600

465.

0066

9995

1.75

1632

590.

1737

8.92

RT9

0-R

HB

70–5

0.64

49.6

425

5.15

0044

.950

031

.720

046

8.00

6699

952.

9916

3259

1.62

381.

24R

T90-

RH

B70

–50.

6449

.82

256.

8900

45.7

100

32.0

800

471.

0066

9995

4.21

1632

593.

0738

3.56

RT9

0-R

HB

70–5

0.65

50.0

025

8.63

0046

.470

032

.430

047

4.00

6699

955.

4416

3259

4.53

385.

88R

T90-

RH

B70

–50.

6550

.21

260.

3700

47.2

500

32.7

800

477.

0066

9995

6.65

1632

595.

9938

8.20

RT9

0-R

HB

70–5

0.61

50.4

426

2.11

0048

.020

033

.130

048

0.00

6699

957.

8716

3259

7.46

390.

51R

T90-

RH

B70

–50.

5950

.64

263.

8400

48.8

100

33.4

800

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

483.

0066

9995

9.07

1632

598.

9339

2.83

RT9

0-R

HB

70–5

0.55

50.8

726

5.57

0049

.600

033

.830

048

6.00

6699

960.

2816

3260

0.41

395.

15R

T90-

RH

B70

–50.

5351

.05

267.

3000

50.4

000

34.1

700

489.

0066

9996

1.48

1632

601.

8939

7.46

RT9

0-R

HB

70–5

0.49

51.2

726

9.03

0051

.210

034

.520

049

2.00

6699

962.

6716

3260

3.38

399.

78R

T90-

RH

B70

–50.

4651

.46

270.

7600

52.0

200

34.8

600

495.

0066

9996

3.86

1632

604.

8740

2.09

RT9

0-R

HB

70–5

0.42

51.6

427

2.48

0052

.840

035

.210

049

8.00

6699

965.

0516

3260

6.37

404.

40R

T90-

RH

B70

–50.

3951

.80

274.

2100

53.6

700

35.5

500

501.

0066

9996

6.23

1632

607.

8840

6.72

RT9

0-R

HB

70–5

0.37

51.9

827

5.93

0054

.500

035

.890

050

4.00

6699

967.

4116

3260

9.38

409.

03R

T90-

RH

B70

–50.

3552

.16

277.

6500

55.3

300

36.2

300

507.

0066

9996

8.58

1632

610.

8941

1.34

RT9

0-R

HB

70–5

0.34

52.3

627

9.37

0056

.170

036

.570

051

0.00

6699

969.

7516

3261

2.41

413.

65R

T90-

RH

B70

–50.

3152

.56

281.

0900

57.0

200

36.9

100

513.

0066

9997

0.92

1632

613.

9341

5.95

RT9

0-R

HB

70–5

0.30

52.7

528

2.80

0057

.880

037

.250

051

6.00

6699

972.

0816

3261

5.46

418.

26R

T90-

RH

B70

–50.

2852

.99

284.

5100

58.7

400

37.5

800

519.

0066

9997

3.23

1632

616.

9942

0.57

RT9

0-R

HB

70–5

0.24

53.2

528

6.22

0059

.610

037

.910

052

2.00

6699

974.

3816

3261

8.53

422.

88R

T90-

RH

B70

–50.

1653

.50

287.

9300

60.4

800

38.2

500

525.

0066

9997

5.52

1632

620.

0742

5.18

RT9

0-R

HB

70–5

0.10

53.7

528

9.63

0061

.370

038

.580

052

8.00

6699

976.

6616

3262

1.62

427.

48R

T90-

RH

B70

–50.

0753

.99

291.

3400

62.2

600

38.9

100

531.

0066

9997

7.79

1632

623.

1842

9.78

RT9

0-R

HB

70–5

0.06

54.2

229

3.04

0063

.160

039

.240

053

4.00

6699

978.

9216

3262

4.74

432.

08R

T90-

RH

B70

–50.

0454

.44

294.

7400

64.0

700

39.5

600

537.

0066

9998

0.04

1632

626.

3143

4.38

RT9

0-R

HB

70–5

0.00

54.6

429

6.43

0064

.990

039

.890

054

0.00

6699

981.

1516

3262

7.88

436.

68R

T90-

RH

B70

–49.

9454

.82

298.

1300

65.9

100

40.2

100

543.

0066

9998

2.27

1632

629.

