20
From quarks and gluons to baryon form factors Gernot Eichmann University of Giessen, Germany Erice, September 20, 2011 Gernot Eichmann (Giessen U.) 1 / 15

From quarks and gluons to baryon form factors...Form factors directly related to properties of pseudoscalar, vector, axial-vector quark-antiquark vertices: Baryon form factors inherit

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • From quarks and gluonsto baryon form factors

    Gernot EichmannUniversity of Giessen, Germany

    Erice, September 20, 2011

    Gernot Eichmann (Giessen U.) 1 / 15

  • Hadron phenomenology:

    QCD:

    Mass spectrum

    Dynamical chiral symmetry breakingConfinement

    UA(1) anomalyInfrared structure of Green functions

    Hadron deformationCharge and magnetization structureQuark and gluon distribution in hadrons,spin and OAM structure

    Chiral properties from pion cloudTransition between perturbativeand non-perturbative regions Experiment

    (JLab, MAMI, MIT-Bates, RHIC, CERN-SPS, FAIR, ...)

    Lattice QCD & ChPT

    Quark models

    Bridges between perturbativeand non-perturbative QCD(GPDs/TMDs, ...)

    Gernot Eichmann (Giessen U.) 2 / 15

  • Hadron phenomenology:

    QCD:

    Mass spectrum

    Dynamical chiral symmetry breakingConfinement

    UA(1) anomalyInfrared structure of Green functions

    Hadron deformationCharge and magnetization structureQuark and gluon distribution in hadrons,spin and OAM structure

    ab-initionon-perturbativecovariantcontinuumlight & heavy quarks

    Chiral properties from pion cloudTransition between perturbativeand non-perturbative regions

    Truncation of DSEsDyson-Schwinger equationsfor QCD’s Green functions

    Covariant bound-state equationsfor hadron wave functions / amplitudes

    Gernot Eichmann (Giessen U.) 2 / 15

  • Nucleon em. FFsGE, PRD 84 (2011)

    Delta em. FFsD. Nicmorus, GE, R. Alkofer, PRD 82 (2010)

    N∆γ (em. transition)GE & D. Nicmorus, in preparation

    N∆π (ps. transition)V. Mader, GE, M. Blank, A. Krassnigg, PRD 84 (2011)

    Nucleon axial & ps. FFsGE & C. S. Fischer, in preparation

    Nucleon and Delta form factors:

    Gernot Eichmann (Giessen U.) 3 / 15

  • Building blocks

    quark propagator

    hadron amplitudesand masses

    offshellT-matrix

    qqq, qq kernels

    BSE & Faddeev equation

    Scatteringequation

    DSE

    Truncation of DSEs

    currents, form factors,hadron structure

    “Gauging”of T-matrix

    Ansatz

    Haberzettl, PRC 56 (1997)Kvinikhidze, Blankleider, PRC 60 (1999)

    Gernot Eichmann (Giessen U.) 4 / 15

  • ++

    Quark-quark correlationsassumed as dominant structure in baryons. Hints: lattice QCD, BSE, hadron spectrum, ...

    =

    Irreducible 3-bodydiagrams3-gluon coupling to each quark, ...

    +

    Three-body equation

    Gernot Eichmann (Giessen U.) 5 / 15

  • ++

    Quark-quark correlationsassumed as dominant structure in baryons. Hints: lattice QCD, BSE, hadron spectrum, ...

    Poincaré covariance

    Dynamical chiral symmetry breaking

    GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010); GE, PRD 84 (2011)

    Sanchis-Alepuz, GE, Villalba-Chávez, Alkofer, 1109.0199 [hep-ph]

    Same setup for mesons and baryons: we need quark propagator & qq / qq kernel

    Delta: 128 basis elements (s, p, d, f waves)

    Faddeev equation

    Nucleon: 64 basis elements (s, p, d waves)

    orbital angular momentum in the bound-state amplitudes:

    mass generation at quark & hadron level

    Gernot Eichmann (Giessen U.) 5 / 15

  • Beyond rainbow-ladder:

    ( )2

    ( )2

    Effective coupling is (the only!) model input

    Rainbow-ladder truncation

    in quark DSE

    Satisfies Vector WTI ( e.m. current conservation) and Axial WTI ( Goldberger-Treiman, GMOR)

    Pion cloud: chiral region, low- structure in FFs. Not included “Quark core”

    Decay channels ( , ): so far only bound states“Non-resonant corrections”: cancel pion cloud in some channels ( , ?, ?), dominant in others (scalar, axialvector mesons)Fischer, Williams, PRL 103 (2009), Chang, Liu, Roberts, PRL 103 (2009)

    in meson BSE &Faddeev equation

    ( )2

    Infrared scale adjusted to , width kept as parameter

    ( ) = , + ( ²) 2 ²²

    Maris, Tandy: PRC 60 (1999)

    12

    15

    9

    6

    3

    00 0.5 1 1.5 2

    [ ]

    ( )

    1.61.71.81.92.0

    Gernot Eichmann (Giessen U.) 6 / 15

  • Mass results

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    0.10.0 0.2 0.3 0.4 0.5

    [ ]

    [ ]

    Krassnigg, PRD 80 (2009)Alkofer, Fischer, Williams, EPJ A38 (2008)Fischer, Williams, PRL 103 (2009)Chang, Roberts, PRL 103 (2009)

    Consistent descriptionof , , , ground states(dominated by s waves)

    Only one input parameter:scale , adjusted to

    scalar, axial-vector mesonsexcited mesons

    – ´

    What doesn’t work so well in rainbow-ladder:

    GE, PRD 84 (2011)Nucleon mass:

    Maris, Tandy, Nucl. Phys.Proc. Suppl. 161 (2006)

    –meson mass:

    Sanchis-Alepuz et al., 1109.0199 [hep-ph]

    Delta mass:

    Gernot Eichmann (Giessen U.) 7 / 15

  • Hadron current

    2-quarkkernel

    ++

    Impulse approximation

    Coupling to 2-quark kernel

    Coupling to 3-quark kernel

    General expression for a baryon’s non-perturbative current: GE, PRD 84 (2011)

    +

    + + +

    Gernot Eichmann (Giessen U.) 8 / 15

  • Hadron current

    =

    Form factors directly related to properties of pseudoscalar, vector, axial-vector quark-antiquark vertices:

    Baryon form factors inherit meson bound-state poles:“vector-meson dominance” for em. FFs

    Vector WTI em. current conservation; AXWTI Goldberger-Treiman relation

    gluonexchange kernel

    ++

    Impulse approximation

    Coupling to 2-quark kernel

    Coupling to 3-quark kernel

    General expression for a baryon’s non-perturbative current: GE, PRD 84 (2011)

    +

    + + +(rainbow-ladder) (Faddeev truncation)

    Gernot Eichmann (Giessen U.) 8 / 15

  • Nucleon em. FFsGE, PRD 84 (2011)

    match dataat large , missing pion cloudbelow ~2

    same shape up tostrange-quark:~30% p-wavesin amplitude

    agree with latticeat large quark massand ChPT quark corein chiral region

    Sachs FFsvs. momentumtransfer

    , for ,

    Passchier, Herberg, Zhu, Bermuth, Warren

    Geis

    Plaster/Madey

    Riordan

    Glazier

    0

    1

    2

    0 1 2 3

    /

    /

    | ( )|Anderson

    Lachniet

    Anklin

    Lung

    Rock

    Kubon

    00

    1

    2

    3

    1 2 3

    /

    ( )

    ( )

    ( )Crawford

    Paolone

    Zhan

    Punjabi

    Ron

    0.0

    1.0

    0.4

    0.2

    0.6

    0.8

    0.00

    0.10

    0.04

    0.02

    0.06

    0.08

    0 1 2 3 0 1 2 3 64 5/

    Gernot Eichmann (Giessen U.) 9 / 15

  • Nucleon em. FFsGE, PRD 84 (2011)

    Electric proton form factor at large momenta:

    , for ,

    Difference likely due totwo-photon corrections

    Rosenbluth method suggested / = const., in agreement

    with perturbative scaling

    Polarization experiments at JLAB showed falloff in / , with possible zero crossing

    Faddeev result consistent with data, suggests zero crossing at larger photon momentum

    OAM in nucleon amplitude!

