48
Fundamentals of Vibration and Modal Analysis Measurement functions Excitation techniques Testing practice Measurement functions Excitation techniques Testing practice

Fundamentals of Vibration and Modal Analysis

  • Upload
    guru75

  • View
    324

  • Download
    9

Embed Size (px)

Citation preview

Page 1: Fundamentals of Vibration and Modal Analysis

Fundamentals of Vibration and Modal AnalysisMeasurement functions Excitation techniques Testing practiceMeasurement functions – Excitation techniques – Testing practice

Sales New Hires Training 2008Swen Vandenberk

Page 2: Fundamentals of Vibration and Modal Analysis

Lecture objectives

Know how measurements are

By completing this lecture, you will:

x(t)

f(t)

x(t)

f(t)

performed for Experimental Modal Analysis

Understand what an FRF and aground

m

ck

ground

m

ck

Understand what an FRF and a coherence is

Have a feeling for the practicalities of structural testing

Be able to talk about excitation techniquestec ques

2 copyright LMS International - 2008

Page 3: Fundamentals of Vibration and Modal Analysis

Modal Analysis – Understanding the Dynamic Properties of Structures

Seat Vibration

Wheel & TireSteering Wheel

Shake

Engine

Noise at Driver’s &

RoadRearview mirror

vibrationTurbomachinery

Passenger’s Ears

Gearbox and TransmissionRotor

Cockpit vibration & noise

Cabin comfort

Environmental

System TransferSystem Transfer ReceiverReceiverX =

Accessories

Structural Integritysources

SourceSource

3 copyright LMS International - 2008

TransferTransfer

Page 4: Fundamentals of Vibration and Modal Analysis

Systematic approach to noise & vibration testing The “source – transmitter - receiver” approach

Receiver!

Response:• noise• vibrations == =

XX X

TransmitterSystem characteristics:• structural• acoustic

Source

XX X

Operating loads:

acoustic

criticaldynamics

criticalloads

worst casescenario

p g• structural• acoustic

4 copyright LMS International - 2008

dynamicsloads scenario

Page 5: Fundamentals of Vibration and Modal Analysis

Structural Dynamics ModellingSDOF (Single degree of freedom) system

System TransferSystem Transfer ReceiverReceiverX =SourceSource

100 Frequency Response Function

e

xf H

( ) 1( ) x ω

2

10-1

Log-

Mag

nitu

de damping controlled region

stiffness controlled region

mass controlled region

2( ) 1( )( )

xHf m cj kω

ω = =ω − ω + ω+

0 2 4 6 8 10 12 14 16 18 2010

-2

Frequency Hz

-50

0mx(t)

f(t)

-200

-150

-100Phas

e

ground

ck

The simplest dynamic system

5 copyright LMS International - 2008

0 2 4 6 8 10 12 14 16 18 20200

Frequency Hz

Page 6: Fundamentals of Vibration and Modal Analysis

Structural Dynamics ModellingMDOF system

und

k1

f1(t)

undkn+1k2

f2(t) fn(t)

More complex dynamic system

HHFF XX

InputInput SystemSystem OutputOutput

grou m1

c1

k1m2 mn gr

ou2

c2 cn+1x1(t) x2(t) xn(t)

HHFF XX

Eigenfrequency = Peak in FRF

abstract

0.10

As many peaks as masses

g q yDamping ratio = Width of FRF peak / decay in IRFMode shape = ± Deformation at eigenfrequency

Modal parameters =

( )pqH jω

10.0e-6

Log

( g/N

)

180 00

0.91

lN)

eigenfrequency

( )pqH j∠ ω-180.00

180.00

Phas

0.00 6.00 s-1.07

Rea

l( g

/N

6 copyright LMS International - 2008

0.00 80.00 Hz

Freq. domain: Frequency Response Function (FRF) Time Domain: Impulse Response Function (IRF)

Page 7: Fundamentals of Vibration and Modal Analysis

Mode Shapes

Mode 1

2Mode 21

7 copyright LMS International - 2008

Page 8: Fundamentals of Vibration and Modal Analysis

Analytical Modal Analysis: only for simple cases

OK for

Distributed parameters Lumped parametersww

xx

024

4

=ω− wEIm

dxwd

But what about real-lifestructures?

We have to look for other approaches• Virtual prototype: Finite Element Modal Analysis• Physical prototype: Experimental Modal Analysis

See CAE technology lecture

See here!