4643

8.98

RT9

0-R

HB

70–4

9.91

55.0

229

9.82

0066

.840

040

.540

054

6.00

6699

983.

3716

3263

1.04

441.

27R

T90-

RH

B70

–49.

8755

.20

301.

5100

67.7

800

40.8

600

549.

0066

9998

4.48

1632

632.

6344

3.56

RT9

0-R

HB

70–4

9.84

55.4

230

3.20

0068

.720

041

.180

055

2.00

6699

985.

5716

3263

4.22

445.

86R

T90-

RH

B70

–49.

8355

.60

304.

8900

69.6

700

41.5

000

555.

0066

9998

6.67

1632

635.

8244

8.15

RT9

0-R

HB

70–4

9.82

55.7

930

6.57

0070

.620

041

.820

055

8.00

6699

987.

7616

3263

7.42

450.

44R

T90-

RH

B70

–49.

8155

.95

308.

2500

71.5

800

42.1

300

561.

0066

9998

8.84

1632

639.

0345

2.73

RT9

0-R

HB

70–4

9.79

56.1

030

9.93

0072

.540

042

.450

056

4.00

6699

989.

9216

3264

0.63

455.

02R

T90-

RH

B70

–49.

7756

.25

311.

6100

73.5

100

42.7

600

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

567.

0066

9999

1.00

1632

642.

2445

7.31

RT9

0-R

HB

70–4

9.72

56.3

931

3.28

0074

.490

043

.070

057

0.00

6699

992.

0716

3264

3.86

459.

60R

T90-

RH

B70

–49.

6356

.52

314.

9500

75.4

700

43.3

800

573.

0066

9999

3.14

1632

645.

4846

1.89

RT9

0-R

HB

70–4

9.56

56.7

031

6.63

0076

.450

043

.690

057

6.00

6699

994.

2116

3264

7.11

464.

17R

T90-

RH

B70

–49.

4756

.87

318.

3000

77.4

400

44.0

100

579.

0066

9999

5.28

1632

648.

7446

6.45

RT9

0-R

HB

70–4

9.36

57.0

531

9.98

0078

.440

044

.330

058

2.00

6699

996.

3416

3265

0.38

468.

73R

T90-

RH

B70

–49.

2557

.23

321.

6500

79.4

500

44.6

400

585.

0066

9999

7.40

1632

652.

0347

1.00

RT9

0-R

HB

70–4

9.18

57.4

132

3.33

0080

.460

044

.960

058

8.00

6699

998.

4516

3265

3.68

473.

27R

T90-

RH

B70

–49.

1557

.62

325.

0000

81.4

800

45.2

800

591.

0066

9999

9.51

1632

655.

3447

5.54

RT9

0-R

HB

70–4

9.12

57.8

132

6.68

0082

.510

045

.600

059

4.00

6700

000.

5516

3265

7.00

477.

81R

T90-

RH

B70

–49.

0957

.95

328.

3500

83.5

400

45.9

200

597.

0067

0000

1.59

1632

658.

6648

0.08

RT9

0-R

HB

70–4

9.05

58.0

433

0.01

0084

.580

046

.240

060

0.00

6700

002.

6316

3266

0.33

482.

34R

T90-

RH

B70

–49.

0258

.14

331.

6800

85.6

200

46.5

600

603.

0067

0000

3.67

1632

662.

0048

4.61

RT9

0-R

HB

70–4

8.96

58.2

833

3.35

0086

.670

046

.870

060

6.00

6700

004.

7116

3266

3.68

486.

87R

T90-

RH

B70

–48.

9158

.41

335.

0100

87.7

200

47.1

900

609.

0067

0000

5.74

1632

665.

3648

9.13

RT9

0-R

HB

70–4

8.88

58.5

633

6.68

0088

.770

047

.510

061

2.00

6700

006.

7716

3266

7.04

491.

39R

T90-

RH

B70

–48.

8458

.71

338.

3400

89.8

300

47.8

300

615.

0067

0000

7.80

1632

668.

7349

3.65

RT9

0-R

HB

70–4

8.79

58.8

534

0.01

0090

.900

048

.140

061

8.00

6700

008.

8216

3267

0.42

495.

91R

T90-

RH

B70

–48.

7458

.94

341.

6700

91.9

700

48.4

600

621.

0067

0000

9.84

1632

672.

