34
Functional Analysis And Infinite-Dimensional Geometry Mari´anFabian 2 Petr Habala 13 PetrH´ajek 12 Vicente Montesinos Santaluc´ ıa 4 Jan Pelant 2 V´aclavZizler 12 1 Department of Mathematics, University of Alberta, Edmonton 2 Mathematical Institute, Czech Academy of Sciences, Prague 3 Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, Prague 4 Departamento de Matem´atica Aplicada, Universidad Polit´ ecnica de Valencia

Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

Functional Analysis

And Infinite-Dimensional Geometry

Marian Fabian2

Petr Habala13

Petr Hajek12

Vicente Montesinos Santalucıa4

Jan Pelant2

Vaclav Zizler12

1 Department of Mathematics, University of Alberta, Edmonton2 Mathematical Institute, Czech Academy of Sciences, Prague

3 Department of Mathematics, Faculty of Electrical Engineering,Czech Technical University, Prague

4 Departamento de Matematica Aplicada,Universidad Politecnica de Valencia

Page 2: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

Preface

PrefaceBanach spaces provide a framework for linear and nonlinear functional analysis,

operator theory, abstract analysis, probability, optimization and other branchesof mathematics. This book is intended as an introduction to linear functionalanalysis and to some parts of infinite-dimensional Banach space theory.The first seven chapters are directed mainly to undergraduate and graduate

students. We have strived to make the text easily readable and as self-containedas possible. In particular, we proved many basic facts that are considered “folk-lore”. An important part of the text is a large number of exercises with detailedhints for their solution. They complement the material in the chapters andcontain many important results.The last five chapters introduce the reader to selected topics in the theory

of Banach spaces related to smoothness and topology. This part of the bookis intended as an introduction to and a complement of existing books on thesubject ([BeLi], [DGZ3], [Dis1], [Dis2], [Fab], [JoL3], [LiT2], [Phe2], [Woj]).Some material is presented here for the first time in a monograph form.

The text is based on graduate courses taught at the University of Albertain Edmonton in the years 1984–1997. These courses were also taken by manysenior students in the Honors undergraduate program in Edmonton.As a prerequisite, basic courses in calculus and linear algebra should be enough.

For the most part, Royden’s book [Roy] should be sufficient.The chapters are best read consecutively. However:— Chapter 4 as well as the latter part of Chapter 3 (James boundaries) can be

omitted in the case of a more elementary functional analysis course. Chapter 4is used only marginally in Chapters 8–10.— The spectral theory (Chapter 7) can be approached after the first two

chapters and the beginning of Chapter 3 were covered; it is not needed in latterchapters.The book can serve as a textbook for the following types of courses in functional

analysis:1. Graduate two-semester course: Chapters 1–9.2. Graduate one-semester course: Chapters 1–3, 5, and 6 or 7.

5

Page 3: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

3. Graduate one-semester advanced course: Chapters 8–10 or 11, 12.4. Undergraduate first course in functional analysis: Chapters 1–3 and a part

of Chapter 7.5. Undegraduate second course in functional analysis: Chapters 4–6, Chapter 8

and 10.The first three chapters together with Chapter 7 can be used in service courses

for students of probability, physics, or engineering.

The principal part of the text was prepared at the Department of Mathemat-ics, University of Alberta in Edmonton. Each author spent some time at thisdepartment. Habala and Hajek obtained their PhD degrees there and Zizlerwas a faculty member there. We all thank this department for excellent work-ing conditions. We also thank our present home institutions for enabling us tofinalize the book. We are indebted to the grant agencies in Canada, the CzechRepublic, Germany, Spain and the U.S. for supporting our research in Banachspace theory over the years.We are grateful to our colleagues and students for many helpful discussions.

Our special thanks go to Jon Borwein, Gilles Godefroy, Jirı Jelınek, Kamil John,Lopez Pellicer, Jose Orihuela, Nicole Tomczak-Jaegermann, Jon Vanderwerff,and Dirk Werner. We also thank our colleagues that allowed us to include someof their recent unpublished results.We thank Marion Benedict for her excellent typing of the first version of the

manuscript and the staff of Springer-Verlag for their efficient work.Above all, we are deeply indebted to our wives for their support and encour-

agement.

We would be glad if this book inspired some young mathematicians to chooseBanach spaces as their field of interest, and hope that students and researchersin Banach space theory will find the text useful. We wish the readers a pleasanttime spent over this book.

Prague and ValenciaSummer 2000The authors

6

Page 4: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

Contents

Preface 5

1 Basic Concepts in Banach Spaces 1Holder and Minkowski inequalities, classical spaces C[0, 1], `p, c0,

Lp[0, 1], . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Operators, quotient spaces, finite-dimensional spaces, Riesz’s lemma,

separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Hilbert spaces, orthonormal bases, `2 . . . . . . . . . . . . . . . . . . . 17Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Hahn-Banach and Banach Open Mapping Theorems 38Hahn-Banach extension and separation theorems . . . . . . . . . . . . 39Duals of classical spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 45Banach open mapping theorem, closed graph theorem, dual operators 51Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Weak Topologies 66Weak and weak star topology, Banach-Steinhaus uniform boundedness

principle, Alaoglu’s and Goldstine’s theorem, reflexivity . . . . . 67Extreme points, Krein-Milman theorem, James boundary, Ekeland’s

variational principle, Bishop-Phelps theorem . . . . . . . . . . . . 79Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Locally Convex Spaces 112Local bases, bounded sets, metrizability and normability, finite-dimensional

spaces, distributions . . . . . . . . . . . . . . . . . . . . . . . . . 113Bipolar theorem, Mackey topology . . . . . . . . . . . . . . . . . . . . 122Representation and compactness: Caratheodory and Choquet repre-

sentation, Banach-Dieudonne, Eberlein-Smulian, Kaplansky the-orems, Banach-Stone theorem . . . . . . . . . . . . . . . . . . . . 127

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7

Page 5: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

5 Structure of Banach Spaces 143Projections and complementability, Auerbach bases . . . . . . . . . . . 143Separable spaces as subspaces of C[0, 1] and quotients of `1, Sobczyk’s

theorem, Schur’s property of `1 . . . . . . . . . . . . . . . . . . . 147Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Schauder Bases 167Shrinking and boundedly complete bases, reflexivity, Mazur’s basic

sequence theorem, small perturbation lemma . . . . . . . . . . . 171Bases in classical spaces: block basis sequences, PeÃlczynski’s decompo-

sition method and subspaces of `p, Pitt’s theorem, Khintchine’sinequality and subspaces of Lp . . . . . . . . . . . . . . . . . . . 178

Unconditional bases, James’s theorem on containment of `1 and c0,James’s space J , Bessaga-PeÃlczynski theorem . . . . . . . . . . . 186

Markushevich bases: existence for separable spaces, extension prop-erty, Johnson’s and Plichko’s result on `∞ . . . . . . . . . . . . . 194

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7 Compact Operators on Banach Spaces 209Compact operators and finite rank operators, Fredholm operators Fred-

holm alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Spectral theory: eigenvalues, spectrum, resolvent, eigenspaces . . . . . 216Self-adjoint operators, spectral theory of compact self-adjoint and com-

pact normal operators . . . . . . . . . . . . . . . . . . . . . . . . 223Fixed points: Banach’s contraction principle, non-expansive mappings,

