43
Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Embed Size (px)

Citation preview

Page 1: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Functional Ito Calculus

and PDE for Path-Dependent Options

Bruno DupireBloomberg L.P.

PDE and Mathematical Finance

KTH, Stockholm, August 19, 2009

Page 2: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Outline1) Functional Ito Calculus

• Functional Ito formula• Functional Feynman-Kac• PDE for path dependent options

2) Volatility Hedge

• Local Volatility Model• Volatility expansion• Vega decomposition• Robust hedge with Vanillas• Examples

Page 3: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

1) Functional Ito Calculus

Page 4: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Why?

process. theof history,or

path,current theof functions it to extend We

processes. of functions with deals calculus Ito

prepayment MBS path rateinterest

reaction viralantigen toexposure

payoffdependent path history price

crop theofquality etemperatur

:patternscertain on depends

)(

eConsequencCause

link The .cumulative isy uncertaint ofimpact theoften,Most

ttf

t XfyX

Page 5: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Review of Ito Calculus

• 1D

• nD

• infiniteD

• Malliavin Calculus

• Functional Ito Calculus

current value

possible evolutions

Page 6: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Functionals of running paths

)( and )( is at of valueThe

)(,for ,: :functional

}t][0, functions RCLL bounded{

t][0, sections starting allon but T][0,path wholeon theonly not defined sFunctional

],0[

tXxsXtsX

XfXff

tttt

ttt

Ttt

t

0 T

12.87

6.32

6.34

Page 7: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Examples of Functionals

hit is last value First time-

average rolling ofMax -

variablesstate ofnumber Infinite

(3) rangeon Option -

(2)Asian -

(1)European -

: time)(excluding variablesstate ofnumber Finite

priceoption dependent path of caseimportant thecovers onelast The

valuefinal ofn expectatio lConditiona-

variationQuadratic-

drawdownCurrent -

averageCurrent -

Page 8: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Derivatives

t

XfXfXf

h

XfXfXf

tttstXsXtssXsX

htXtXtssXsX

fX

ttt

ttt

tht

htx

tttttt

thtt

ht

tt

Tttt

)()(lim)(

derivative Time

)()(lim)(

derivative Space

],[for )()( for )()(

)()( for )()(

,:,For

},t][0, functions RCLL bounded{

,

0

0

,,

],0[

Page 9: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Examples

00

)(2010

tt

ttx

t

t

ut

xf

xxf

QVduxxf

t

hf

x

hf

txhXf tt

t

x

then ),,()( If

Page 10: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Topology and Continuity

tsYXYXd

stYX

ststst

st

,),(

) assumecan (we ,in , allFor

:distance -

)()(),(

,:0,0

: if at continuous is : functionalA

:continuity -

tsst

s

t

XfYfYXd

Y

Xf

t s

X

Y

Page 11: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Functional Ito Formula

xdfdtfdxfdf

xdXfdtXfdxXfXfXf

T

tCxCf

Xx

xxtx

T

ttxx

T

tt

T

ttxT

t

2

1

notation, concise morein or,

)(2

1)()()()(

, 0 allfor then,,continuous- themselves

sderivative e with thes,in and in ,continuous- is :

t],[0,over path its denotes and martingale-semi continuous a is If

Theorem

0000

12

Page 12: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Fragment of proof

))()((

))()((

))()((

)()(

ff

ff

ff

ffdf

Page 13: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Functional Feynman-Kac Formula

dx t = a(X t ) dt + b(X t ) dwt

For g and r suitably integrable, g : ΛT →ℜ, r : Λ →ℜ we define f :Λ →ℜ by

f (Yt ) ≡ E[e− r(Z u )

t

T

∫ dug(ZT ) | Zt = Yt ]

where for u∈ [0, t],ZT (u) = Yt (u)

for u∈ [t,T],dzu = a(Zu) du + b(Zu) dwu

⎧ ⎨ ⎩

Then f satisfies

Δ t f (X t ) + a(X t )Δx f (X t ) − r(X t ) f (X t ) +b2(X t )

2Δxx f (X t ) = 0

(From functional Ito formula, using that e− r(Z u )

0

t

∫ duf (X t ) is a martingale)

Page 14: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Delta Hedge/Clark-Ocone

ttTtt

T

TT

ttxt

T

TT

ttxtt

dWXXgDEXbXXgEXg

dWXfXbXfXfXg

dWXfXbXdf

]|)([)(]|)([)(

:CalculusMalliavin from

formula Ocone-Clark the tocompared becan which

)()()()()(

:tionRepresenta Martingaleexplicit thehave weand

)()()(

Kac,-Feynman and Ito functional From

00

00

Page 15: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

P&L

St t

St

Break-even points

t

t

Option Value

St

CtCt t

S

Delta hedge

P&L of a delta hedged Vanilla

Page 16: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Functional PDE for Exotics