    Guichon, Vanderhaeghen, PRL 91 (2003)

    Warren

    Plaster/Madey

    Riordan

    Glazier

    0.0

    1.0

    1.2

    0.4

    0.2

    0.0

    0.4

    0.2

    0.3

    0.1

    0.0

    0.4

    0.5

    0.3

    0.1

    0.2

    0.6

    0.0

    2.0

    1.0

    1.5

    0.5

    -0.2

    0.6

    0.8

    0 2 4 6 8

    0 2 4 6 8 0 2 4 6 8

    0 2 4 6 8

    /

    /

    /

    /

    Crawford

    Paolone

    Zhan

    Gayou/Puckett

    Puckett

    Punjabi

    Ron

    / /( )

    Gernot Eichmann (Giessen U.) 10 / 15

  • Nucleon em. FFsGE, PRD 84 (2011)

    Pauli-to-Dirac ratios at large momenta:

    , for ,

    Updated scaling prediction for Pauli-to-Dirac ratios:Belitsky, Ji, Yuan, PRL 91 (2003)

    Faddeev result consistent with data. Perturbative behaviorbuilt in by gluon exchange, produces ~30% OAM in rest frame.

    ~ OAM

    const. ~ ²( ²/ ²)

    ²

    Logarithmic scaling implies zero crossing in / .

    Warren

    Plaster/Madey

    Riordan

    Glazier

    0.0

    0.4

    0.2

    0.3

    0.1

    0.0

    2.0

    1.0

    1.5

    0.5

    0 2 4 6 8 0 2 4 6 8

    /

    /

    /

    /

    Gernot Eichmann (Giessen U.) 11 / 15

  • Nucleon axial & ps. FFsGE & C. S. Fischer, in preparation , ,

    ~ axial-longitudinal vertex, pseudoscalar poles

    ~ pseudoscalar vertex, pseudoscalar poles

    related by AXWTI

    at =0:related by analyticity

    ~ axial-transverse vertex, axial-vector poles

    (0) = (0)

    Goldberger-Treimanaccurately reproducedfor all quark masses:

    0.0 0.1 0.2 0.3 0.4 0.5

    [ ]0.0 0.1 0.2 0.3 0.4 0.5

    [ ]

    0.8

    1.0

    1.2

    1.4

    0.0

    1.0

    0.2

    0.4

    0.6

    0.8 [ ]

    RBC/UKQCD (Yamazaki ‘09)

    ETMC (Alexandrou ‘11)

    QCDSF (Ali Khan ‘06)

    LHPC (Bratt ‘10)

    RBC/UKQCD (Yamazaki ‘09)

    ETMC (Alexandrou ‘11)LHPC (Bratt ‘10)

    Pion-cloud corrections?lattice: large box sizes

    Gernot Eichmann (Giessen U.) 12 / 15

  • Nucleon axial & ps. FFsGE & C. S. Fischer, in preparation

    ChPT: Procura et al., PRD 75 (2007)

    , ,

    ~ axial-longitudinal vertex, pseudoscalar poles

    ~ pseudoscalar vertex, pseudoscalar poles

    related by AXWTI

    at =0:related by analyticity

    ~ axial-transverse vertex, axial-vector poles

    (0) = (0)

    Goldberger-Treimanaccurately reproducedfor all quark masses:

    0.0 0.1 0.2 0.3 0.4 0.5

    [ ]0.0 0.1 0.2 0.3 0.4 0.5

    [ ]

    0.8

    1.0

    1.2

    1.4

    0.0

    1.0

    0.2

    0.4

    0.6

    0.8 [ ]