1149

8.16

RT9

0-R

HB

70–4

8.68

59.0

234

3.33

0093

.040

048

.780

062

4.00

6700

010.

8616

3267

3.81

500.

41R

T90-

RH

B70

–48.

6459

.08

344.

9900

94.1

200

49.0

900

627.

0067

0001

1.88

1632

675.

5150

2.67

RT9

0-R

HB

70–4

8.61

59.1

734

6.65

0095

.200

049

.410

063

0.00

6700

012.

8916

3267

7.22

504.

92R

T90-

RH

B70

–48.

5759

.31

348.

3200

96.2

800

49.7

300

633.

0067

0001

3.91

1632

678.

9250

7.17

RT9

0-R

HB

70–4

8.52

59.4

734

9.98

0097

.370

050

.050

063

6.00

6700

014.

9216

3268

0.64

509.

41R

T90-

RH

B70

–48.

4759

.61

351.

6400

98.4

600

50.3

700

639.

0067

0001

5.92

1632

682.

3551

1.66

RT9

0-R

HB

70–4

8.42

59.7

935

3.29

0099

.560

050

.690

064

2.00

6700

016.

9216

3268

4.07

513.

90R

T90-

RH

B70

–48.

3759

.93

354.

9500

100.

6700

51.0

100

645.

0067

0001

7.92

1632

685.

8051

6.15

RT9

0-R

HB

70–4

8.32

60.0

435

6.60

0010

1.78

0051

.330

064

8.00

6700

018.

9216

3268

7.52

518.

39R

T90-

RH

B70

–48.

2860

.13

358.

2600

102.

8900

51.6

400

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

651.

0067

0001

9.91

1632

689.

2652

0.63

RT9

0-R

HB

70–4

8.27

60.2

635

9.91

0010

4.01

0051

.960

065

4.00

6700

020.

9016

3269

0.99

522.

86R

T90-

RH

B70

–48.

2560

.42

361.

5600

105.

1300

52.2

800

657.

0067

0002

1.89

1632

692.

7352

5.10

RT9

0-R

HB

70–4

8.22

60.5

636

3.21

0010

6.26

0052

.590

066

0.00

6700

022.

8716

3269

4.47

527.

34R

T90-

RH

B70

–48.

1860

.68

364.

8600

107.

3900

52.9

100

663.

0067

0002

3.85

1632

696.

2152

9.58

RT9

0-R

HB

70–4

8.14

60.8

136

6.51

0010

8.53

0053

.220

066

6.00

6700

024.

8316

3269

7.96

531.

81R

T90-

RH

B70

–48.

1260

.95

368.

1500

109.

6700

53.5

300

669.

0067

0002

5.80

1632

699.

7153

4.04

RT9

0-R

HB

70–4

8.11

61.0

936

9.79

0011

0.82

0053

.850

067

2.00

6700

026.

7716

3270

1.46

536.

28R

T90-

RH

B70

–48.

1161

.23

371.

4300

111.

9700

54.1

600

675.

0067

0002

7.73

1632

703.

2253

8.51

RT9

0-R

HB

70–4

8.11

61.3

537

3.07

0011

3.12

0054

.460

067

8.00

6700

028.

6916

3270

4.98

540.

74R

T90-

RH

B70

–48.

1061

.48

374.

7100

114.

2800

54.7

700

681.

0067

0002

9.65

1632

706.

7454

2.98

RT9

0-R

HB

70–4

8.07

61.6

137

6.34

0011

5.44

0055

.070

068

4.00

6700

030.

6016

3270

8.50

545.

21R

T90-

RH

B70

–48.

0561

.71

377.

9700

116.

6100

55.3

700

687.

0067

0003

1.55

1632

710.

2754

7.44

RT9

0-R

HB

70–4

8.04

61.8

137

9.60

0011

7.77

0055

.680

069

0.00

6700

032.

5016

3271

2.04

549.

67R

T90-

RH

B70

–48.

0361

.93

381.

2300

118.

9500

55.9

800

693.

0067

0003

3.45

1632

713.

8155

1.90

RT9

0-R

HB

70–4

8.00

62.0

438

2.85

0012

0.12

0056

.270

069

6.00

6700

034.

3916

3271

5.58

554.

13R

T90-

RH

B70

–47.

9862

.15

384.

4800

121.

3000

56.5

700

699.

0067

0003

5.33

1632

717.