Ryll-Nardzewski theorem, Brouwer’s and Schauder’s theorems,invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8 Differentiability of Norms 249Smulian’s dual test, Kadec’s Frechet-smooth renorming of spaces with

separable dual, Frechet differentiability of convex functions . . . 251Extremal structure, Lindenstrauss’ result on strongly exposed points

and norm attaining operators . . . . . . . . . . . . . . . . . . . . 264Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

9 Uniform Convexity 294Uniform convexity and uniform smoothness, `p spaces . . . . . . . . . 294Finite representability, local reflexivity, superreflexive spaces and En-

flo’s renorming, Kadec’s and Gurarii-Gurarii-James theorems . . 300Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

8

Page 6: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

10 Smoothness and Structure 323Variational principles (smooth and compact), subdifferential, Stegall’s

variational principle . . . . . . . . . . . . . . . . . . . . . . . . . 324Smooth approximation: partitions of unity . . . . . . . . . . . . . . . 338Lipschitz homeomorphisms, Aharoni’s embeddings into c0, Heinrich-

Mankiewicz results on linearization of Lipschitz maps . . . . . . 341Homeomorphisms: Mazur’s theorem on `p, Kadec’s theorem . . . . . . 346Smoothness in `p, Hilbert spaces . . . . . . . . . . . . . . . . . . . . . 350Countable James boundary and saturation by c0 . . . . . . . . . . . . 353Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11 Weakly Compactly Generated Spaces 368Projectional resolutions, injections into c0(Γ), Eberlein compacts, em-

bedding into a reflexive space, locally uniformly rotund and smoothrenormings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Weakly compact operators, Davis-Figiel-Johnson-PeÃlczynski factoriza-tion, absolutely summing operators, Pietsch factorization, Dunford-Pettis property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Quasicomplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

12 Topics in Weak Topology 398Eberlein compacts, metrizable subspaces . . . . . . . . . . . . . . . . . 399Uniform Eberlein compacts, scattered compacts . . . . . . . . . . . . . 405Weakly Lindelof spaces, property C . . . . . . . . . . . . . . . . . . . . 414Corson compacts, weak pseudocompactness in Banach spaces, (BX , w)

Polish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

9

Page 7: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

Bibliography

[AaLu] J. Aarts and D. Lutzer, Completeness properties designed for recog-nizing Baire space, Dissertationes Math. 116 (1974).

[AAB] Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw, The Dau-gavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97(1991), 215–230.

[Aha] I. Aharoni, Uniform embeddings of Banach spaces, Israel J. Math. 27(1977), 174–179.

[AhL1] I. Aharoni and J. Lindenstrauss, Uniform equivalence between Banachspaces, Bull. Amer. Math. Soc. 84 (1978), 281–283.

[AhL2] I. Aharoni and J. Lindenstrauss, An extension of a result of Ribe,Israel J. Math. 52 (1985), 50–64.

[AlPo] K. Alster and R. Pol, On function spaces of compact subspaces ofσ-products of the real line, Fund. Math. 107 (1980), 135–143.

[Ami] D. Amir, Banach spaces, Lecture Notes (unpublished), Edmonton,Canada, 1975.

[AmLi] D. Amir and J. Lindenstrauss, The structure of weakly compact setsin Banach spaces, Ann. of Math. 88 (1968), 35–44.

[Arc] A.V. Archangelskij, Topological function spaces, Kluwer AcademicPublishers, Mathematics and its Applications 78, 1992.

[ArFa] S. Argyros and V. Farmaki, On the structure of weakly compact sub-sets of Hilbert spaces and applications to the geometry of Banachspaces, Trans. Amer. Math. Soc. 289 (1985), 409–427.

[ArMe] S. Argyros and S. Mercourakis, On weakly Lindelof Banach spaces,Rocky Mount. J. Math. 23 (1993), 395–446.

442

Page 8: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[AMN] S. Argyros, S. Mercourakis and S. Negrepontis, Functional analyticproperties of Corson compact spaces, Studia Math. 89 (1988), 197–229.

[ArSm] N. Aronszajn and K.T. Smith, Invariant subspaces of completely con-tinuous operators, Ann. of Math. 60 (1954), 345–350.

[Asp] E. Asplund, Frechet differentiability of convex functions, ActaMath. 121 (1968), 31–47.

[AzDe] D. Azagra and R. Deville, Starlike bodies and bump functions in Ba-nach spaces, Prepublication no. 116, Mathematiques Pures de Bor-deaux, C.N.R.S., 1999.

[Bar] J.A. Barroso, Introduction to holomorphy, North Holland Math. Stud-ies 106, 1985.

[Bao] E. Bator, Unconditionally converging and compact operators on c0,Rocky Mount. J. Math. 22 (1992), 417–422.

[Bau] D.P. Baturov, On subspaces of function spaces, Vestnik Moskov. Univ.Ser. Mat. (1987), 66–69.

[Bea] B. Beauzamy, Introduction to Banach spaces and their geometry,Mathematics Studies, North Holland 68, 1982.

[BHO] S. Bellenot, R. Haydon, and E. Odell, Quasireflexive and tree spacesconstructed in the spirit of R.C. James, Cont. Math. 85 (1989), 19–43.

[BeMo] J. Benıtez and V. Montesinos, A characterization of restricted w-upper semicontinous differentials of convex functions, Bull. Austral.Math. Soc., to appear.

[Ben] Y. Benyamini, The uniform classification of Banach spaces, LonghornNotes, The University of Texas at Austin, Functional Analysis semi-nar, 1984–1985.

[BeLi] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functionalanalysis, Volume 1, American Math. Soc. Colloquium Publica-tions 48, 2000.

[BRW] Y. Benyamini, M.E. Rudin and M. Wage, Continuous images ofweakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977),309–324.

[BeSt] Y. Benyamini and T. Starbird, Embedding weakly compact sets intoHilbert space, Israel J. Math. 23 (1976), 137–141.

443

Page 9: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Bes1] C. Bessaga, A note on universal Banach spaces of finite dimension,Bull. Polish Academy 6 (1958), 97–101.

[Bes2] C. Bessaga, On topological classification of complete linear metricspaces, Fund. Math. 56 (1965), 251–288.

[Bes3] C. Bessaga, Topological equivalence of nonseparable reflexive Banachspaces, ordinal resolutions of identity and monotone bases, Ann. ofMath. Studies 69 (1972), 3–14.

[BeP1] C. Bessaga and A. PeÃlczynski, Spaces of continuous functions IV,Studia Math. 19 (1960), 53–62.

[BeP2] C. Bessaga and A. PeÃlczynski, Selected topics in infinite-dimensionaltopology, Polish Sci. Publ. Warszawa, 1975.

[Bol] B. Bollobas, Linear analysis, an introductory course, CambridgeMath. Textbooks, 1990.

[BoFr] R. Bonic, J. Frampton, Smooth functions on Banach manifolds, J.Math. Mech. 15 (1966), 877–898.

