44
Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) Szeged Hungary Moscow, 24 th October 2014

G. Sansone

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: G. Sansone

Looking into the ultrafast dynamics of electrons

G. Sansone1,2,3

1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) Szeged Hungary

Moscow, 24th October 2014

Page 2: G. Sansone

Politecnico Milano, Italy

Founded in 1863

Page 3: G. Sansone

Why and how ultrafast? Quantum mechanics: observables

𝑟 𝑡 = 𝜓(𝑡) 𝑟 𝜓(𝑡) Dynamics: superposition of eigenstates

𝜓 𝑟, 𝑡 = 𝑐𝑛(𝑡)𝜓𝑛(𝑟)𝑛 where

𝐻𝜓𝑛(𝑟) = 𝐸𝑛𝜓𝑛(𝑟)

1s-2s coherent superposition in hydrogen

Page 4: G. Sansone

Why and how ultrafast? Quantum mechanics: observables

𝑟 𝑡 = 𝜓(𝑡) 𝑟 𝜓(𝑡) Dynamics: superposition of eigenstates

𝜓 𝑟, 𝑡 = 𝑐𝑛(𝑡)𝜓𝑛(𝑟)𝑛 where

𝐻𝜓𝑛(𝑟) = 𝐸𝑛𝜓𝑛(𝑟)

1s-2s coherent superposition in hydrogen

Attosecond

timescale

T 402 as

Page 5: G. Sansone

Ultrafast stopwatch

Eadweard James Muybridge

After Stanford’s request 1878

“whether all four feet of a horse were off the

ground at the same time during a gallop”

From milliseconds (10-3 s)

Ahmed H. Zewail

The Nobel prize in Chemistry 1999

"for his studies of the transition states of

chemical reactions using femtosecond

spectroscopy"

To femtoseconds (10-15 s)

Pump - probe

Page 6: G. Sansone

Attosecond domain: atoms in intense femtosecond laser fields

•Extreme nonlinear optics: processes dependent on the electric field

Above threshold ionization (ATI) Laser induced electron diffration (LIED)

Non-sequential double ionization (NSDI) High-order harmonic generation (HHG)

vs Laser field

I=1015 W/cm2

E=8.6 x 1010 V/m

E=5.14x1011 V/m

Atomic unit of electric field

Coulomb field

Page 7: G. Sansone

Atoms in intense laser fields

Energy

x

- IP

x

Page 8: G. Sansone

Atoms in intense laser fields

Energy

x

- IP

x

I=1014 -1015 W/cm2

1) Tunnel ionization

t=0

Page 9: G. Sansone

Atoms in intense laser fields

Energy

x

- IP

x

I=1014 -1015 W/cm2

2) Acceleration in

the continuum

t 600 as

Page 10: G. Sansone

Atoms in intense laser fields

Energy

x

- IP

x

I=1014 -1015 W/cm2

2) Acceleration in

the continuum

t 600 as

Page 11: G. Sansone

Atoms in intense laser fields

Energy

x

- IP

x

I=1014 -1015 W/cm2

3) Recollision

Diffraction

Nonsequential double ionization

t 2 fs

Page 12: G. Sansone

High-order harmonic (HHG) generation

Energy

x

- IP

x

I=1014 -1015 W/cm2 Eph = IP+Ek

3) Recollision

High-order harmonic generation

Page 13: G. Sansone

HHG: temporal and spectral domain

-15 -12 -9 -6 -3 0 3 6 9 12

Inte

nsit

y (

arb

.un

its)

Time (fs)

80 100 120 140 160

Helium

Typical spectrum

Inte

nsity (

arb

. u

nits)

Photon energy (eV)

Emission of the odd harmonics

of the fundamental frequency

Spectral domain Temporal domain

Train of attosecond pulses

How can we obtain an isolated attosecond pulse?

