18
Functional Renormalization Group Florian Theuss Cornell University Statistical Physics 2 November 7, 2017 Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 1 / 13

Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Functional Renormalization Group

Florian Theuss

Cornell UniversityStatistical Physics 2

November 7, 2017

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 1 / 13

Page 2: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Contents

1 IntroductionFunctional Methods and Notation

2 Flow Equation for the Effective ActionDerivation of the Flow EquationTruncation Schemes

3 O(1)-ModelExpansion Ansatz and Flow Equation for the Effective PotentialResults

4 Recent Applications

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 2 / 13

Page 3: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

IntroductionFunctional Methods and Notation

• Partition function (finite temperature): Z = Tre−βH =∮Dϕ e−S(ϕ).

I Expectation values: 〈(?)〉 = 1Z Tr (?) e−βH = 1

Z

∮Dϕ (?) e−S(ϕ).

• Generating functional (zero temperature): Z[J] =∫Dϕ e−S[ϕ]+

∫ddxϕ(x)J(x).

I Vacuum correlation functions: 〈ϕ(x1)...ϕ(xn)〉 = 1Z[0]

δnZ[J]δJ(x1)...δJ(xn)

∣∣∣J=0≡ Z(n)[0] .

Statistical Physics Quantum Field Theory

Partition Function: Z = Tr e−βH Generating Functional: Z[J] =∫Dϕ e−S[ϕ]+(J,ϕ)

Helmholtz Free Energy: F = − 1β lnZ Schwinger Functional: W[J] = lnZ[J]

Gibbs Free Energy: G = F+pV Effective Action: Γ[φ] = supJ

(∫Jφ−W[J]

)

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 3 / 13

Page 4: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

IntroductionFunctional Methods and Notation

• Partition function (finite temperature): Z = Tre−βH =∮Dϕ e−S(ϕ).

I Expectation values: 〈(?)〉 = 1Z Tr (?) e−βH = 1

Z

∮Dϕ (?) e−S(ϕ).

• Generating functional (zero temperature): Z[J] =∫Dϕ e−S[ϕ]+

∫ddxϕ(x)J(x).

I Vacuum correlation functions: 〈ϕ(x1)...ϕ(xn)〉 = 1Z[0]

δnZ[J]δJ(x1)...δJ(xn)

∣∣∣J=0≡ Z(n)[0] .

Statistical Physics Quantum Field Theory

Partition Function: Z = Tr e−βH Generating Functional: Z[J] =∫Dϕ e−S[ϕ]+(J,ϕ)

Helmholtz Free Energy: F = − 1β lnZ Schwinger Functional: W[J] = lnZ[J]

Gibbs Free Energy: G = F+pV Effective Action: Γ[φ] = supJ

(∫Jφ−W[J]

)

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 3 / 13

Page 5: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

IntroductionFunctional Methods and Notation

• Partition function (finite temperature): Z = Tre−βH =∮Dϕ e−S(ϕ).

I Expectation values: 〈(?)〉 = 1Z Tr (?) e−βH = 1

Z

∮Dϕ (?) e−S(ϕ).

• Generating functional (zero temperature): Z[J] =∫Dϕ e−S[ϕ]+

∫ddxϕ(x)J(x).

I Vacuum correlation functions: 〈ϕ(x1)...ϕ(xn)〉 = 1Z[0]

δnZ[J]δJ(x1)...δJ(xn)

∣∣∣J=0≡ Z(n)[0] .

Statistical Physics Quantum Field Theory

Partition Function: Z = Tr e−βH Generating Functional: Z[J] =∫Dϕ e−S[ϕ]+(J,ϕ)

Helmholtz Free Energy: F = − 1β lnZ Schwinger Functional: W[J] = lnZ[J]

Gibbs Free Energy: G = F+pV Effective Action: Γ[φ] = supJ

(∫Jφ−W[J]

)Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 3 / 13

Page 6: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

IntroductionFunctional Methods and Notation

Properties of the effective action:

Γ[φ] = supJ

(∫Jφ−W[J]

)

• If maximum exists: φ = 〈ϕ〉J .

• 1PI diagrams: Γ(n)[φ].

I Full propagator: G (x , z) =(Γ(2)[φ]

)−1(x , y).

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 4 / 13

Page 7: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Flow Equation for the Effective ActionDerivation of the Flow Equation

Idea:

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 5 / 13

Page 8: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Flow Equation for the Effective ActionDerivation of the Flow Equation

• Regulated Schwinger Functional:

eWk [J] ≡ Zk [J] = e−∆Sk [ δδJ

]Z[J] =

∫ΛDϕ e−S[ϕ]−∆Sk [ϕ]+

∫ddxJ(x)ϕ(x)

• Regulated effective Action:

Γk [φ] = supJ

(∫Jφ−Wk [J]

)−∆Sk [φ]

• Regulator Function:

∆Sk [ϕ] =1

2

∫ddq

(2π)dϕ(−q)Rk(q2)ϕ(q)

I Conditions for Rk(q2): limq2/k2→0

Rk(q2) > 0, limk2/q2→0

Rk(q2) = 0, limk→Λ→∞

Rk(q2)→∞

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 6 / 13

Page 9: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Flow Equation for the Effective ActionDerivation of the Flow Equation

• Regulated Schwinger Functional:

eWk [J] ≡ Zk [J] = e−∆Sk [ δδJ

]Z[J] =

∫ΛDϕ e−S[ϕ]−∆Sk [ϕ]+

∫ddxJ(x)ϕ(x)

• Regulated effective Action:

Γk [φ] = supJ

(∫Jφ−Wk [J]

)−∆Sk [φ]

• Regulator Function:

∆Sk [ϕ] =1

2

∫ddq

(2π)dϕ(−q)Rk(q2)ϕ(q)