[BoPr] J. Borwein and D. Preiss, A smooth variational principle with appli-cations to subdifferentiability and differentiability of convex functions,Trans. Amer. Math. Soc. 303 (1987), 517–527.

[BGK] B. Bossard, G. Godefroy and R. Kaufman, Hurewicz theorem andrenormings of Banach spaces, J. Funct. Anal. 140 (1996), 142–150.

[Bou] R. Bourgin, Geometric aspects of convex sets with the Radon-Nikodymproperty, Lecture Notes in Math. 93, Springer-Verlag, 1983.

[CaGo] J.M.F. Castillo and M. Gonzalez, Three space problems in Banachspace theory, Lecture Notes in Math. 1667 Springer-Verlag, 1997.

[Cep] M. Cepedello Boiso, Approximation of Lipschitz functions by ∆-convex functions in Banach spaces, Israel J. Math. 106 (1998), 269–284.

[Cho] G. Choquet, Lectures on analysis I, II, III, W.A. Benjamin, NewYork, 1969.

[CoEd] J. Collier and M. Edelsten, On strongly exposed points and Frechetdifferentiability, Israel J. Math. 17 (1974), 66–68.

[Cor] H.H. Corson, The weak topology of a Banach space, Trans. Amer.Math. Soc. 101 (1961), 1–15.

444

Page 10: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[CoLi] H.H. Corson and J. Lindenstrauss, On weakly compact subsets of Ba-nach spaces, Proc. Amer. Math. Soc. 17 (1966), 407–412.

[Dan] J. Danes, Equivalence of some geometric and related results of non-linear functional analysis, Comm. Math. Univ. Carolinae 26 (1985),443–454.

[DGK] L. Danzer, B. Grunbaum and V. Klee, Helly’s theorem and its rel-atives, Proc. Sym. Pure Math. VII, Convexity, Amer. Math. Soc.(1963), 101–181.

[Dav] K.R. Davidson, Nest algebras, Research Notes in Math., Pitman 191,1988.

[DFJP] W.J. Davis, T. Figiel, W.B. Johnson and A. PeÃlczynski, Factoringweakly compact operators, J. Funct. Anal. 17 (1974), 311–327.

[DaLi] W.J. Davis and J. Lindenstrauss, On total non-norming subspaces,Proc. Amer. Math. Soc. 31 (1972), 109–111.

[DFH1] R. Deville, V. Fonf and P. Hajek, Analytic and Ck approximations ofnorms in separable Banach spaces, Studia Math. 120 (1996), 61–74.

[DFH2] R. Deville, V. Fonf and P. Hajek, Analytic and polyhedral approxima-tion of convex bodies in separable polyhedral Banach spaces, Israel J.Math. 105 (1998), 139–154.

[DeGh] R. Deville and N. Ghoussoub, Variational theorems and applications,in Handbook of Banach spaces, Editors W.B. Johnson and J. Linden-strauss, to appear.

[DeGo] R. Deville and G. Godefroy, Some applications of projectional resolu-tions of identity, Proc. London Math. Soc. 67 (1993), 183–199.

[DGZ1] R. Deville, G. Godefroy and V. Zizler, Un principle variationnel util-isant des functions bosses, C.R. Acad. Sci. Paris 312 Serie I (1991),281–286.

[DGZ2] R. Deville, G. Godefroy and V. Zizler, A smooth variational principlewith applications to Hamilton-Jacobi equations in infinite dimensions,J. Funct. Anal. 111 (1993), 197–212.

[DGZ3] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings inBanach spaces, Pitman Monographs 64, 1993.

[Die] J. Dieudonne, Foundations of modern analysis, Academic Press, 1969.

[Dis1] J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notesin Math. 485, Springer-Verlag, 1975.

445

Page 11: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Dis2] J. Diestel, Sequences and series in Banach spaces, Graduate text inMath., Springer-Verlag 92, 1984.

[DiUh] J. Diestel and J. Uhl, Vector measures, Math. surveys 15, Amer.Math. Soc., 1977.

[Dug1] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1(1951), 353–367.

[Dug2] J. Dugundji, Topology, Allyn and Bacon Inc., Boston, 1966.

[DuSc] N. Dunford, J.T. Schwartz, Linear operators, Part I, New York, In-terscience, 1958.

[Dvo] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc.Symp. Linear Spaces, Jerusalem, 1961, 123–160.

[EdWh] G.A. Edgar and R.F. Wheeler, Topological properties of Banachspaces, Pacific J. Math. 115 (1984), 317–350.

[Enf] P. Enflo, Banach spaces which can be given an equivalent uniformlyconvex norm, Israel J. Math. 13 (1972), 281–288.

[ELP] P. Enflo, J. Lindenstrauss and G. Pisier, On the three space problem,Math. Scand. 36 (1975), 189–210.

[Eng] R. Engelking, Outline of general topology, North Holland, 1968.

[Fab] M. Fabian, Differentiability of convex functions and topology–WeakAsplund spaces, John Wiley and Sons, 1997.

[FaGo] M. Fabian and G. Godefroy, The dual of every Asplund space admits aprojectional resolution of identity, Studia Math. 91 (1988), 141–151.

[FGZ] M. Fabian, G. Godefroy and V. Zizler, The structure of uniformlyGateaux smooth Banach spaces, Israel J. Math., to appear.

[FHZ] M. Fabian, P. Hajek and V. Zizler, Uniformly Eberlein compacta anduniformly Gateaux smooth norms, Serdica Math. J. 23 (1977), 1001–1010.

[FMZ] M. Fabian, V. Montesinos and V. Zizler, Pointwise semicontinuoussmooth norms, to appear.

[FWZ] M. Fabian, J.H.M. Whitfield and V. Zizler, Norms with locally Lips-chitzian derivatives, Israel J. Math. 44 (1983), 262–276.

[FZZ] M. Fabian, L. Zajıcek and V. Zizler, On residuality of the set of rotundnorms on Banach spaces, Math. Ann. 258 (1981/2), 349–351.

446

Page 12: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[FaZ1] M. Fabian and V. Zizler, A note on bump functions that locally dependon finitely many coordinates, Bull. Austral. Math. Soc. 56 (1997),447–451.

[FaZ2] M. Fabian and V. Zizler, An elementary approach to some problems inhigher order smoothness in Banach spaces, Extracta Math 14 (1999),295–327.

[Far] V. Farmaki, The structure of Eberlein, uniformly Eberlein and Tala-grand compact spaces in Σ(RΓ), Fund. Math. 128 (1987), 15–28.

[Fed] H. Federer, Geometric measure theory, Classics in Mathematics,Springer-Verlag, 1996.

[FeGa] H. Fetter and B. Gamboa de Buen, The James forest, London Math-ematical Society Lecture Notes Series 236, Cambridge UniversityPress, 1997.

[Fig] T. Figiel, On the moduli of convexity and smoothness, StudiaMath. 66 (1976), 121–155.

[FLM] T. Figiel, J. Lindenstrauss and V.D. Milman, The dimension of almostspherical sections of convex bodies, Acta Math.˜139 (1977), 53–94.

[Flo] K. Floret, Weakly compact sets, Lecture Notes in Math. 801,Springer-Verlag, 1980.