8 copyright LMS International - 2008

• Physical prototype: Experimental Modal Analysis

Page 9: Fundamentals of Vibration and Modal Analysis

Engineering for improved Noise & Vibration performance Experimental Modal Analysis

Excitation techniquesDSPDSPFrequency Response Functions (FRFs)Curve-fitting / (modal) parameter estimationest at oValidation

Modal Parameters:Modal Parameters:FrequencyFrequencyDampingDampingp gp gMode shapesMode shapes

9 copyright LMS International - 2008

Page 10: Fundamentals of Vibration and Modal Analysis

Experimental Modal Analysis:Aircraft Test Setup Example

Responses

Ground Vibration Test

InputsInputs

F4

F3 Ground Vibration Test

(GVT) System

⎥⎥⎥⎤

⎢⎢⎢⎡

24232221

14131211

HHHHHHHHHHHH

pons

espo

nses

F2

F1 ⎥⎥

⎦⎢⎢

⎣ 44434241

34333231

HHHHHHHH

Res

pR

esp

Force Inputs

0 . 1 0

N)

1 row or column suffices to determine modal parametersReciprocity

0 . 0 0

Log

( (m/s

2 )/N

1 8 0 . 0 0

Phas

e

°

qppq HH =

10 copyright LMS International - 2008

0 . 0 0 8 0 . 0 0H z- 1 8 0 . 0 0

Page 11: Fundamentals of Vibration and Modal Analysis

Experimental Modal Analysis

Required knowledge for a successful modal test

Test Setup Purpose of the test • Knowledge of expected modes of the

system• Expected results • Transducers and excitation devices

Make measurements • Knowledge of digital signal processing, parameters such as leakage, windows,parameters such as leakage, windows, time and frequency relationships, FFT, excitation techniques

Identify Parameters • Knowledge of modal theory • Knowledge of modal parameter estimation

techniquestechniquesVerify/document results • Knowledge of modal theory

• Synthesis. MAC

11 copyright LMS International - 2008

Page 12: Fundamentals of Vibration and Modal Analysis

Experimental Modal Analysis vs.Finite Element Modal Analysis

Experimental Numerical

( )H ω , ,{ },i i i iQω ξ φ , ,M C K , ,{ },i i i iQω ξ φ

Requires prototypeVery fast (1-5 days)Very accurate for frequency

Requires FE modelMany days/weeksFast alternative evaluationVery accurate for frequency

More reliable for dampingLimited number of points

Fast alternative evaluationA lot of model uncertainties

(joints / damping / …)High number of points

12 copyright LMS International - 2008

Page 13: Fundamentals of Vibration and Modal Analysis

Experimental Modal Analysis

5. Use modal parametersTroubleshooting

1. Measure FRFsTroubleshooting

• Check frequencies• Qualitative descriptions of

mode shapesSimulation and predictionDesign optimisationDiagnostics and health monitoringFinite Element model

2. Estimate poles

Finite Element model verification/improvementHybrid system model building

3. Estimate shapes

4. Validate

13 copyright LMS International - 2008

Page 14: Fundamentals of Vibration and Modal Analysis

Experimental Modal Analysis Applications

Car body, fully equipped car, car interior cavitycavity, …Aircraft fuselage, full aircraft, interior cavity, …Components: engine block, suspension systems, brakes, antennasProcessing plants: piping systems, equipment mountingMechanical equipment: turbine blades, q p ,compressors, pumpsAudio & household: CD-drive, washing machine, loudspeakersInfrastructure: bridge off shore platformsInfrastructure: bridge, off-shore platforms

14 copyright LMS International - 2008

Page 15: Fundamentals of Vibration and Modal Analysis

Digital Signal Processing for Structural TestingToC

Basic DSPFourier transform

See DSP lecture

Fourier transformQuantisationAliasingLeakageea age

Frequency Response Function(FRF) estimatorsCoherence functions

InputInput SystemSystem OutputOutput

HHFF XX

15 copyright LMS International - 2008

Page 16: Fundamentals of Vibration and Modal Analysis

Frequency Response Function (FRF) Measurements –SISO

Frequency Response FunctionInputInput SystemSystem OutputOutput

( ) ( ) ( )X H Fω = ω ω

How to estimateIdeal world

HHFF XX( ) ( ) ( )X H Fω = ω ω

Real life: averaging required

“Naïve” averaging approaches

FXH =

∑ ==

N

i iXNH

1

1Random excitation: averaging of linear• Mechanical noise

• Non-linear behaviour• Electrical noise in the instrumentation

∑ =

=N

i iFN

H

1

1

∑N X1

averaging of linear spectra go to 0

∑ ==

N

ii

i

FX

NH

1

1May be 0 (very small) at some spectral lines

Use statistical noise modelling instead

16 copyright LMS International - 2008

Use statistical noise modelling instead

Page 17: Fundamentals of Vibration and Modal Analysis

FRF measurements

Time signals Linear spectra Power andcross spectra

FRF andcoherence

DFT averaging calc.