3555

6.36

RT9

0-R

HB

70–4

7.96

62.2

738

6.10

0012

2.48

0056

.870

070

2.00

6700

036.

2616

3271

9.13

558.

59R

T90-

RH

B70

–47.

9762

.36

387.

7200

123.

6700

57.1

600

705.

0067

0003

7.19

1632

720.

9156

0.82

RT9

0-R

HB

70–4

7.98

62.4

438

9.34

0012

4.86

0057

.460

070

8.00

6700

038.

1216

3272

2.69

563.

04R

T90-

RH

B70

–47.

9862

.55

390.

9600

126.

0500

57.7

500

711.

0067

0003

9.05

1632

724.

4756

5.27

RT9

0-R

HB

70–4

7.96

62.6

939

2.57

0012

7.24

0058

.040

071

4.00

6700

039.

9716

3272

6.26

567.

50R

T90-

RH

B70

–47.

9162

.81

394.

1800

128.

4400

58.3

300

717.

0067

0004

0.89

1632

728.

0556

9.73

RT9

0-R

HB

70–4

7.84

62.9

639

5.80

0012

9.65

0058

.610

072

0.00

6700

041.

8016

3272

9.84

571.

95R

T90-

RH

B70

–47.

7963

.09

397.

4100

130.

8500

58.9

000

723.

0067

0004

2.71

1632

731.

6457

4.17

RT9

0-R

HB

70–4

7.76

63.2

239

9.02

0013

2.07

0059

.190

072

6.00

6700

043.

6216

3273

3.44

576.

39R

T90-

RH

B70

–47.

7263

.35

400.

6200

133.

2900

59.4

800

729.

0067

0004

4.53

1632

735.

2457

8.61

RT9

0-R

HB

70–4

7.69

63.4

640

2.23

0013

4.51

0059

.760

073

2.00

6700

045.

4316

3273

7.05

580.

83R

T90-

RH

B70

–47.

6863

.57

403.

8300

135.

7400

60.0

500

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

735.

0067

0004

6.33

1632

738.

8658

3.05

RT9

0-R

HB

70–4

7.67

63.6

740

5.44

0013

6.96

0060

.330

073

8.00

6700

047.

2316

3274

0.67

585.

27R

T90-

RH

B70

–47.

6563

.76

407.

0400

138.

2000

60.6

200

741.

0067

0004

8.12

1632

742.

4858

7.49

RT9

0-R

HB

70–4

7.63

63.8

440

8.63

0013

9.43

0060

.900

074

4.00

6700

049.

0116

3274

4.30

589.

70R

T90-

RH

B70

–47.

6263

.95

410.

2300

140.

6700

61.1

800

747.

0067

0004

9.90

1632

746.

1159

1.92

RT9

0-R

HB

70–4

7.60

64.0

441

1.83

0014

1.91

0061

.460

075

0.00

6700

050.

7816

3274

7.93

594.

13R

T90-

RH

B70

–47.

5864

.11

413.

4200

143.

1600

61.7

400

753.

0067

0005

1.67

1632

749.

7559

6.35

RT9

0-R

HB

70–4

7.61

64.1

741

5.02

0014

4.41

0062

.020

075

6.00

6700

052.

5516

3275

1.57

598.

56R

T90-

RH

B70

–47.

6964

.16

416.

6100

145.

6500

62.2

900

759.

0067

0005

3.43

1632

753.

3960

0.78

RT9

0-R

HB

70–4

7.77

64.0

541

8.20

0014

6.90

0062

.570

076

2.00

6700

054.

3116

3275

5.20

603.

00R

T90-

RH

B70

–47.

8163

.91

419.

7900

148.

1400

62.8

400

765.

0067

0005

5.20

1632

757.

0160

5.23

RT9

0-R

HB

70–4

7.80

63.8

342

1.38

0014

9.38

0063

.110

076

8.00

6700

056.

0916

3275

8.82

607.

45R

T90-

RH

B70

–47.

8563

.73

422.

9700

150.

6100

63.3

800

771.

0067

0005

6.98

1632

760.

6360

9.67

RT9

0-R

HB

70–4

7.89

63.6

742

4.56

0015

1.84

0063

.660

077

4.00

6700

057.

8716

3276

2.43

611.

90R

T90-

RH

B70

–47.

9263

.65

426.

1600

153.

0700

63.9

300

777.

0067

0005

8.76

1632

764.