[FoKa] V.P. Fonf and M.I. Kadec, Subspaces of `1 with strictly convex norm,Math. Notes Ukrainsk. Academy of Sciences 33 (1983), 213–215.

[FLP] V.P. Fonf, J. Lindenstrauss and R.R. Phelps, Infinite-dimensionalconvexity, in Handbook of Banach spaces, Editors W.B. Johnson andJ. Lindenstrauss, to appear.

[Gil] J.R. Giles, Convex analysis with apllications in differentiation of con-vex functions, Research Notes in Math. 58, Pitman, 1982.

[God1] G. Godefroy, Espace de Banach, existence et unicite de certainspreduaux, Ann. Inst. Fourier (Grenoble) 28 (1978), 87–105.

[God2] G. Godefroy, Boundaries of convex sets and interpolation sets, Math.Ann. 277 (1987), 173–184.

[God3] G. Godefroy, Five lectures in Geometry of Banach spaces, Seminar onFunctional Analysis, Universidad de Murcia, 1987.

[God4] G. Godefroy, Renormings of Banach spaces, in Handbook of Banachspaces, Editors W.B. Johnson and J. Lindenstrauss, to appear.

447

Page 13: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[God5] G. Godefroy, Some applications of Simons inequality, Seminar onFunctional Analysis, Universidad de Murcia, to appear.

[GoKa] G. Godefroy and N. Kalton, The ball topology and its applications,Cont. Math. 85 (1989), 195–238.

[GKL1] G. Godefroy, N. Kalton and G. Lancien, Subspaces of c0(N) and Lip-schitz isomorphisms, to appear.

[GKL2] G. Godefroy, N. Kalton and G. Lancien, Szlenk indices and uniformhomeomorphisms, to appear.

[GTWZ] G. Godefroy, S. Troyanski, J. Whitfield and V. Zizler, Smoothness inweakly compactly generated Banach spaces, J. Funct. Anal. 52 (1983),344–352.

[Gow1] W.T. Gowers, Recent results in the theory of infinite dimensional Ba-nach spaces, Proc. of the International Congress of Math. Zurich,Switzerland, 1994.

[Gow2] Gowers, A solution to Banach’s hyperplane problem, Bull. LondonMath. Soc. 26 (1994), 523–530.

[Gow3] W.T. Gowers, A space not containing c0, `1 or a reflexive subspace,Trans. Amer. Math. Soc. 344 (1994), 407–420.

[Gow4] W.T. Gowers, A solution to the Schroeder-Bernstein problem for Ba-nach spaces, Bull. London Math. Soc. 28 (1996), 297–304.

[GoMa] W.T. Gowers and B. Maurey, The unconditional basic sequence prob-lem, J. Amer. Math. Soc. 6 (1993), 851–874.

[Gue] S. Guerre-Delabriere, Classical sequences in Banach spaces, Mono-graphs and textbooks in pure and applied mathematics, MarcelDekker, Inc., 1992.

[Gul1] S.P. Gul’ko, On properties of subsets of Σ-products, Dokl. Akad. NaukSSSR 237 (1977), 505–507.

[Gul2] S.P. Gul’ko, On the properties of some function spaces, Soviet Math.Dokl. 19 (1978), 1420–1424.

[GuGu] V. I. Gurarii and N. I. Gurarii, On bases in uniformly convex anduniformly smooth spaces, Izv. Akad. Nauk. SSSR Ser. Mat. 35 (1971),210–215.

[GuKa] V.I. Gurarii and M.I Kadec, Minimal systems and quasicomplements,Soviet Math. Dokl. 3 (1962), 966–968.

448

Page 14: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[HHZ] P. Habala, P. Hajek and V. Zizler, Introduction to Banach spaces I,II, Matfyzpress, Prague, 1996.

[HaSu] J. Hagler and F.E. Sullivan, Smoothness and weak star sequentialcompactness, Proc. Amer. Math. Soc. 78 (1980), 497–503.

[Haj1] P. Hajek, Smooth norms that depend locally on finitely many coordi-nates, Proc. Amer. Math. Soc. 123 (1995), 3817–3821.

[Haj2] P. Hajek, Dual renormings of Banach spaces, Comment. Math. Univ.Carolinae 37 (1996), 241–253.

[Han] R.W. Hansell, Descriptive sets and the topology of nonseparable Ba-nach spaces, preprint, 1989.

[HWW] P. Harmand, D. Werner and W. Werner, M-ideals in Banach spacesand Banach algebras, Lecture Notes in Math. 1547, Springer-Verlag,1993.

[Hay1] R. Haydon, A counterexample to several questions about scatteredcompact spaces, Bull. London Math. Soc. 22 (1990), 261–268.

[Hay2] R. Haydon, Smooth functions and partitions of unity on certain Ba-nach spaces, Quart. J. Math. 47 (1996), 455–468.

[Hay3] R. Haydon, Trees in renorming theory, Proc. London Math. Soc. 78(1999), 541–584.

[HeMa] S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uni-form and Lipschitz classification of Banach spaces, Studia Math. 73(1982), 225–251.

[HKO] C.W. Henson, A.S. Kechris and E.W. Odell, Analysis and logic,preprint, Universite de Mons-Hinaut, Mons, Belgium, 1997

[HSZ] P. Holicky, M. Smıdek and L. Zajıcek, Convex functions with nonBorel set of Gateaux differentiability points, Comment. Math. Univ.Carolinae 39 (1998), 469–482.

[Jam1] R.C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52(1950), 518–527.

[Jam2] R.C. James, Weak compactness and reflexivity, Israel J. Math. 2(1964), 101–119.

[Jam3] R.C. James, A counterexample for a sup theorem in normed spaces,Israel J. Math. 9 (1971), 511–512.

449

Page 15: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Jam4] R.C. James, Reflexivity and the sup of linear functionals, Israel J.Math. 13 (1972), 289–300.

[Jam5] R.C. James, Some self-dual properties of normed linear spaces, Symp.on inf. dim. topol., Ed: D. Anderson, Ann. of Math. Studies 69(1972), p. 159–175.

[Jam6] R.C. James, Superreflexive Banach spaces, Canadian J. Math. 24(1972), 896–904.

[Jam7] R.C. James, Superreflexive spaces with bases, Pacific J. Math. 41–42(1972), 409–419.

[Jam8] R.C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743.

[Jan] G.J.O. Jameson, Topology and normed spaces, Chapman and Hall,London, 1974.

[JaRo] J.E. Jayne and C.A. Rogers, Borel selectors for upper semicontinuousset valued maps, Acta Math. 155 (1985), 41–79.

[JiMo] M. Jimenez Sevilla and J.P. Moreno, Renorming Banach spaces withthe Mazur intersection property, J. Funct. Analysis 144 (1997), 486–504.

[JTZ] K. John, H. Torunczyk and V. Zizler, Uniformly smooth partitionsof unity on superreflexive Banach spaces, Studia Math. 70 (1981),129–137.

[JoZ1] K. John and V. Zizler, Smoothness and its equivalents in weakly com-pactly generated Banach spaces, J. Funct. Anal. 15 (1974), 161–166.

[JoZ2] K. John and V. Zizler, Topological linear spaces, Lecture Notes,Charles University, Prague, 1978 (in Czech).

