22
FP8000 Series Spectrofluorometers

FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

FP‐8000 SeriesSpectrofluorometers

Page 2: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

FPFP‐‐8000 New Functions and Features8000 New Functions and Features

• High S/N• Wide dynamic range • High scan speed• Improved wavelength resolution • Higher order diffraction cut filter• Improved NIR performance • Improved spectral correction • Enhanced phosphorescence functions • Non‐contact IQ accessory• USB communication• Spectra Manager II & CFR• iRM‐900 • Updated accessories 

Page 3: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

FPFP‐‐86008600

Carbon nano‐tubes, NIR fluorescent dyes, up‐conversion of fluorescent glasses, etc. require NIR analysis methods.JASCO has optimized the instrument performance and offers new functions to meet expanding NIR analysis applications. 

•NIR model for evaluation of new materials(Ex200nm~850nm, Em200nm~1010nm)

Page 4: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

FPFP‐‐85008500

Analysis of white LEDs, organic EL compounds and other complex fluorescent compounds requires fluorescence instruments with advanced specifications.JASCO has enhanced the instrument functionality to meet these application requirements.  

•Highest sensitivity

(>1200 RMS peak, >5000 RMS baseline)

•Highest scan speed

(Max: 60,000 nm/min)

•Dynamic range of 6.5 orders of magnitude

•Reduction of higher order diffraction peaks

Page 5: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

FPFP‐‐83008300

Bio‐analysis is the most common application for fluorescence analysis.  An optimized design enhances the performance of the FP‐8300 for integration with dedicated bio‐analysis accessories such as a microplate reader, stopped flow accessory, fluorescence anisotropy and auto‐titration capabilities. 

• Functionality for bio‐applications

• Wide dynamic range over 6 orders of magnitude

• Tools for solid samples

(Phosphorescence, integrating sphere)

• High sensitivity (>680 RMS peak, >2800 RMS base)

Page 6: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

FPFP‐‐82008200

The FP‐8200 offers essential capabilities including Auto Gain, Auto SCS and the cut filter assembly for simple, quick and reliable analyses. The FP‐8200 also includes sensitivity, scan speed and resolution enhancements. 

•Wide dynamic range over 6 orders of magnitude 

•Reduction of higher order diffraction peaks (option)

•High sensitivity (>380 RMS peak, >1600 RMS base)

Page 7: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

• Advanced ADC enables rapid sampling at the rate of 0.2 msec for emission data, and new high speed signal processing by FPGA contributes to considerable improvement of the efficiency for signal acquisition 

• P‐P S/N is calculated according to JIS K0120 

S/N Performance S/N Performance 

1780

1840

1800

1820

0 102 4 6 8

Int.

Time [sec]

Signal = 1910 Peak to Peak 351.9RMS 1534.1

Water Raman [Peak Signal]/[Peak Noise], Ex 350nmFP‐8500: >1200 (RMS), >300 (p‐p )

Page 8: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

S/N PerformanceS/N Performance

Water Raman [Peak Signal]/[Baseline Noise], Ex 350nmFP‐8500:>5000 (RMS)

• Noise evaluated at baseline (450nm) is much smaller than at the Raman peak.

• Noise is roughly proportional to signal intensity.

RMS Noise = 0.2257Signal = 1910S/N = 8463

Page 9: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

-100

600

0

200

400

300 750400 500 600 700

Int.

Wavelength [nm]

0

1.2

0.5

1

520 600540 560 580

Int.

Wavelength [nm]

AutoGain ONAutoGain OFF

Expansion of the foot of the small peak

380

520

400

450

500

661 665662 663 664

Int.

Wavelength [nm]

0

2400

1000

2000

600 700620 640 660 680

Int.

Wavelength [nm]

Expansion

A single spectrum collection can provide reliable acquisition of a very small peak together with a coexisting large peak.  This capability is necessary for the determination of fluorescence quantum yield. 