2361

4.12

RT9

0-R

HB

70–4

7.93

63.6

142

7.75

0015

4.30

0064

.200

078

0.00

6700

059.

6616

3276

6.03

616.

35R

T90-

RH

B70

–47.

9863

.57

429.

3500

155.

5200

64.4

800

783.

0067

0006

0.55

1632

767.

8361

8.58

RT9

0-R

HB

70–4

8.03

63.5

743

0.94

0015

6.74

0064

.750

078

6.00

6700

061.

4416

3276

9.63

620.

81R

T90-

RH

B70

–48.

0663

.58

432.

5300

157.

9600

65.0

200

789.

0067

0006

2.33

1632

771.

4262

3.04

RT9

0-R

HB

70–4

8.09

63.5

743

4.12

0015

9.19

0065

.280

079

2.00

6700

063.

2316

3277

3.22

625.

27R

T90-

RH

B70

–48.

1263

.61

435.

7100

160.

4100

65.5

500

795.

0067

0006

4.12

1632

775.

0162

7.51

RT9

0-R

HB

70–4

8.11

63.6

643

7.30

0016

1.63

0065

.810

079

8.00

6700

065.

0116

3277

6.81

629.

74R

T90-

RH

B70

–48.

0863

.76

438.

8900

162.

8500

66.0

800

801.

0067

0006

5.89

1632

778.

6063

1.97

RT9

0-R

HB

70–4

8.02

63.8

844

0.47

0016

4.07

0066

.340

080

4.00

6700

066.

7816

3278

0.41

634.

20R

T90-

RH

B70

–47.

9563

.96

442.

0600

165.

3000

66.6

000

807.

0067

0006

7.66

1632

782.

2163

6.43

RT9

0-R

HB

70–4

7.87

64.0

244

3.64

0016

6.54

0066

.870

081

0.00

6700

068.

5416

3278

4.02

638.

66R

T90-

RH

B70

–47.

7864

.10

445.

2300

167.

7800

67.1

400

813.

0067

0006

9.42

1632

785.

8364

0.88

RT9

0-R

HB

70–4

7.69

64.1

744

6.82

0016

9.02

0067

.410

081

6.00

6700

070.

3016

3278

7.65

643.

10R

T90-

RH

B70

–47.

6264

.26

448.

4100

170.

2600

67.6

800

��

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

819.

0067

0007

1.18

1632

789.

4764

5.31

RT9

0-R

HB

70–4

7.57

64.4

044

9.99

0017

1.51

0067

.950

082

2.00

6700

072.

0516

3279

1.30

647.

53R

T90-

RH

B70

–47.

5264

.56

451.

5800

172.

7700

68.2

300

825.

0067

0007

2.92

1632

793.

1364

9.74

RT9

0-R

HB

70–4

7.48

64.6

945

3.17

0017

4.03

0068

.500

082

8.00

6700

073.

7916

3279

4.96

651.

95R

T90-

RH

B70

–47.

4564

.83

454.

7500

175.

3000

68.7

700

831.

0067

0007

4.65

1632

796.

8065

4.16

RT9

0-R

HB

70–4

7.43

64.9

745

6.33

0017

6.57

0069

.040

083

4.00

6700

075.

5116

3279

8.64

656.

37R

T90-

RH

B70

–47.

4165

.11

457.

9100

177.

8400

69.3

100

837.

0067

0007

6.37

1632

800.

4865

8.58

RT9

0-R

HB

70–4

7.38

65.2

745

9.49

0017

9.12

0069

.580

084

0.00

6700

077.

2216

3280

2.32

660.

79R

T90-

RH

B70

–47.

3465

.44

461.

0600

180.

4100

69.8

400

843.

0067

0007

8.06

1632

804.

1766

2.99

RT9

0-R

HB

70–4

7.30

65.5

346

2.64

0018

1.69

0070

.110

084

6.00

6700

078.

9016

3280

6.02

665.

20R

T90-

RH

B70

–47.

2365

.59

464.

2100

182.

9900

70.3

700

849.

0067

0007

9.74

1632

807.

8866

7.40

RT9

0-R

HB

70–4

7.14

65.6

546

5.78

0018

4.28

0070

.630

085

2.00

6700

080.

5916

3280

9.74

669.

60R

T90-

RH

B70

–47.

0765

.75

467.

3500

185.

5900

70.9

000

855.

0067

0008

1.42

1632

811.