f(t) F(ω) GFF(ω)

Inpu

t

FF

XF

GGH =1

GXF(ω)

H(ω)

ross

XFG 2

hX(ω) G (ω)

XF( )

coh(ω)

Cr

FFXX

XF

GGcoh =

x(t)

X(ω) GXX(ω)

Out

put

17 copyright LMS International - 2008

O

Page 18: Fundamentals of Vibration and Modal Analysis

FRF estimators – graphical interpretation

X H1 X H2 X Hv

At single frequency ω: N measurements available

X 1 X 2 v

F F F

H1 estimateLeast squares

Output noise

H2 estimateLeast squares

Input noise

Hv estimateTotal least squares

Input noiseOutput noise

XF

N

N

i ii

GG

FF

FXNH ==∑

∑=

*

1*

1 1

1

FX

XX

N

N

i ii

GG

XF

XXNH ==∑

∑=

*

1*

2 1

1

18 copyright LMS International - 2008

FFi ii

GFFN ∑=1

FXi ii

GXFN ∑=1

Page 19: Fundamentals of Vibration and Modal Analysis

Coherence

Cross spectrum inequalityNon coherent noise

8

6

7

(ms-2/N)

0 800100 200 300 400 500 600 700

01.2

1

Hz

linear amplitude

FRF8

6

7

(ms-2/N)

0 800100 200 300 400 500 600 700

01.2

1

Hz

linear amplitude

FRFNon-coherent noise

FFXXFX GGG ≤2

2

3

4

5

ar amplitude

0 800100 200 300 400 500 600 700

01.2

1

Hz

linear amplitude

2

3

4

5

ar amplitude

0 800100 200 300 400 500 600 700

01.2

1

Hz

linear amplitude

Coherence

FX

GGG 2

2 =γ0 800100 200 300 400 500 600 7000

1

Hz

linea1.2

0 800100 200 300 400 500 600 7000

1

Hz

linea1.2

Smaller than 1 when

FFXXGG

10 2 ≤γ≤

0 800100 200 300 400 500 600 700

08

12

34

56

7

Hz

linear amplitude (ms-2/N)

1amplitude

0 800100 200 300 400 500 600 700

08

12

34

56

7

Hz

linear amplitude (ms-2/N)

1amplitude

Smaller than 1 when …Noise in the measurementsNonlinearitiesLeakage

0 800100 200 300 400 500 600 700

08

12

34

56

7

Hz

linear amplitude (ms-2/N)

0

linear a

Coherence

0 800100 200 300 400 500 600 700

08

12

34

56

7

Hz

linear amplitude (ms-2/N)

0

linear a

Coherence

19 copyright LMS International - 2008

g

0 800100 200 300 400 500 600 700

08

12

34

56

7

Hz

linear amplitude (ms-2/N)

0 800100 200 300 400 500 600 7000

Hz

0 800100 200 300 400 500 600 700

08

12

34

56

7

Hz

linear amplitude (ms-2/N)

0 800100 200 300 400 500 600 7000

Hz

Page 20: Fundamentals of Vibration and Modal Analysis

FRF + CoherenceTypical Examples

Lo g

100

1

10

24

2040

1.05 10.0

g/N

0.001

0.01

0.1

1

0 0000.0004

0.002

0.004

0.020.04

0.20.4

Leakage

Hz

0 2047.5

1000

200 400 600 800 1200

1400

1600

1800

1e-05

0.0001

3e-05

0.00024

1

0.9

Ampl

itude

/ dB

( (m

/s2)

/N)

Ampl

itude

/

0 3

0.4

0.5

0.6

0.7

0.8

Hz

0 2047.5

1000

200 400 600 800 1200

1400

1600

1800

0

0.1

0.2

0.3

0.00 45.00 Hz

0.00 -70.08.38

F coherence DRV:1:+XB FRF DRV:1:+X / FOR:1:+XB FRF DRV:1:+X / FOR:2:+X

20 copyright LMS International - 2008

Page 21: Fundamentals of Vibration and Modal Analysis

Coherence and FRF Variance

FRF Variance

Large coherence

2

222 1.