[JoZ3] K. John and V. Zizler, A short proof of a version of Asplund averagingtheorem, Proc. Amer. Math. Soc. 73 (1979), 277–278.

[Joh1] W.B. Johnson, No infinite dimensional P space admits a Markushe-vich basis, Proc. Amer. Math. Soc. 28 (1970), 467–468.

[Joh2] W.B. Johnson, On quasicomplements, Pacific J. Math. 48 (1973),113–118.

[JoL1] W.B. Johnson and J. Lindenstrauss, Some remarks on weakly com-pactly generated Banach spaces, Israel J. Math. 17 (1974), 219–230.

450

Page 16: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[JoL2] W.B. Johnson and J. Lindenstrauss, Basic concepts in the geometry ofBanach spaces, in Handbook of Banach spaces, Editors W.B. Johnsonand J. Lindenstrauss, to appear.

[JoL3] W.B. Johnson and J. Lindenstrauss, Editors, Handbook of Banachspaces, to appear.

[JLS] W.B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spacesdetermined by their uniform structures, Geometric and FunctionalAnal. 6 (1996), 430–470.

[JoRo] W.B. Johnson and H.P. Rosenthal, On w∗-basic sequences and theirapplications to the study of Banach spaces, Studia Math. 43 (1972),77–92.

[JRZ] W.B. Johnson, H.P. Rosenthal and M. Zippin, On bases, finite dimen-sional decompositions and weaker structures in Banach spaces, IsraelJ. Math. 9 (1971), 488–506.

[Jos] B. Josefson, Weak sequential convergence in the dual of a Banachspace does not imply norm convergence, Ark. Math. 13 (1975), 79–89.

[Kad1] M.I. Kadec, Unconditional convergence of series in uniformly convexspaces, Uspechi Mat. Nauk SSSR 11 (1956), 185–190.

[Kad2] M.I. Kadec, On linear dimension of the spaces Lp, Uspechi Mat. NaukSSSR 13 (1958), 95–98.

[Kad3] M.I. Kadec, Conditions on the differentiability of the norm of a Ba-nach space, Uspechi Mat. Nauk SSSR 20 (1965), 183–187.

[Kad4] M.I. Kadec, Proof of topological equivalence of separable infinite-dimensional Banach spaces, Funct. Anal. Appl. 1 (1967), 53–62.

[KaTo] M.I. Kadec and E.V. Tokarev, On the dual spaces with countably manyextreme points of their balls, Izvestija Vysh. Ucz. Zavedenij 4 (1975),98–99.

[Kal1] O. Kalenda, Valdivia compacta and subspaces of C(K) spaces, Ex-tracta Math. 14 (1999), 355–371.

[Kal2] O. Kalenda, An example concerning Valdivia compact spaces, SerdicaMath. J., to appear.

[Kec] A.S. Kechris, Classical descriptive set theory, Graduate Texts inMathematics, Springer-Verlag 156, 1994.

[Kel] J.L. Kelley, General topology, D. van Nostrand, Princeton 1957.

451

Page 17: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Kir] W.A. Kirk, A fixed point theorem for mappings which do not increasedistances, Amer. Math. Monthly 72 (1965), 1004–1006.

[KoFo] A.N. Kolmogorov and S.V. Fomin, Introductory real analysis, Doverbooks on advanced math., New York, 1970.

[Kot] G. Kothe, Topological vector spaces I, Springer Verlag, 1969.

[Kur] J. Kurzweil, On approximation in real Banach spaces, StudiaMath. 14 (1954), 213–231.

[Kwa] S. Kwapien, Isomorphic characterization of inner product space byorthogonal series with vector valued coefficients, Studia Math. 44(1972), 583–595.

[Lac1] H.E. Lacey, Separable quotients of Banach spaces, An. Acad. BrasilCi. 44 (1972), 185–189.

[Lac2] H.E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, 1974.

[Lan] G. Lancien, On uniformly convex and uniformly Kadec–Klee renorm-ings, Serdica Math. J. 21 (1995), 1–18.

[LeWh] E.B. Leach and J. Whitfield, Differentiable functions and rough normson Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 120–126.

[Lin1] J. Lindenstrauss, On nonlinear projections in Banach spaces, Michi-gan Math. J. 11 (1954), 263–287.

[Lin2] J. Lindenstrauss, On some subspaces of `1 and c0, Bull. ResearchCouncil Israel. 10 (1961), 74–80.

[Lin3] J. Lindenstrauss, On the modulus of smoothness and divergent seriesin Banach spaces, Michigan J. Math. 10 (1963), 241–252.

[Lin4] J. Lindenstrauss, On operators which attain their norms, Israel J.Math. 3 (1963), 139–148.

[Lin5] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math.Soc. 48 (1964).

[Lin6] J. Lindenstrauss, On reflexive spaces having the metric approximationproperty, Israel J. Math. 3 (1965), 199–204.

[Lin7] J. Lindenstrauss, Notes on Klee’s paper “Polyhedral sections of convexbodies”, Israel J. Math. 4 (1966), 235–242.

[Lin8] J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull.Amer. Math. Soc. 72 (1966), 967–970.

452

Page 18: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Lin9] J. Lindenstrauss, On a theorem of Murray and Mackey, An. Acad.Brasil. Ci. 39 (1967), 1–6.

[Lin0] J. Lindenstrauss, On subspaces of Banach spaces without quasicom-plements, Israel J. Math. 6 (1968), 36–38.

[LinA] J. Lindenstrauss, Weakly compact sets, their topological properties andspaces they generate, Ann. of Math. Studies 69 (1972).

[LinB] J. Lindenstrauss, Uniform embeddings, homeomorphisms and quotientmaps between Banach spaces (A short survey), to appear.

[LiPh] J. Lindenstrauss and R.R. Phelps, Extreme point properties of convexbodies in reflexive Banach spaces, Israel J. Math. 6 (1968), 39–48.

[LiR1] J. Lindenstrauss and H.P. Rosenthal, Automorphisms in c0, `1 andm, Israel J. Math. 7 (1969), 227–239.

[LiR2] J. Lindenstrauss and H.P. Rosenthal, The Lp spaces, Israel J. Math. 7(1969), 325–349.

[LiSt] J. Lindenstrauss and C. Stegall, Examples of separable spaces whichdo not contain `1 and whose duals are nonseparable, Studia Math. 54(1975), 81–105.

[LiT1] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, LectureNotes in Math. 338, Springer-Verlag, 1973.

[LiT2] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Sequencespaces, Springer-Verlag, 1977.

[LiT3] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Functionspaces, Springer-Verlag, 1979.

[LjSo] L.A. Ljusternik and B.I. Sobolev, Elements of functional analysis,New Delhi, 1961.

[LoPe] M. Lopez-Pellicer and V. Montesinos, Cantor sets in the dual of aseparable Banach space. Applications, to appear.

[Mac] G. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52(1946), 322–325.

[Mei1] A. Meir, On the moduli of smoothness of Lp spaces, Rendiconti diMath. 4 (1984), 215–219.

[Mei2] A. Meir, On the uniform convexity of Lp spaces, Illinois J. Math. 28(1984), 420–424.