6067

1.80

RT9

0-R

HB

70–4

7.02

65.8

546

8.92

0018

6.89

0071

.170

085

8.00

6700

082.

2616

3281

3.47

673.

99R

T90-

RH

B70

–46.

9665

.94

470.

4900

188.

2000

71.4

400

861.

0067

0008

3.10

1632

815.

3467

6.18

RT9

0-R

HB

70–4

6.93

66.0

447

2.06

0018

9.51

0071

.710

086

4.00

6700

083.

9316

3281

7.21

678.

37R

T90-

RH

B70

–46.

9066

.16

473.

6300

190.

8300

71.9

800

867.

0067

0008

4.76

1632

819.

0868

0.56

RT9

0-R

HB

70–4

6.84

66.3

047

5.20

0019

2.15

0072

.250

087

0.00

6700

085.

5816

3282

0.96

682.

75R

T90-

RH

B70

–46.

7766

.43

476.

7700

193.

4700

72.5

200

873.

0067

0008

6.40

1632

822.

8568

4.94

RT9

0-R

HB

70–4

6.72

66.5

247

8.34

0019

4.80

0072

.780

087

6.00

6700

087.

2216

3282

4.73

687.

12R

T90-

RH

B70

–46.

6866

.63

479.

9000

196.

1400

73.0

500

879.

0067

0008

8.04

1632

826.

6268

9.31

RT9

0-R

HB

70–4

6.66

66.7

648

1.46

0019

7.48

0073

.320

088

2.00

6700

088.

8516

3282

8.51

691.

49R

T90-

RH

B70

–46.

6366

.92

483.

0200

198.

8200

73.5

900

885.

0067

0008

9.66

1632

830.

4169

3.67

RT9

0-R

HB

70–4

6.59

67.0

948

4.58

0020

0.17

0073

.850

088

8.00

6700

090.

4616

3283

2.31

695.

85R

T90-

RH

B70

–46.

5467

.25

486.

1400

201.

5200

74.1

200

891.

0067

0009

1.26

1632

834.

2169

8.02

RT9

0-R

HB

70–4

6.47

67.4

148

7.69

0020

2.88

0074

.380

089

4.00

6700

092.

0516

3283

6.12

700.

20R

T90-

RH

B70

–46.

4367

.59

489.

2400

204.

2400

74.6

400

897.

0067

0009

2.84

1632

838.

0370

2.37

RT9

0-R

HB

70–4

6.40

67.7

749

0.79

0020

5.62

0074

.900

090

0.00

6700

093.

6216

3283

9.95

704.

55R

T90-

RH

B70

–46.

3467

.91

492.

3300

206.

9900

75.1

600

�8

Leng

th

(m)

Nor

thin

g(m

)Ea

stin

g(m

)El

evat

ion

(m)

Coo

rdS

yste

mIn

clin

atio

n(d

egre

es)

Bea

ring

(deg

rees

)Lo

calA

(m

)Lo

calB

(m

)Lo

calC

(m

)Ex

trap

olfl

ag

903.

0067

0009

4.40

1632

841.

8670

6.72

RT9

0-R

HB

70–4

6.28

68.0

349

3.88

0020

8.37

0075

.410

090

6.00

6700

095.

1816

3284

3.79

708.

88R

T90-

RH

B70

–46.

2668

.19

495.

4200

209.

7600

75.6

700

909.

0067

0009

5.95

1632

845.

7171

1.05

RT9

0-R

HB

70–4

6.23

68.3

449

6.96

0021

1.15

0075

.920

091

2.00

6700

096.

7216

3284

7.64

713.

22R

T90-

RH

B70

–46.

2068

.48

498.

4900

212.

5500

76.1

700

915.

0067

0009

7.48

1632

849.

5771

5.38

RT9

0-R

HB

70–4

6.13

68.6

250

0.03

0021

3.95

0076

.430

091

8.00

6700

098.

2316

3285

1.51

717.

55R

T90-

RH

B70

–46.

0568

.74

501.

5600

215.

3500

76.6

800

921.

0067

0009

8.99

1632

853.

4571

9.71

RT9

0-R

HB

70–4

5.98

68.8

350

3.09

0021

6.77

0076

.930

092

4.00

6700

099.

7416

3285

5.39

721.

86R

T90-

RH

B70

–45.

9568

.94

504.

6200

218.