)1(2 γγ−

−=σ

NH

H

a ge co e e cecorresponds to a goodFRF estimationWhen the coherence is low take more averageslow, take more averages

90% confidence bounds on the estimated FRF magnitude and phase

21 copyright LMS International - 2008

p

Page 22: Fundamentals of Vibration and Modal Analysis

Aircraft In-flight Testing “Noisy” FRFs

In-flight excitation, 2 wing-tip vanes, 2 min sine sweep9 accelerometersNoisy data (additional unmeasurable turbulence excitation)Noisy data (additional unmeasurable turbulence excitation)

1.00 1.00

Coherences FRFs

Log

(m/s

2)/N

)

Ampl

itude

/

0.00

( (180.00

0 00

F Coherence w ing:vvd:+Z/MultipleF Coherence back:vde:+Y/Multiple

-180 00

180.00

Phas

22 copyright LMS International - 2008

Hz

0.00

Hz

180.00

Page 23: Fundamentals of Vibration and Modal Analysis

Vehicle FRFs

Body-in-white Fully-trimmed vehicle

Lowly-damped structure, sharp peaks

Highly-damped structure, rounded peaks

0.10

)/N)

98.1e-3

)/N)

100e-6

Log

( (m

/s2 )

180 00

98.1e-6

Log

( (m

/s2

FRF moto:9:+Z/karo:25:+Z

180 00

0.00 80.00 Hz-180.00

180.00

Phas

3.50 30.00 Hz-180.00

180.00

Phas

FRF moto:9:+Z/karo:25:+Z

23 copyright LMS International - 2008

Demo_car Porsche

Page 24: Fundamentals of Vibration and Modal Analysis

Radarsat Satellite

5 shaker excitation

1.00

Log

( (m

/s2)

/N)

100e-9180.00

10.00 64.00 Hz

-180.00

Phas

Low contribution of “red” input to response

24 copyright LMS International - 2008

Low contribution of red input to response

Page 25: Fundamentals of Vibration and Modal Analysis

Structural testing equipment

ExcitationShakers or hammerShakers or hammerForce cell

ResponseAccelerometerscce e o ete sLDV (laser)

25 copyright LMS International - 2008

Page 26: Fundamentals of Vibration and Modal Analysis

Boundary Conditions

Fixed boundary conditionsDifficult to realise

• Flexibility of fixtures

Free-free suspensionIn practice: almost free-free

• Soft spring elastic cord• Flexibility of fixtures• Added damping• Environmental noise

• Soft spring, elastic cord• Soft cushion

Check if your Check if your suspension is soft suspension is soft

enough !enough !

Rigid bod modeRigid bod mode freq enc < 10 % of firstfreq enc < 10 % of first fle ible modefle ible mode

26 copyright LMS International - 2008

Rigid body modeRigid body mode frequency < 10 % of firstfrequency < 10 % of first flexible modeflexible mode

Page 27: Fundamentals of Vibration and Modal Analysis

Boundary ConditionsPractical Examples

Fixed-free± Free-free (soft tires)

27 copyright LMS International - 2008

ATA Engineering, IMAC 05

Page 28: Fundamentals of Vibration and Modal Analysis

GVT of Embraer 170Influence of Tire Pressure

Tires not soft enough

28 copyright LMS International - 2008

Embraer, IMAC 05

Page 29: Fundamentals of Vibration and Modal Analysis

Boundary ConditionsPractical Examples

Pneumatic suspension

Courtesy Airbus France

Elastic cords Operational boundary conditionsElastic cords Operational boundary conditions

29 copyright LMS International - 2008

Page 30: Fundamentals of Vibration and Modal Analysis

FRF measurements Impact Testing

AdvantagesLimited equipmentEasy and fast

TimeTime FrequencyFrequency

put

puty

Low costExcellent for troubleshooting

Disadvantages

Inp

Inp

nse

nse

DisadvantagesPoor Signal to Noise ratioPoor for non-linear structuresDouble impactsADC underload / overload