453

Page 19: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Mer] S. Mercourakis, On weakly countably determined Banach spaces,Trans. Amer. Math. Soc 300 (1987), 307–327.

[MeNe] S. Mercourakis and S. Negrepontis, Banach spaces and topology II,Recent Progress in General Topology, Editors M. Husek and J. vanMill, Elsevier Science Publishers B.V., 1992.

[Mes] V.Z. Meshkov, Smoothness properties in Banach spaces, StudiaMath. 63 (1978), 111–123.

[MiRu] E. Michael and M.E. Rudin, A note on Eberlein compacts, Pacific J.Math. 72 (1972), 487–495.

[Mil] V.D. Milman, Geometric theory of Banach spaces. Part I. Theoryof basic and minimal systems, Uspechi Mat. Nauk SSSR 25 (1970),113–173.

[MiSc] V.D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Math. 1200, Springer-Verlag, 1986.

[MMOT] A. Molto, V. Montesinos, J. Orihuela and S. Troyanski, Weakly uni-formly rotund Banach spaces, Comment. Math. Univ. Carolinae 39(1998), 749–753.

[MOTV] A. Molto, J. Orihuela, S. Troyanski and M. Valdivia, On weakly locallyuniformly rotund Banach spaces, J. Funct. Anal. 163 (1999), 252–271.

[Mon1] V. Montesinos, Solution to a problem of S. Rolewicz, Studia Math. 81(1985), 65–69.

[Mon2] V. Montesinos, Drop property equals reflexivity, Studia Math. 87(1987), 93–100.

[MoTo] V. Montesinos and J.R. Torregrosa, Sobre espacios de Banach lo-calmente uniformemente rotundos, Revista de la Real Academia deCiencias 86, (1992), 263–277.

[Muj] J. Mujica, Separable quotients of Banach spaces, Revista Math. 10(1997), 299–330.

[Mup] G.J. Murphy, C∗-algebras and operator theory, Academic Press, 1996.

[Mur] F.J. Murray, Quasi complements and closed projections in reflexiveBanach spaces, Trans. Amer. Math. Soc. 58 (1945), 77–95.

[Nam1] I. Namioka, Separate continuity and joint continuity, Pacific J.Math. 51 (1974), 515–531.

454

Page 20: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Nam2] I. Namioka, Fragmentability in Banach spaces; interaction of topolo-gies, Lecture Notes Paseky, 1999.

[NaPh] I. Namioka and R.R. Phelps, Banach spaces which are Asplund spaces,Duke Math. J. 42 (1968), 735–750.

[Nat] I.P. Natanson, Theory of functions of real variable, Moscow, 1950.

[Neg] S. Negrepontis, Banach spaces and topology, Handbook of set-theoretic topology, Editors K. Kunen and J.E. Vaughan, ElsevierScience Publishers B.V., 1984.

[NeTs] S. Negrepontis and A. Tsarpalias, A nonlinear version of the Amir-Lindenstrauss method, Israel J. Math. 38 (1981), 82–94.

[NeSe] A.M. Nemirovski and S.M. Semenov, On polynomial approximationin function spaces, Mat. Sbornik 21 (1973), 255–277.

[Nis] A. Nissenzweig, w∗-sequential convergence, Israel J. Math. 22 (1975),266–272.

[OdRo] E.W. Odell and H.P. Rosenthal, A double dual characterization ofseparable Banach spaces containing `1, Israel J. Math. 20 (1975),375–384.

[OdS1] E.W. Odell and T. Schlumprecht, The distortion problem, ActaMath. 173 (1994), 259–281.

[OdS2] E.W. Odell and T. Schlumprecht, Distortion and stabilized structurein Banach spaces, New geometric phenomenon for Banach and Hilbertspaces, Proc. of the Intern. Congress of Math. Zurich, Switzerland,1994.

[OdS3] E.W. Odell and T. Schlumprecht, On asymptotic properties of Banachspaces under renormings, J. Amer. Math. Soc. 11 (1998), 175–188.

[Oja1] E. Oja, A proof of the Simons inequality, to appear.

[Oja2] E. Oja, A short proof of a characterization of reflexivity of James,Proc. Amer. Math. Soc., to appear.

[Ori] J. Orihuela, On weakly Lindelof Banach spaces, Progress in Funct.Anal. K.D. Bierstedt, Editors J. Bonet, J. Horvath and M. Maestre,Elsevier Science Publ. B.V., 1992.

[OSV] J. Orihuela, W. Schachermayer and M. Valdivia, Every Radon-Nikodym Corson compact is an Eberlein compact, Studia Math. 98(1991), 157–174.

455

Page 21: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[OrVa] J. Orihuela and M. Valdivia, Projective generators and resolutions ofidentity in Banach spaces, Rev. Mat. Univ. Complutense, Madrid 2,Suppl. Issue (1990), 179–199.

[Oxt] J.C. Oxtoby, Measure and category, Graduate Texts in Math.,Springer-Verlag, 1980.

[PWZ] J. Pechanec, J. Whitfield and V. Zizler, Norms locally dependent onfinitely many coordinates, An. Acad. Brasil Ci. 53 (1981), 415–417.

[Pel1] A. PeÃlczynski, A property of multilinear operations, Studia Math. 16(1957), 173–182.

[Pel2] A. PeÃlczynski, On the isomorphism of the spaces m and M , Bull.Acad. Polon. VI (1958), 695–696.

[Pel3] A. PeÃlczynski, Projections in certain Banach spaces, Studia Math. 19(1960), 209–228.

[Pel4] A. PeÃlczynski, On Banach spaces containing L1(µ), Studia Math. 30(1968), 231–246.

[PeBe] A. PeÃlczynski and C. Bessaga, Some aspects of the present theory ofBanach spaces, in: 1979 Edition of S. Banach: Travaux sur L’AnalyseFonctionnelle, Warszaw, 1979.

[PeSz] A. PeÃlczynski and W. Szlenk, An example of a nonshrinking basis,Rev. Roumaine Math. Pures et Appl. 10 (1965), 961–966.

[Phe1] R.R. Phelps, Lectures on Choquet’s theorem, Van Nostrand, Prince-ton, 1966.

[Phe2] R.R. Phelps, Convex functions, monotone operators and differentia-bility, Lecture Notes in Math. 1364, Springer-Verlag, 1989.

[Phi] R.S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48(1940), 516–541.

[Pis1] G. Pisier, Martingales with values in uniformly convex spaces, IsraelJ. Math. 20 (1975), 326–350.

[Pis2] G. Pisier, Factorization of linear operators and geometry of Banachspaces, CBMS AMS 60, 1985.

[Pli1] A.N. Plichko, On projectional resolution of the identity operator andMarkushevich bases, Soviet Mat. Dokl. 25 (1982), 386–389.

[Pli2] A.N. Plichko, Projectional decompositions, Markushevich bases andequivalent norms, Mat. Zametki 34 (1983), 719–726.

456

Page 22: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Pli3] A.N. Plichko, Bases and complements in nonseparable Banach spaces,Sibir. Mat. J. 25 (1984), 155–162.

[Pli4] A.N. Plichko, On bounded biorthogonal systems in some functionspaces, Studia Math. 84 (1986), 25–37.