1800

77.1

800

927.

0067

0010

0.49

1632

857.

3472

4.02

RT9

0-R

HB

70–4

5.88

69.0

950

6.15

0021

9.60

0077

.430

093

0.00

6700

101.

2416

3285

9.29

726.

17R

T90-

RH

B70

–45.

8269

.23

507.

6700

221.

0300

77.6

800

933.

0067

0010

1.98

1632

861.

2572

8.33

RT9

0-R

HB

70–4

5.77

69.3

850

9.20

0022

2.46

0077

.930

093

6.00

6700

102.

7216

3286

3.20

730.

47R

T90-

RH

B70

–45.

7369

.53

510.

7200

223.

8900

78.1

800

939.

0067

0010

3.45

1632

865.

1773

2.62

RT9

0-R

HB

70–4

5.68

69.6

951

2.24

0022

5.33

0078

.430

094

2.00

6700

104.

1816

3286

7.13

734.

77R

T90-

RH

B70

–45.

6269

.85

513.

7600

226.

7800

78.6

700

945.

0067

0010

4.90

1632

869.

1073

6.91

RT9

0-R

HB

70–4

5.55

70.0

251

5.27

0022

8.23

0078

.920

094

8.00

6700

105.

6216

3287

1.08

739.

05R

T90-

RH

B70

–45.

4970

.21

516.

7900

229.

6900

79.1

600

951.

0067

0010

6.33

1632

873.

0674

1.19

RT9

0-R

HB

70–4

5.42

70.3

651

8.30

0023

1.15

0079

.410

095

4.00

6700

107.

0416

3287

5.04

743.

33R

T90-

RH

B70

–45.

3570

.49

519.

8000

232.

6200

79.6

500

957.

0067

0010

7.74

1632

877.

0374

5.46

RT9

0-R

HB

70–4

5.26

70.6

452

1.31

0023

4.10

0079

.890

096

0.00

6700

108.

4416

3287

9.02

747.

60R

T90-

RH

B70

–45.

1570

.79

522.

8100

235.

5800

80.1

300

963.

0067

0010

9.14

1632

881.

0274

9.72

RT9

0-R

HB

70–4

5.05

70.9

552

4.32

0023

7.07

0080

.380

096

6.00

6700

109.

8316

3288

3.02

751.

85R

T90-

RH

B70

–44.

9671

.09

525.

8200

238.

5700

80.6

200

969.

0067

0011

0.52

1632

885.

0375

3.97

RT9

0-R

HB

70–4

4.88

71.2

552

7.32

0024

0.07

0080

.870

097

2.00

6700

111.

2016

3288

7.04

756.

08R

T90-

RH

B70

–44.

8071

.42

528.

8200

241.

5800

81.1

100

978.

0067

0011

2.55

1632

891.

0976

0.30

RT9

0-R

HB

70–4

4.68

71.6

753

1.80

0024

4.62

0081

.600

0

Prin

tout

from

SIC

AD

A 2

005-

10-2

0 14

:33:

16.

��

Appendix4

LengthreferencemarksReferenceMarkT–Referencemarkindrillhole

KFM06C,2005‑06‑2719:00:00–2005‑06‑2806:00:00(150.000–960.000m).

Bhlen(m)

Rotationspeed(rpm)

Startflow(l/min)

Stopflow(l/min)

Stoppressure(bar)

Cuttertime(s)

Tracedetectable

Cutterdiameter(mm)

Comment

150.00 400.00 250 350 28.0 1 Ja200.00 400.00 250 350 30.0 1 Ja

250.00 400.00 250 350 30.0 0 Ja300.00 400.00 250 350 30.0 0 Ja350.00 400.00 250 400 30.0 0 Ja400.00 400.00 300 400 30.0 1 Ja447.00 400.00 400 500 30.0 1 Ja500.00 400.00 400 550 35.0 0 Ja550.00 400.00 400 550 35.0 0 Ja600.00 400.00 400 550 35.0 0 Ja652.00 400.00 400 600 35.0 1 Ja700.00 400.00 400 600 40.0 0 Ja750.00 400.00 400 600 40.0 0 Ja800.00 400.00 450 600 40.0 1 Ja850.00 400.00 400 600 40.0 1 Ja898.00 400.00 400 600 40.0 0 Ja960.00 400.00 400 600 40.0 0 Ja

Printout from SICADA 2005-10-12 16:52:42.