Res

pon

Res

pon

ADC underload / overload

Typically: fixed response accelerations -roving impact location

FRFFRF

roving impact location

30 copyright LMS International - 2008

Page 31: Fundamentals of Vibration and Modal Analysis

Impact testingAbout Hammer Tips

Force spectrumSoft tipCoherence

FRF

Soft tip

Hard tip

Right tip

31 copyright LMS International - 2008

Page 32: Fundamentals of Vibration and Modal Analysis

FRF measurements Shaker Testing

Fast & reliable

Best ratio quality/time tt

TimeTime FrequencyFrequency

Better energy distribution over structure

Excellent for trouble shooting &

modification simulation

Inpu

tIn

put

ee

Typically fixed excitation point, multiple

response points - measured in batches

Only way to characterize non-linearities

Res

pons

eR

espo

nse

FRFFRF

32 copyright LMS International - 2008

Page 33: Fundamentals of Vibration and Modal Analysis

Shaker testingRequired instrumentation

An excitation device is attached to the structure using a rod (“stinger”)rod ( stinger )

Characteristics of the stinger to ensure that the only input is along the shaker excitation axis

• High axial stiffness• Low transverse and bending stiffness

Multiple shakers can be used Energy distribution over structure

• All responses are above the background noise• All responses are above the background noise• Exciting different parts of a real structure (e.g.

wing and tail plane of an aircraft)Exciting a 3D-structure in different directions (X,Y,Z)Multiple-reference measurements

• Mode multiplicity• Less risk to miss modes (“controllability”)

33 copyright LMS International - 2008

Page 34: Fundamentals of Vibration and Modal Analysis

Shaker Excitation signals

Random

Burst Random

Stepped SineNormal mode excitation

ChirpSwept Sine

34 copyright LMS International - 2008

p

Page 35: Fundamentals of Vibration and Modal Analysis

Random excitationAveraging

3 averages3.50

plitu

de/

2.70 litu

de/

10 averages0.00

Amp

0.00 1100.00 Hz

-180.00

180.00

Phas

0.00

Ampl/

0.00 1100.00 Hz

-180.00 180.00

Phas°

2.20

e

20 averages

0.00 Am

plitu

de/

-180.00 180.00

hase°

2.10

40 averages

0.00 1100.00 Hz

Ph

0.00

Ampl

itude

/

180 00se35 copyright LMS International - 2008

0.00 1100.00 Hz

-180.00 180.00

Phas°

Page 36: Fundamentals of Vibration and Modal Analysis

Random excitationWith Hanning window

Comparison of random with and without a Hanning window after 40 averages

CoherenceFRF2.80 1.00 1.00 1.00

FRF random with Hanning

FRF random without Hanning

Ampl

itude

/

Ampl

itude

Ampl

itude

/

Ampl

itude

FRF random with Hanning

0.00 1100.00 Hz

0.00 0.00

0.00 1100.00 Hz

0.00 0.00

FRF random with Hanning

FRF random without Hanning

The smearing of energy to neighboring spectral lines in the FRF’s is far less when a Hanning window is applied, which result in a far better approximation of the studied system and a vast improvement of the coherence

36 copyright LMS International - 2008

Page 37: Fundamentals of Vibration and Modal Analysis

Shaker testing(MIMO) burst excitation

Advantages: applicable for lightly and heavily damped systemssyste sLeakage? Only if the responses do not die out within the observation period (“block”)Disadvantage wrt random: less energy in structure, less good Signal to Noise ratioSignal to Noise ratio

37 copyright LMS International - 2008

Page 38: Fundamentals of Vibration and Modal Analysis

Shaker testingComparison random and burst random

Random with Hanning

B t R dBurst Random

FRF comparison

Conclusion:

Avoid Random on lightly

38 copyright LMS International - 2008

damped structures !