[Pol1] R. Pol, Concerning function spaces on separable compact spaces, Bull.de L’Acad. Polon. Serie des sciences math., astronom., et phys. XXV(1977), 993–997.

[Pol2] R. Pol, A function space C(X) which is weakly Lindelof but not weaklycompactly generated, Studia Math. 64 (1979), 279–285.

[Pol3] R. Pol, On a question of H.H. Corson and some related problems,Fund. Math. 109 (1980), 143–154.

[Pol4] R. Pol, On pointwise and weak topology in function spaces, WarszawUniversity preprint 4/84 (1984).

[Pre1] D. Preiss, Almost differentiability of convex functions in Banachspaces and determination of measures by their values on balls, LondonMath. Soc. Lecture Notes Series 158, Geometry of Banach Spaces,Proceedings of Conference held in Strobl, Austria, Editors P.F.X.Muller and W. Schachermayer, 1989.

[Pre2] D. Preiss, Differentiability of Lipschitz functions on Banach spaces,J. Funct. Anal. 91 (1990), 312–345.

[PPN] D. Preiss, R.R. Phelps and I. Namioka, Smooth Banach spaces, weakAsplund spaces and monotone or usco mappings, Israel J. Math. 72(1990), 257–279.

[PrSi] D. Preiss and P. Simon, A weakly pseudocompact subspace of a Banachspace is weakly compact, Comment. Math. Univ. Carolinae 15 (1974),603–610.

[Pta] V. Ptak, On a theorem of W.F. Eberlein, Studia Math. 14 (1954),276–287.

[Rai1] J. Rainwater, Weak convergence of bounded sequences, Proc. Amer.Math. Soc. 14 (1963), 999.

[Rai2] J. Rainwater, Day’s norm on c0(Γ), Proc. Amer. Math. Soc. 22(1969), 335–339.

[Raj1] M. Raja, Measurabilite de Borel et renormages dans les espaces deBanach, PhD thesis, Universite de Bourdeaux 1998.

457

Page 23: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Raj2] M. Raja, Kadec norms and Borel sets in Banach spaces, StudiaMath. 136 (1999), 1–16.

[Raj3] M. Raja, On locally uniformly rotund norms, Mathematika, to appear.

[Res] G. Restrepo, Differentiable norms in Banach spaces, Bull. Amer.Math. Soc. 70 (1964), 413–414.

[Rez] E.A. Rezniczenko, Normality and collectionwise normality of functionspaces, Vestnik. Mosk. Univ. Ser. Mat. (1990), 56–58.

[Rod] G. Rode, Superkonvexitat und schwache Kompaktheit, Arch. Math. 36(1981), 62–72.

[RoJa] C.A. Rogers and J.E. Jayne, K-analytic sets, Academic Press, 1980.

[Ros1] H.P. Rosenthal, On quasi complemented subspaces of Banach spaceswith an appendix on compactness of operators from Lp(µ) to Lr(µ),J. Funct. Anal. 4 (1969), 176–214.

[Ros2] H.P. Rosenthal, On injective Banach spaces and the spaces L∞(µ) forfinite measures µ, Acta Math. 124 (1970), 205–247.

[Ros3] H.P. Rosenthal, The heredity problem for weakly compactly generatedBanach spaces, Comp. Math. 28 (1974), 83–111.

[Ros4] H.P. Rosenthal, Pointwise compact subsets of the first Baire class,Amer. J. Math. 99 (1977), 362–378.

[Ros5] H.P. Rosenthal, Some recent discoveries in the isomorphic theory ofBanach spaces, Bull. Amer. Math. Soc. 84 (1978), 803–831.

[Ros6] H.P. Rosenthal, Weak∗-Polish Banach spaces, J. Funct. Anal. 76(1988), 267–316.

[Roy] H.L. Royden, Real analysis, third edition, Macmillan, 1988.

[Rud1] W. Rudin, Continuous functions on compact spaces without perfectsubsets, Proc. Amer. Math. Soc. 8 (1957), 39–42.

[Rud2] W. Rudin, Real and complex analysis, McGraw Hill, New York, 1966.

[Rud3] W. Rudin; Functional analysis, McGraw Hill, 1973.

[Sch] W. Schachermayer, Some more remarkable properties of the Jamestree space, Cont. Math. 85 (1987), 465–496.

[Sem1] Z. Semadeni, Banach spaces non-isomorphic to their cartesiansquares. II, Bull. Acad. Polon. Ser. Sci. Math. Astron. et Phys. 8(1960), 81–84.

458

Page 24: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Sem2] Z. Semadeni, Banach spaces of continuous functions, Polish ScientificPublishers, Warszawa, 1971.

[Sha] B.E. Shapirovskii, Special types of embeddings in Tychonoff cubes.Subspaces of Σ-products and cardinal invariants, Collection, Topol-ogy VII, Colloq. Math. Soc. Janos Bolyai 23, North-Holland, 1980,1055–1086.

[ShSt] S. Shelah and J. Steprans, A Banach space on which there are fewoperators, Proc. Amer. Math. Soc. 104 (1988), 101–105.

[Sim] S. Simons, A convergence theorem with boundary, Pacific J. Math. 40(1972), 703–708.

[Sin1] I. Singer, Bases in Banach spaces I, Springer-Verlag, 1970.

[Sin2] I. Singer, On the problem of nonsmoothness of nonreflexive secondconjugate spaces, Bull. Austral. Math. Soc. 12 (1975), 407–416.

[Sin3] I. Singer, Bases in Banach spaces II, Springer-Verlag, 1981.

[Smu] V.L. Smulian, Sur la derivabilite de la norme dans l’espace de Banach,C. R. Acad. Sci. URSS (Doklady) N. S. 27 (1940), 643–648.

[Spa] E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

[Ste1] C. Stegall, The Radon-Nikodym property in conjugate spaces, Trans.Amer. Math. Soc. 206 (1975), 213–223.

[Ste2] C. Stegall, Optimization of functions on certain subsets of Banachspaces, Math. Ann. 236 (1978), 171–176.

[Ste3] C. Stegall, A proof of the principle of local reflexivity, Proc. Amer.Math. Soc. 78 (1980), 154–156.

[Ste4] C. Stegall, The Radon-Nikodym property in conjugate Banach spacesII, Trans. Amer. Math. Soc. 264 (1981), 507–519.

[Szl] W. Szlenk, The nonexistence of a separable reflexive Banach spaceuniversal for all separable reflexive Banach spaces, Studia Math. 30(1968), 53–61.

[Tac] D.G. Tacon, The conjugate of a smooth Banach space, Bull. Austral.Math. Soc. 2 (1970), 415–425.

[Tal1] M. Talagrand, Sur la structure borelienne des espaces analytiques,Bull. Sc. Math. 101 (1977), 415–422.

[Tal2] M. Talagrand, Comparison des boreliens d’un espace de Banach pourtopologies faibles et fortes, Indiana Math. J. 27 (1978), 1001–1004

459

Page 25: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Tal3] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. ofMath. 119 (1979), 407–438.

[Tal4] M. Talagrand, Sur les espaces de Banach contenant `1(τ), Israel J.Math. 40 (1981), 324–330.