Noise Reduction Noise Reduction –– AutoGainAutoGain

AutoGain ONAutoGain OFF

Page 10: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

Auto‐SCS (Sensitivity Control System) allows measurement from sub‐picomol to micro‐mol, without manually changing the instrument “sensitivity” setting

5×10‐13~1.8×10‐6 mol/LLinearity over 6.5 orders of magnitude 

log(Y) = A × log(X) + BA = 1.023B = 9.855C.C. = 0.9999Std.Err.= 5.585E‐008

5×10‐13~1.5×10‐6 mol/LLinearity over 6 orders of magnitude 

log(Y) = A × log(X) + BA = 1.007B = 9.850C.C. = 0.9999Std.Err. = 3.469E‐008

Expansion of Fluorescence Dynamic RangeExpansion of Fluorescence Dynamic Range

FP‐8200 Fluorescein

Conc.

FP‐8500 Fluorescein

Conc.

Page 11: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

0.01 0.1 1

log I

0.0001 0.001 0.01

log Ix100x100

0.0001 0.01

log I

1 100

1 10 100

log I

1 10 100

Expansion of Fluorescence Dynamic RangeExpansion of Fluorescence Dynamic Range

Page 12: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

Improvement in Scan SpeedImprovement in Scan Speed

FP‐8200

FP‐8300

FP‐8500

FP‐8600

20,000nm/min

20,000nm/min

60,000nm/min

Ex: 60,000nm/min

Em: 120,000nm/min

Faster is absolutely better! 

Page 13: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

Fluorescence instruments have always suffered from higher order diffraction effects.

Higher Order Diffraction Cut FiltersHigher Order Diffraction Cut Filters

Filter OFF

Filter ON

Em Spectrum of Orange plateEx spectrum of anthracene

Page 14: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

• The new ‘cut filter’ capability removes peaks originating from higher order diffracted light to provide simple, reliable spectral acquisition and analysis. 

• The cut filter system also optimized data for quantum yield determination by providing measurements of accurate spectra. 

Higher Order Diffraction Cut FiltersHigher Order Diffraction Cut Filters

Without cut filtersWith cut filters

Page 15: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

Enhancements for Phosphorescence Enhancements for Phosphorescence 

Organic Electro‐Luminescence (EL) compounds are new phosphorescent materials. To analyze this type of sample, a rotating chopper mechanism is incorporated to enable measurements of phosphorescent materials with a lifetime shorterthan 1 msec.

Rotation frequency can be selected from 1200, 600, 300, 150 or 75 rpmRotating chopper allows quick phosphorescence spectra measurement Expands phosphorescence measurements to many modes: ([Spectra], [Quantitative Calibration]/[Analysis], [Fixed wavelength], [Time course], [Phosphorescence Lifetime]) 

Page 16: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

Phosphorescence lifetime of Benzophenone

Range    : 27.4 ‐ 43.3 msecLife time : 5.40 msecStd. err.  : 0.001799Regression: Y = ‐0.185028 ×X + 11.9925C.C.       : ‐0.9996

Enhancements for Phosphorescence Enhancements for Phosphorescence MeasurementsMeasurements

Fluorescence of Benzene

Phosphorescence of Benzene

Page 17: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

IQ AccessoriesIQ Accessories

RFID accessory recognition 

Page 18: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

AccessoriesAccessories

Wide range of instrument interfaces for a variety of sample analyses requirements

Page 19: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

StoppedStopped‐‐flow Experiments flow Experiments 

Denaturation of Cytochrome C (0.5mg/mL) by 0.1N sulfuric acid. Mixing ratio of 1:1.

position

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25

T‐shape (APP)

Ball Mixer (Bio‐Logic) 

New Mixer (Jasco) 

Entranceof the cell

Exit of the cell

SDposition

Mixing Efficiency

Calc. S.D.of ratio

entrance

exit

Stopped flow experiments are widely applied to the study of protein denaturation, enzyme reaction, and other analyses.  The combination of a rapid and sensitive fluorescence spectrophotometer and a stopped flow unit provides an optimized analysis system.

Page 20: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

FMPFMP‐‐825 Automated Microplate Reader825 Automated Microplate Reader

Faster measurements are obtained by precise positioning of the micro‐well plate in addition to rapid data acquisition. 

Page 21: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

Spectra Manager Version 2/CFRSpectra Manager Version 2/CFR

SM Ver. 2/CFRCross‐platform software

Page 22: FP 8000 Spectrofluorometers · FP‐8300 Bio‐analysis is the most common application for fluorescence analysis. An optimized design enhances the performance of the FP‐8300 for

iRMiRM‐‐900900

Dedicated instrument control/analysis interface for compact systems