Page 14: G. Sansone

Ele

ctric

field

Ph

oto

n e

ne

rgy

1

2

Time

Ionization Recombination

Time

Short path

Time

Long path

a

c

b

Ele

ctric

field

Ele

ctric

field

x(t

)x(t

)Quantum trajectories: short and long paths

Phase-matching condition

(macroscopic effect)

select the short path contribution

Page 15: G. Sansone

How can we isolate a single attosecond pulse?

Page 16: G. Sansone

Few-cycle driving pulse for HHG

-20 -10 0 10 200

2

4

6

8

= 5 fs

SH

In

tensity (

a.u

.)

Delay (fs)

Guiding medium with a large diameter mode and a fast nonlinear medium with high damage threshold

Ultrabroad-band dispersion control by chirped-mirrors

M. Nisoli et al., Appl. Phys. Lett. 68, 2793 (1996)

M. Nisoli et al., Opt. Lett. 22, 522 (1997)

Hollow-fiber compression technique

Interfermetric AutoCorrelation of 5 fs pulses

Page 17: G. Sansone

Few-cycle pulses… but Time variation of the electric field of few-cycle pulses

depends on the carrier envelope phase (CEP)

)cos()()( ttAtE

=0 =/2 =

Nobel Prize in Physics (2005) "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique".

John L. Hall Theodor W. Hänsch

Page 18: G. Sansone

Isolated attosecond pulses: spectral filter

t t

)cos()( 00 tEtE )sin()( 00 tEtE h

arm

on

ic p

ho

ton

en

ergy

Requirements: sub-5-fs phase-stabilized driving pulses

(linear polarization)

Spectral selection of cutoff photons leads to generation

of one or two attosecond pulses

I. Christov et al., Phys. Rev. Lett. 78, 1251 (1997) A. Baltuska et al., Nature 421, 611 (2003)

Page 19: G. Sansone

Few-cycle linearly polarized pulses

140 150 160 170

140 150 160 170

Inte

nsity (

arb

. units)

Photon energy (eV)

Broad continuum only in the cut-off

HHG in Neon: < 5 fs; stabilized CEP

140 150 160 170

Inte

nsity (

arb

. units)

Photon energy (eV)

Page 20: G. Sansone

Isolated attosecond pulses: temporal filter

t t

)cos()( 00 tEtE )sin()( 00 tEtE

har

mo

nic

ph

oto

n e

ner

gy

Requirements: phase-stabilized driving pulses

Temporal gating

Page 21: G. Sansone

HHG polarisation dependence

Linear Polarization

Electron returns to the parent ion

HHG emission possible

Circular Polarization

Electron doesn’t return to the parent ion

HHG emission strongly reduced

Page 22: G. Sansone

Polarization gating

Time-dependent polarization

Generation of XUV continuum with PG requires:

few-cycle pulses

CEP stabilization

P. Corkum et al., Opt. Lett. 19, 1870 (1994) O. Tcherbakoff et al., Phys. Rev. A 68, 043804 (2003)

Page 23: G. Sansone

Polarization gating

e

Page 24: G. Sansone

Polarization gating

e

Page 25: G. Sansone

Polarization gating

Page 26: G. Sansone

Experimental results:Argon

25 30 35 40 45 50 55

Inte

nsity (

arb

. units)

Photon energy (eV)

pulse duration = 5 fs; delay = 6.2 fs; 0 < < 0+3

Periodic change of amplitude and shape for =

Continuous spectra from 30 eV to 55 eV for particular

CEP drives transition from double to single emission

I. Sola et al., Nature Phys. 2, 319 (2006).

Page 27: G. Sansone

40 50 60 70In

tensity (

arb

. units)

Photon energy (eV)

Strong periodic modulation of emission efficiency for =

Continuous spectra from 30 eV to 75 eV for all CEPs

pulse duration = 5 fs; delay = 6.2 fs; 0 < < 0+3

Experimental results:Neon

I. Sola et al., Nature Phys. 2, 319 (2006).

Page 28: G. Sansone

Temporal characterisation: FROG CRAB

Electron spectrometer

(TOF)

gas jet

IR pulse

X-ray pulse

Frequency-Resolved Optical Gating for Complete

Reconstruction of Attosecond Bursts

Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (R) (2005)