[Tal5] M. Talagrand, Pettis integral and measure theory, Memoirs Amer.Math. Soc. 307, 1984.

[Tal6] M. Talagrand, Renormages de quelques C(K), Israel J. Math. 54(1986), 327–334.

[Tan] Wee-Kee Tang, Uniformly differentiable bump functions, Arch.Math. 68 (1997), 55–59.

[Tod1] S. Todorcevic, Topics in topology, Lecture Notes in Math. 1652,Springer-Verlag, 1997.

[Tod2] S. Todorcevic, Compact subsets of the first Baire class, J. Amer. Math.Soc., to appear.

[T-J] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pureand Applied Mathematics 38, 1989.

[Tor1] H. Torunczyk, Smooth partitions of unity on some nonseparable Ba-nach spaces, Studia Math. 46 (1973), 43–51.

[Tor2] H. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111(1981), 247–262.

[Tro1] S. Troyanski, On locally uniformly convex and differentiable norms incertain nonseparable Banach spaces, Studia Math. 37 (1971), 173–180.

[Tro2] S. Troyanski, On equivalent norms and minimal systems in nonsepa-rable Banach spaces, Studia Math. 43 (1972), 125–138.

[Tro3] S. Troyanski, On nonseparable Banach spaces with a symmetric basis,Studia Math. 53 (1975), 253–263.

[Tro4] S. Troyanski, On uniform rotundity and smoothness in every directionin nonseparable Banach spaces with an unconditional basis, Compt.Rend. Acad. Bulgare Sci. 30 (1977), 1243–1246.

[Tro5] S. Troyanski, Locally uniformly convex norms, Compt. Rend. Acad.Bulg. Sci. 32 (1979), 1167–1169.

460

Page 26: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[Tro6] S. Troyanski, Construction of equivalent norms for certain local char-acteristics with rotundity and smoothness by means of martingales,Proc. 14. Spring conference of the Union of Bulgarian mathemati-cians, 129–156, 1985.

[Tro7] S. Troyanski, Gateaux differentiable norms in Lp, Math. Ann. 287(1990), 221–227.

[Tsi] B.S. Tsirelson, Not every Banach space contains an embedding of `p

or c0, Funct. Anal. Appl. 8 (1974), 138–141.

[Val1] M. Valdivia, On a class of Banach spaces, Studia Math. 60 (1977),11–30.

[Val2] M. Valdivia, Some more results on weak compactness, J. Funct.Anal. 24 (1977), 1–10.

[Val3] M. Valdivia, Projective resolutions of identity in C(K) spaces, Arch.Math. 54 (1990), 493–498.

[Val4] M. Valdivia, Simultaneous resolutions of the identity operator innormed spaces, Collect. Math. 42 (1991), 265–284.

[Val5] M. Valdivia, On basic sequences in Banach spaces, Note di Matemat-ica 12 (1992), 245–258.

[Vae] F.A. Valentine, Convex sets, McGraw Hill, New York, 1964.

[Van1] J. Vanderwerff, Frechet differentiable norms on spaces of countabledimension, Arch. Math. 58 (1992), 471–476.

[Van2] J. Vanderwerff, Smooth approximations in Banach spaces, Proc.Amer. Math. Soc. 115 (1992), 113–120.

[Van3] J. Vanderwerff, Second-order Gateaux differentiability and an isomor-phic characterization of Hilbert spaces, Quart. J. Math. Oxford 44(1993), 249–255.

[Van4] J. Vanderwerff, Extensions of Markushevich bases, Math. Z. 219(1995), 21–30.

[VWZ] J. Vanderwerff, J.H.M. Whitfield and V. Zizler, Markushevich basesand Corson compacta in duality, Canad. J. Math. 46 (1994), 200–211.

[Vas] L. Vasak, On a generalization of weakly compactly generated Banachspaces, Studia Math. 70 (1981), 11–19.

[Wer] D. Werner, A proof of the Markov-Kakutani fixed point theorem viathe Hahn-Banach theorem, Extracta Math. 8 (1993), 37–38.

461

Page 27: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

[WhZy] R.L. Wheeden and A. Zygmund, Measure and integral. An introduc-tion to real analysis, Marcel Dekker, 1977.

[WhZi] J.H.M. Whitfield and V. Zizler, Extremal structure of convex sets inspaces not containing c0, Math. Z. 197 (1988), 219–221.

[Wil] S. Willard, General topology, Addison-Wesley, 1968.

[Woj] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies inAdvanced Mathematics 25, 1991.

[Yos1] D. Yost, Asplund spaces for beginners, Acta Univ. Carolinae 34(1993), 159–177.

[Yos2] D. Yost, The Johnson-Lindenstrauss space, Extracta Math. 12 (1997),185–192.

[Zah] Z. Zahorski, Sur l’ensemble des points de non-derivabilite d’une fonc-tion continue, Bull. Soc. Math. France 74 (1946), 147–178.

[Zip] M. Zippin, The separable extention problem, Israel J. Math. 26 (1977),372–387.

[Ziz1] V. Zizler, Smooth extension of norms and complementability of sub-spaces, Arch. Math. 53 (1989), 585–589.

[Ziz2] V. Zizler, Nonseparable Banach spaces, in Handbook of Banachspaces, Editors W.B. Johnson and J. Lindenstrauss, to appear.

462

Page 28: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry

Index

annihilator yol and Yol, 40, 55, 58,93, 148, 149

Banach limit, 62basis

algebraic, 34, 191Auerbach, 139, 164bimonotone, 191block, 172boundedly complete, 166-168, 182,

192

constant, 163, 169, 182equivalent, 169-171Hamel (see basis: algebraic)Markushevich, 188-190, 382,

410-412 )~'Itshrinking, 188, 197, 369, 370weakly compact, 364:1>10)weakly LindelOf, 411

monotone, 163, 191, 192normalized, 163orthonormal, 18, 20, 222Schauder, 161, 163, 165, 303, 307seminormalized, 303shrinking, 166-168, 184, 192, 260summing, 165, 181uncondition al , 180, 181, 196, 197

bump. See function(Bx, 1\·11),2,14(Bx, w), 73, 75, 414, 415(Bx, w*), 71-73, 319, 365, 395,

409-412

cardinality card(A), 23, 403~.~-closure M , M ,M, 64compact

Corson, 409-412, 427, 428countable, 345, 399, 420Eberlein, 365, 367, 388, 390-393,

409, 417, 419, 420scattered, 398-401, 419, 420uniform Eberlein, 394, 395, 418,

419 \Ja.\d.(vio.l\i2.~

complement, 137, 138, 147-149algebraic, 137, 147orthogonal Fol, 17, 18, 138quasieomplement, 377

constantbasis, 163, 169unconditional basis, 182

conv(M), 2,22, 85, 92, 104convergence

in norm -+, 65pointwise, 66, 68, 86

Page 29: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry
Page 30: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry
Page 31: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry
Page 32: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry
Page 33: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry
Page 34: Functional Analysis And Infinite-Dimensional Geometrypersonales.upv.es/vmontesi/data/ficheros/Libros/Yellow1/... · 2009-12-08 · Functional Analysis And Infinite-Dimensional Geometry