Recallthat

df (X t ) = Δx f (X t ) dx + Δ t f (X t ) dt +1

2b2Δxx f (X t ) dt

The portfolio PF of option f with a short position of Δx f stocksgives :

dPF(X t ) = Δ t f (X t ) dt +1

2b2Δxx f (X t ) dt

In the absence of arbitrage,

Δ t f (X t ) +1

2b2Δxx f (X t ) + r(X t )(Δx f (X t )x t − f (X t )) = 0

The ?/Θ trade - off for European options also holds for

path dependent options, even with an infinite number of state variables.

However, in general ? and Θ will be path dependent.

Page 17: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Classical PDE for Asian

term.convection bothering a is

02

10

2

1

,0

),,()(, Define ),( Assume

)()( :CallAsian of Payoff

2

222

2

2

0

0

I

lx

x

lb

I

lx

t

lfbf

x

lf

x

lfI

t

l

I

lxfxI

tIxlXfduxIdWtxbdx

KduxXg

xxt

xxxx

ttt

t

tttutttt

T

uT

Page 18: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Better Asian PDE

0))()(2(2

10

2

1

)()(2

)()(

0

),,()(,)(][ Define

2

22

2

2

222

2

22

2

2

2

00

J

htT

Jx

htT

x

hb

t

hfbf

J

htT

Jx

htT

x

hf

J

htT

x

hf

tTJ

t

hfJ

tJxhXfxtTduxduxEJ

xxt

xx

x

x

tt

tttt

t

u

T

utt

Page 19: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

2) Robust Volatility Hedge

Page 20: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Local Volatility Model• Simplest model to fit a full surface• Forward volatilities that can be locked

CqK

CKqr

K

CK

TK

T

C

dWtSdtqrS

dS

2

22

2

2

,

),()(

Page 21: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Summary of LVM

• Simplest model that fits vanillas

• In Europe, second most used model (after Black-Scholes) in Equity Derivatives

• Local volatilities: fwd vols that can be locked by a vanilla PF

• Stoch vol model calibrated

• If no jumps, deterministic implied vols => LVM

),(][ 22 tSSSE loctt

Page 22: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

S&P500 implied and local vols

Page 23: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

S&P 500 FitCumulative variance as a function of strike. One curve per maturity.Dotted line: Heston, Red line: Heston + residuals, bubbles: market

RMS in bpsBS: 305Heston: 47H+residuals: 7

Page 24: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Hedge within/outside LVM

• 1 Brownian driver => complete model

• Within the model, perfect replication by Delta hedge

• Hedge outside of (or against) the model: hedge against volatility perturbations

• Leads to a decomposition of Vega across strikes and maturities

Page 25: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Implied and Local Volatility Bumps

implied to

local volatility

Page 26: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

P&L from Delta hedging

T

txxtt

T

ttx

T

txxt

T

tt

T

ttxTT

ttt

txxttt

tT

Q

tT

ttt

dtYftyvvdyYfXf

dtYfvdtYfdyYfYfYfYg

xydWvdyy

XftxvXf

XXgEXffg

dWtxvdxqr

v

0 000

0000

00

0

0

)()),((2

1)()(

)(2

1)()()()()(

formula, Ito functional by the , with follows If

0)(),(2

1)( PDE, functionalBy

])([)(by define,For

.),(,0 Assume

0

Page 27: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Model Impact

T

ttxxtQv

g

T

txxttQ

gg

vT

Qg

T

txxtt

T

ttxTT

dtdxxxXftxvvEtxv

dtXftxvvEvv

vtxXYgEv

dtYftyvvdyYfXfYfYg

v

v

v

0 00

0 00

0

0 000

])()),([(),(2

1)(

])()),(([2

1)()(

,for density n transitio the),( and ])([)( with Hence,

)()),((2

1)()()()(

Recall

Page 28: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Comparing calibrated models