Page 29: G. Sansone

FROG CRAB

The IR laser field provides a phase gate for FROG

measurements on attosecond bursts

Frequency-Resolved Optical Gating for Complete

Reconstruction of Attosecond Bursts Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (R) 2005

Photoionization spectrum:

XUV field dipole transition element

(assumed constant) delay between IR and

XUV pulses

phase gate G(t)

v: final electron velocity A(t): IR vector potential

Page 30: G. Sansone

Characterization of isolated attosecond pulses: streak camera

http://www.mpg.de/495195/pressRelease200402241

Does it work in the attosecond domain?

1) Light pulse electron bunch 2) Streaking field (time-varying high voltage) 3) Phosphor screen and streaked image

Page 31: G. Sansone

Characterization of isolated attosecond pulses

Electron spectrometer

(VMI; TOF)

gas jet

IR pulse

XUV pulse

Page 32: G. Sansone

Attosecond streak camera

time

Kitzler et al. PRL 88,173903 (2002)

Itatani et al. PRL 88,173904 (2002)

final momentum

Page 33: G. Sansone

Attosecond streak camera

time

Kitzler et al. PRL 88,173903 (2002)

Itatani et al. PRL 88,173904 (2002)

final momentum

eA(t)

Page 34: G. Sansone

eA(t)

time

final momentum

Kitzler et al. PRL 88,173903 (2002)

Itatani et al. PRL 88,173904 (2002)

Attosecond streak camera

Page 35: G. Sansone

eA(t)

time

final momentum

Kitzler et al. PRL 88,173903 (2002)

Itatani et al. PRL 88,173904 (2002)

Attosecond streak camera

Page 36: G. Sansone

eA(t)

time

final momentum

Attosecond streak camera

Page 37: G. Sansone

Experimental setup

Al filter

l/4

plates

Ar cell

SiO2 plate

Translation stage

Ar jet

Toroidal mirror

Page 38: G. Sansone

Temporal characterisation 100-nm Aluminum filter

Positive chirp

Retrieved CRAB trace

Page 39: G. Sansone

Intensity profile and phase

-600 -400 -200 0 200 400 6000.0

0.2

0.4

0.6

0.8

1.0

-10

0

10

20

= 280 as

Phase (

rad)

Inte

nsity (

a.u

.)

Time (as)

2.5 optical cycles

Positive chirp (atto chirp)

Page 40: G. Sansone

Dispersion compensation Use of Aluminum foils

Retrieved CRAB trace

300-nm Aluminum filter

G. Sansone et al. Science 314, 443 (2006).

Page 41: G. Sansone

Intensity profile and phase

-300 -150 0 150 3000.0

0.2

0.4

0.6

0.8

1.0

-5

0

5

10

Inte

nsity (

a.u

.)

Time (as)

= 130 as

Phase (

rad)

Good dispersion compensation

Near-single cycle pulse

G. Sansone et al. Science 314, 443 (2006).

Page 42: G. Sansone

Stability of as electric field :CEP variation

-600 -400 -200 0 200 400 600-1.0

-0.5

0.0

0.5

1.0

Ele

ctr

ic fie

ld (

a.u

.)

Time (as)

CEP = 85°

-600 -400 -200 0 200 400 600-1.0

-0.5

0.0

0.5

1.0

Ele

ctr

ic fie

ld (

a.u

.)

Time (as)

CEP = 85°

CEP = 95°

Negligible influence in the quite broad CEP range

giving rise to isolated pulses

Nonadiabatic saddle-point simulations

Page 43: G. Sansone

“MEDEA” Molecular Electron Dynamics investigated by IntensE

Fields and Attosecond Pulses 15 ESRs position for working in the field of electronic/nuclear molecular dynamics

excited by attosecond and XUV FELs pulses

11 research institutions 6 companies 1 museum 1 outreach institute 1 FELs institution

MARIE SKŁODOWSKA-CURIE ACTION: INNOVATIVE TRAINING NETWORKS (ITN)

Page 44: G. Sansone