Page 39: Fundamentals of Vibration and Modal Analysis

Shaker testing(MIMO) Sine Shaker Signals

Stepped sine Normal modes

Sinusoidal excitationCovering entire frequency rangeBuild FRF line by lineAll h k t i l f

Excite the structure at resonance frequency with “tuned” input force combination (several shakers) such that only one mode in resonance

pp

All shaker energy at single frequencyHigh qualityBest signal to characterize non-linear properties

resonanceOldest methodVery accurateFeel the mode directlyB t ti iBut ... time consuming

Traditionally preferred method by aircraft manufacturers

39 copyright LMS International - 2008

Page 40: Fundamentals of Vibration and Modal Analysis

Shaker testingOverview Excitation Methods

Random Swept Sine Stepped Sine Normal Modes

t

AP

(F) [

N²]

AP

(F) [

N²]

AP

(F) [

N²]

AP

(F) [

N²]

t

ω [Hz] ω [Hz] ω [Hz] ω [Hz]ωresonance

f

40 copyright LMS International - 2008

Page 41: Fundamentals of Vibration and Modal Analysis

Shaker testingOverview Processes

Random Swept Sine Stepped Sine Normal Modes

t

AP

(F) [

N²]

AP

(F) [

N²]

AP

(F) [

N²]

AP

(F) [

N²]

t

ω [Hz] ω [Hz] ω [Hz] ω [Hz]ωresonance

f

Phase Seperation or Frequency Response Function (FRF) based methods

Phase Resonance /Mode Appropriation

Measure Modal Parameter Experimental Modal Measure / IdentifyMeasure FRF

Modal Parameter Estimator

Experimental Modal Model [ ω, ξ, ψ ]

Measure / Identify Mode [ ω, ξ, ψ ]

-19.83

2)/N

)

41 copyright LMS International - 2008

-89.83

dB( (

m/s

2

FRF DRV :1:+X / FOR:1:+FRF DRV :2:+X / FOR:2:+

Page 42: Fundamentals of Vibration and Modal Analysis

Data Verification

Excitation power spectraDriving point FRFsReciprocityReciprocityLinearityCoherences

Input 1 at right wing

Input 2 at the rear part of fuselage

100e+6

F AutoPow er FOR:1:+XF AutoPow er FOR:2:+X

Log

N2

10 0e 3

42 copyright LMS International - 2008

0.00 400.00 Hz

10.0e-3

Page 43: Fundamentals of Vibration and Modal Analysis

Driving Point FRFs

Selection and verification of excitation locationsAll modes present in driving point FRF ? Bad quality driving Bad quality driving All modes present in driving point FRF ?Alternating resonances and anti-resonancesPhases between 0-180°

q y gq y gpoint FRF = Bad point FRF = Bad

quality modal model !quality modal model !

0.07

Log

( g/N

)

33.6e-6

FRF DRV:1:+X/FOR:1:+XFRF DRV:2:+X/FOR:2:+X

180.00

Phas

43 copyright LMS International - 2008

0.00 100.00 Hz-180.00

Page 44: Fundamentals of Vibration and Modal Analysis

Reciprocal FRFs

Alignment stinger – force cell – accelerometer

1.00

FRF DRV:1:+X / FOR:2:+XFRF DRV:2:+X / FOR:1:+X

Log

( (m

/s2)

/N)

100e-6

0.00 100.00 Hz

-180.00

180.00

Phas

44 copyright LMS International - 2008

Page 45: Fundamentals of Vibration and Modal Analysis

Linearity of FRFs

3 different excitation levels FHXFHXα=α

=

1.00 0.10

Log

N2

Log

( g/N

)

F AutoPow er FOR:1:+XF AutoPow er FOR:1:+XF AutoPow er FOR:1:+X 10.0e-6

FRF DRV:1:+X/FOR:1:+XFRF DRV:1:+X/FOR:1:+X (1)FRF DRV:1:+X/FOR:1:+X (2)

180 00

0.00 100.00 Hz

1.00e-6

0.00 100.00 Hz

-180.00

180.00

Phas

45 copyright LMS International - 2008

Page 46: Fundamentals of Vibration and Modal Analysis

Coherences

Coherence differs from 1 in case of:Non Linearity 1 00Non-LinearityLeakageUnmeasured sourcesOther noise

1.00

Ot e o se

Rea

l/

F Coherence DRV:1:+XF Coherence DRV:2:+XF Coherence ENG:1:+YF Coherence FUSL:5:+X

0.00 100.00 Hz

0.00

46 copyright LMS International - 2008

Page 47: Fundamentals of Vibration and Modal Analysis

Course summary

Structural ExcitationBoundary conditions

testing in source –transfer –

Excitation techniques

transfer receiver model

DSP for Structural T ti FRF d

Introduction to Experimental

M d l Testing: FRFs and coherences

Modal Analysis

47 copyright LMS International - 2008

Page 48: Fundamentals of Vibration and Modal Analysis

Thank you

Sales New Hires Training 2008Swen Vandenberk