Gaussian Solvent

Embed Size (px)

Citation preview

  • Introduction toIntroduction toGaussianGaussian 03 Package03 Package

    http://ww.gaussian.com

  • Gaussian Input file: Section layout

  • Example of CH2O with HF/STO-3G: Input file

  • More About Gaussian Input file

  • An array of ab initio methods are available

  • Gaussian job Route: a sequence of links

    Output file

  • More

  • PCM in Gaussian 03PCM in Gaussian 03

  • Gcav + Gelec + Gdis-rep

    Cavitationfree energy

    Electrostaticfree energy

    Disp-rep free energy

    Energy and cavityEnergy and cavity

    Electrostatic term: solvent-excluded surface (SES) with scaled radii

    Cavitation term: van der Waals surface (VDW) with unscaled radii

    Disp-rep terms: solvent-accessible surface (SAS) with scaled radii.

  • )(4 2 i

    cavspheres

    i i

    icav RGR

    AG =Exposed surface of sphere i

    Single sphere contribution

    ( )

    solvent soluteatom atom tesserae

    dis rep dis reps s i ms mi i

    s m i

    G N a A r n = G G G(6)

    6( ) 3dis msms ms ms

    ms

    dA r rr

    = G G(12)

    12( ) 9rep msms ms ms

    ms

    dA r rr

    = G G

    Cavitation term: van der Waals surface (VDW) with unscaled radii

    Disp-rep terms: solvent-accessible surface (SAS) with radii scaled to account forthe solvent. A different cavity has to be built for each different solvent atom (s)

    Non-Electrostatic terms

  • Connolly: formal definition GePol: computational definition

    Reentrant (concave) surface Convex surface

    Spherescentered on solute atoms

    Electrostatic interactions:Solvent-excluded surface (SES)

    Electrostatic interactions:Solvent-excluded surface (SES)

    Probe sphererepresenting the

    solvent

    Added spherenot centered on

    atoms

  • Electrostatic interactions:Solvent-excluded surface (SES)

    Electrostatic interactions:Solvent-excluded surface (SES)

    Which Radii for the spheres centered on the atoms?

    van der Waals radius

    atomic bond or lone pair charge centers of the solvent molecules are normally located a bit further from the solute atoms

    vdWRR f =Atom

    Scaling factor :

    f can be optimized; often for small-medium size solvents: f = 1.2

    fRvdW

    1.21.21.21.0-1.21.551.521.71.2

    NitrogenOxygenCarbonHydrogenFor example

  • Electrostatic interactions:The boundary element method

    Electrostatic interactions:The boundary element method

    si

    1. Partition of the cavity surface into N finite elements (tesserae) (Boundary Element Method, BEM)

    2. Discretization of the apparent surface charge into N point-like charges q

    ( )is G constant on eachelement of area ai ( )i i iq a s=G

  • A sphere: the mesh or tessellationA sphere: the mesh or tessellation

    Polyhedron withn number of

    faces

    Projectionon a sphere: n triangular

    sphericalelements(tesserae)

    Refinement of the mesh

    A polyhedron with a larger number of faces

  • A sphere intersects a tessera placed on another sphere

    The part of the tesserainside the sphere is

    eliminated

    The area ai of all the tesserae(original or cut) can be calculated

    analytically

    Cut tessera

    A more general cavity: the mesh or tessellation

    A more general cavity: the mesh or tessellation

  • Solvent=itemIf unspecified, the solvent defaults to water. Item is a solvent name chosen from the list:Water or H2O, Acetonitrile or CH3CN, DiMethylSulfoxide or DMSO, Methanol or CH3OH, Ethanol or CH3CH2OH, Isoquinoline, Quinoline, Chloroform or CHCl3, Ether or DiEthylEther or CH3CH2OCH2CH3, DiChloroMethane or MethyleneChloride or CH2Cl2, DiChloroEthane or CH2ClCH2Cl, CarbonTetrachloride or CCl4, Benzene or C6H6, Toluene or C6H5CH3, ChloroBenzene or C6H5Cl, NitroMethane or CH3NO2, Heptane or C7H16, CycloHexane or C6H12, Aniline or C5H5NH2, Acetone or CH3COCH3, TetraHydroFuran or THF, DiMethylSulfoxide or DMSO or CH3SOCH3, Argon or Ar, Krypton or Kr, Xenon or Xe

    #p scrf=(iefpcm,solvent=item) hf/3-21G

    title

    0 1solute geom

    Gaussian Input for PCMGaussian Input for PCM

  • #p scrf=(iefpcm,solvent=item,read) hf/3-21G

    title

    0 1solute geom

    PCM keywords

    Gaussian Input for PCMGaussian Input for PCM

    PCM keywords:

    norep, nodis, nocav: to skip nonelectrostatic terms

    scfvac: to do a gas-phase calculation first

    eps=XX, epsinf=YY, Rsolv=ZZ, : to change solvent parameters

    NOADDSPH, Radii=XX, tsare=YY, nsfe=NN, : to change cavity and meshing

    ..