    RBC/UKQCD (Yamazaki ‘09)

    ETMC (Alexandrou ‘11)

    QCDSF (Ali Khan ‘06)

    LHPC (Bratt ‘10)

    RBC/UKQCD (Yamazaki ‘09)

    ETMC (Alexandrou ‘11)LHPC (Bratt ‘10)

    Pion-cloud corrections?lattice: large box sizes

    Gernot Eichmann (Giessen U.) 12 / 15

  • N∆γ (em. transition)GE & D. Nicmorus, in preparation

    [ ]

    [ ]

    [%]

    [%]

    0.0

    0

    -2

    -3

    -4

    -5

    -1

    0

    -2

    -4

    -6

    -8

    -10

    -12

    -14

    0.2 0.4 0.6 0.8 1.0 1.2

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    MAMI (Beck ‘99)LEGS (Planpied ‘01)OOPS (Sparveris ‘05)MAMI (Stave ‘08)CLAS (Aznauryan ‘09)

    OOPS (Sparveris ‘05)MAMI (Stave ‘08)

    MAMI (Pospischil ‘00)

    CLAS (Aznauryan ‘09)

    , , *

    *

    & (electric & Coulomb quadrupole transitions) small & negative. Encode deformation. Quark model: need d-waves in or amplitude, or pion cloud.

    pQCD scaling predictions: 1, const.Carlson, PRD 34 (1986)

    (magnetic dipole transition) dominant: quark spin flip (s wave).

    ChPT: strong chiral non-analyticities due to open decay channelPascalutsa, Vanderhaeghen, Phys. Rept. 437 (2007)

    ?

    ?Faddeev result (here: quark-diquark model)reproduces & even without pion cloud, and d-waves are typically small.

    Gernot Eichmann (Giessen U.) 13 / 15

  • N∆γ (em. transition)GE & D. Nicmorus, in preparation

    [%]

    [ ]0.0 0.5 2.0 2.5

    25

    20

    15

    10

    5

    -5

    0

    1.51.0

    s wavess + p wavesFull

    [ ]0.0 0.5 2.0 2.51.51.0

    0.08

    0.06

    0.04

    0.02

    0.00

    -0.02

    -0.04

    ( )

    s waves

    s + p waves

    Full

    *

    , , *

    dominated by p waves! Without OAM: small, becomes positive and grows ( pQCD!)

    Poincaré covariance rich structure in and amplitudes, already in the quark-diquark model.

    Non-zero OAM appears naturally (p, d, f waves). p waves much more important than d waves.

    = 0

    = 1

    = 2

    = 0

    = 1

    = 2

    = 3

    SC AX

    = ¹ = ³

    Gernot Eichmann (Giessen U.) 14 / 15

  • Nucleon and Delta ‘quark core’ dominated by quark-quark correlations: described by Faddeev equation; can be simplified to quark-diquark picture

    Groundwork for systematic description of hadron properties in continuum QCD.Meson and baryon physics described by the same interaction.

    Even in s-wave dominated ground-state baryons, Poincaré covarianceimplies orbital angular momentum (~ p waves) in their wave functions.

    hadron deformation, perturbative behavior in form factors

    Dynamical chiral symmetry breaking generates (quark & hadron) masses.

    Missing structure at low momentum & in chiral region due to pion cloud.

    Excited baryons, Tetraquarks

    Summary

    Outlook

    Hadronic four-point functions: Compton scattering;pion electroproduction; GPDs & nucleon structure

    Truncation beyondrainbow-ladder!!

    Gernot Eichmann (Giessen U.) 15 / 15

  • Thanks for your attention.

    Cheers to my collaborators:

    R. Alkofer, M. Blank, C. S. Fischer, W. Heupel, A. Krassnigg, V. Mader, D. Nicmorus, H. Sanchis-Alepuz, S. Villalba-Chávez

    Gernot Eichmann (Giessen U.) 15 / 15

    IntroductionFaddeev equationForm FactorsSummary Outlook