I Conditions for Rk(q2): limq2/k2→0

Rk(q2) > 0, limk2/q2→0

Rk(q2) = 0, limk→Λ→∞

Rk(q2)→∞

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 6 / 13

Page 10: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Flow Equation for the Effective ActionDerivation of the Flow Equation

• Regulated Schwinger Functional:

eWk [J] ≡ Zk [J] = e−∆Sk [ δδJ

]Z[J] =

∫ΛDϕ e−S[ϕ]−∆Sk [ϕ]+

∫ddxJ(x)ϕ(x)

• Regulated effective Action:

Γk [φ] = supJ

(∫Jφ−Wk [J]

)−∆Sk [φ]

• Regulator Function:

∆Sk [ϕ] =1

2

∫ddq

(2π)dϕ(−q)Rk(q2)ϕ(q)

I Conditions for Rk(q2): limq2/k2→0

Rk(q2) > 0, limk2/q2→0

Rk(q2) = 0, limk→Λ→∞

Rk(q2)→∞

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 6 / 13

Page 11: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Flow Equation for the Effective ActionDerivation of the Flow Equation

Wetterich equation[Wetterich ’93, Phys. Lett., B301:90-94]

k∂kΓk [φ] =1

2Tr

k∂kRk

Γ(2)k [φ] + Rk

[Gies ’06, hep-ph/0611146]

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 7 / 13

Page 12: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Flow Equation for the Effective ActionTruncation Schemes

• Derivative expansion:

Γk [φ] =

∫ddx

Vk(φ) +

1

2Zk(ρ)∂µφ

a∂µφa +1

4Yk(ρ)∂µρ∂

µρ+O(∂4)

• Expansion in powers of the fields:

Γk [φ] =∞∑n=0

1

n!

∫ n∏j=0

ddxj [φ(xj)− φ0]

Γ(n)k (x1, ..., xn)

Challenge: Find optimized regulator [Litim 2000, hep-th/0005245].

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 8 / 13

Page 13: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

O(1)-ModelExpansion Ansatz and Flow Equation for the Effective Potential

Ansatz:• Local potential approximation of effective action:

Γk [φ] =

∫ddx

[Vk(φ) +

1

2∂µφ∂

µφ

]• Flat cutoff regulator:

Rk(p2) = (k2 − p2)Θ(k2 − p2)

k∂kRk(p2) = 2k2Θ(k2 − p2)

1 2 3 4 5 6p

5

10

15

20

25

Rk(p2)

k = 5k = 4k = 3

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 9 / 13

Page 14: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

O(1)-ModelExpansion Ansatz and Flow Equation for the Effective Potential

• First order derivative expansion of effective action ⇒ Γ[φ]∣∣∣φ=const.

= V (φ) VolRd

• Wetterich equation ⇒ V = 1VolRd

12Tr RG with G =

(Γ(2) + R

)−1

• Γ(2)[φ](p, q) =(V (2)(φ) + p2

)(2π)d δ(d)(p + q)

• O(1)-symmetric potential: V = V (ρ) with ρ = φ2

2

Flow equation for the effective potential

Vk(φ) = Ωd

(2π)dkd+2

d1

V ′k (ρ)+2ρV ′′

k (ρ)+k2

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 10 / 13

Page 15: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

O(N)-ModelsO(1)/Ising-Model - Results

-1.0 -0.5 0.0 0.5

0

1

2

3

4

5

λ1

λ2

M = 2

Flow from UV to IR.

• Effective potential: V (ρ) =∑M

i=0λii! ρ

i

• Dimensions: D = 3

disordered

ordered

0.2 0.4 0.6 0.8 1.0 1.2 1.4 ϕ

-0.5

0.5

1.0

1.5

2.0

V(ϕ)

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 11 / 13

Page 16: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

O(N)-ModelsO(1)/Ising-Model - Results

• Effective potential: V (ρ) =∑M

i=0λii! ρ

i

• Dimensions: D = 3

Order M RG eigenvalue −yt of the critical direction critical exponent ν = 1yt

2 -1.84256 0.5427223 -1.68572 0.5932184 -1.58551 0.630711

Expected value (7 loops, conformal mapping): [Guida, Zinn-Justin ’98, arXiv:cond-mat/9803240]

ν = 0.6304± 0.0013

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 12 / 13

Page 17: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Recent Applications

Turbulence:

• Kinetic energy spectrum:

Asymptotic safety in Quantum Gravity:

• Einstein-Hilbert Truncation: Γk = 116πGk

∫d4x√g [R + 2Λk ] + gauge fixing terms

• Dimensionless couplings:I Newton Coupling: gk = k2Gk

I Cosmological Constant: λk = k−2Λk

⇒ Non-Gaussian UV fixed point, attractive in g and λ![FRG Meeting, March 2017, Heidelberg. http://www.thphys.uni-heidelberg.de/~frg-meeting/]

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 13 / 13

Page 18: Functional Renormalization Group - Cornell University Physics …pages.physics.cornell.edu/.../653/HW/statmech_Theuss.pdf · 2017-11-16 · Functional Renormalization Group Florian

Recent Applications

Turbulence:

• Kinetic energy spectrum:

Asymptotic safety in Quantum Gravity:

• Einstein-Hilbert Truncation: Γk = 116πGk

∫d4x√g [R + 2Λk ] + gauge fixing terms

• Dimensionless couplings:I Newton Coupling: gk = k2Gk

I Cosmological Constant: λk = k−2Λk

⇒ Non-Gaussian UV fixed point, attractive in g and λ![FRG Meeting, March 2017, Heidelberg. http://www.thphys.uni-heidelberg.de/~frg-meeting/]

Florian Theuss - Cornell University Functional Renormalization Group November 7, 2017 13 / 13