][],[

:alive""by ngconditioni ofimpact theevaluate toamountsIt

),(][ options, vanillasame on the calibrated are and If

],)),([(),(

),(2

1

],)()),([(),(),(2

1

])()),([(),(2

1)()(

option,Barrier out -knock aFor

])()),([(),(2

1)()(

Recall

00

0 02

2

0 0

0 00

0 00

xxvEalivexxvE

txvxxvEvv

dtdxalivexxtxvvEx

txftx

dtdxalivexxXftxvvEtxPtx

dtdxxxXftxvvEtxvv

dtdxxxXftxvvEtxvv

ttQ

ttQ

ttQ

T

ttQalivev

alive

T

ttxxtQ

alivev

T

ttxxtQv

gg

T

ttxxtQv

gg

vv

v

v

v

v

v

Page 29: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Volatility Expansion in LVM

])([),(2

1),( where

),(),()(

])([),(),(2

1)()(

),(),( : form theof LVM a is wherecase In the

])()),([(),(2

1)()(

general,In

00

00

00

000

00

0 00

xxXfEtxtxm

dtdxtxutxmv

dtdxxxXfEtxutxvuv

dWtxutxvdxuvv

dtdxxxXftxvvEtxvv

ttxx

Quv

T

g

T

ttxx

Quvgg

tttt

T

ttxxtQv

gg

uv

uv

v

Page 30: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Frechet Derivative in LVM

)derivative(Frechet ),(at variancelocal the to ofy sensitivit theis

])([),(2

1),(

where

),(),(

])([),(),(2

1

)()(lim,

:satisfies ofdirection in the derivativeFrechet The

])([),(),(2

)()(

,particularIn

00

00

00

0

0

00

0v

000

txg

xxXfEtxtxm

dtdxtxutxm

dtdxxxXfEtxutx

vuvu

u

dtdxxxXfEtxutxvuv

ttxx

Qv

T

T

ttxx

Qv

ggg

T

ttxx

Quvgg

v

v

uv

Page 31: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

One Touch Option - Price

Black-Scholes model S0=100, H=110, σ=0.25, T=0.25

Page 32: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

One Touch Option - Γ

Page 33: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

PtSmTO ..2

1),(:..

Page 34: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Up-Out Call - Price

Black-Scholes model S0=100, H=110, K=90, σ=0.25, T=0.25

Page 35: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Up-Out Call - Γ

Page 36: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

PtSmUOC ..2

1),(:

Page 37: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Black-Scholes/LVM comparison

price. LVM reach the toenables Scholes-Black theofinput y volatilitno case, In this

Page 38: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Vanilla hedging portfolio I

?),(function get the can we How

),(])([])([),(

t)(x, allfor ifonly and if moves volatility

small all hedges vanillasof ),( Portfolio

.at variancelocal theto

ofy sensitivit theis ])([),(2

1),( Recall

00

00

2

2

,

g

TK

txhxxXfExxXEx

txPF

dTdKCTKPF

(x,t)

xxXfEtxtxm

ttxx

Q

ttPFxx

Q

TK

ttxx

Qv

vv

v

Page 39: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Vanilla hedging portfolios II

bumps. volimplied y tosensitivit no hence

bumps vollocal y tosensitivit no has and 0]),()([,,

00 with 0)(then 2

1)( take weIf c)

.)()( Thus,

])([),( with ),(),(]),()([),(

),(),)((),( b)

)(),(condition boundary with 0)( , call aFor

2

1)( define we),,(For a)

2

2

20

2

2

2

2

2

2

2

,

2,

2

2,

2

,

20

2

0

00

PF-fxxtxx

PFXfEtx

kk(x,T)kLx

hv

t

hhL

hLkL

xxXfEtxhtxx

PFtxhxxtx

x

PFXfEtxk

txtxx

PFLdTdKCTKPF

xTxx

C

x

CLC

x

kv

t

kkLtxk

ttxx

Q

ttxx

Q

ttxx

Q

TK

KTKTK

TK

v

vv

Page 40: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Example : Asian option

.at variancelocal theto ofy sensitivit theis ])([),(2

1),(

1maturity20 volatility100S, )( : off-Pay v

g

00

0

0

00 (x,t) xxXfEtxtxm

TvKKdtxXgdWdx

ttxx

Qv

T

tttt

v

K

T

KT

Page 41: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Asian Option Superbuckets

KT

20

2

,

),(),(

2

1),(),(

),( with hedgeatility Robust vol

x

TKhTKv

t

TKhTK

dTdKCTKPF TK

K

T

Page 42: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Γ/VegaLink

Page 43: Functional Ito Calculus and PDE for Path-Dependent Options Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009

Conclusion

• Ito calculus can be extended to functionals of price paths

• Local volatilities are forward values that can be locked

• LVM crudely states these volatilities will be realised

• It is possible to hedge against this assumption

• It leads to a strike/maturity decomposition of the volatility risk of the full portfolio