  • Default (UA0): Spheres centered only on heavy atoms (effective radii)

    CavitiesCavities

    Rmin=0. ofac=0.8

    simplified scheme for the added spheres: computationally more

    efficient

    Radii=bondi : spheres centered on each atom including the hydrogens

    Simplification of the topology

    Further simplification

    of the topology

    Green spheres are centered on carbons, red spheres on oxygens, white spheres on hydrogens and

    added spheres are in black

    OAceto-phenone

  • ------------------------------------------------------------------------------United Atom Topological Model (UA0 parameters set).Nord Group Hybr Charge Alpha Radius Bonded to

    1 C * 0.00 1.00 1.925 C2 [s] O3 [d] C4 [s]2 CH3 * 0.00 1.00 2.525 C1 [s]3 O * 0.00 1.00 1.750 C1 [d]4 C * 0.00 1.00 1.925 C1 [s] C5 [s] C9 [s]5 CH * 0.00 1.00 2.125 C4 [s] C6 [s]6 CH * 0.00 1.00 2.125 C5 [s] C7 [s]7 CH * 0.00 1.00 2.125 C6 [s] C8 [s]8 CH * 0.00 1.00 2.125 C7 [s] C9 [s]9 CH * 0.00 1.00 2.125 C4 [s] C8 [s]

    ------------------------------------------------------------------------------Polarizable Continuum Model (PCM)=================================Model : PCM.Atomic radii : UA0 (Simple United Atom Topological Model).Polarization charges : Total charges.Charge compensation : None.Solution method : Matrix inversion.Cavity : GePol (RMin=0.500 OFac=0.800).

    Default sphere list used, NSphG= 9.Tesserae with average area of 0.200 Ang**2.

    Solvent : Cyclohexane, Eps = 2.023000Eps(inf)= 2.028000RSolv = 2.815000 Ang.

    ------------------------------------------------------------------------------GePol: Number of tesserae being generated = 1185GePol: Average area of tesserae = 0.15 Ang**2GePol: Minimum area of tessera = 0.12D-02 Ang**2GePol: Maximum area of tessera = 0.30586 Ang**2GePol: Number of small tesserae = 16GePol: Fraction of small tesserae (

  • Spheres centered only on heavy atoms.

    Computationally efficient but it loses accuracy in describing the interaction of acidic hydrogens with solvent

    When the default (UA0) cavity is not sufficient?

    Default: UA0

    When hydrogens play a role

    OH

    OH

    OH

    O

    HO + rmin=0.5 ofac=0.8

    Gallic acid

  • When the default (UA0) cavity is not sufficient?

    When hydrogens play a role

    OH

    OH

    OH

    O

    HO

    Mixed

    Spheres centered on the heavy atoms and on acidic hydrogens

    More accurate in the description of solute-solvent interactions

    Gallic acid

  • Gallic acid

    #p scrf=(iefpcm,read) ....

    Gallic acid

    0 1C -1.70224259 0.12750348 0.11298551O -2.28678088 1.19484792 -0.04380417C -0.20894647 0.05080826 0.00724215C 0.50951011 1.22655781 -0.27366334C 1.89851189 1.19842744 -0.38034127C 2.59066606 -0.00676889 -0.20769622C 1.88685577 -1.18183291 0.07185998C 0.49446587 -1.15391970 0.17894851H -0.04009200 2.15431340 -0.40529346H -0.03600514 -2.07642759 0.39663425O -2.44243558 -1.06194043 0.39975636H -3.37923874 -0.85540077 0.43637888O 2.58890857 -2.41498234 0.24895983H 3.53135335 -2.26504814 0.14447268O 4.01617040 -0.03602505 -0.31715599H 4.34088853 0.84642460 -0.51065213O 2.61592210 2.40192899 -0.66635985H 1.99714443 3.13057680 -0.75460133

    rmin=0.5 ofac=0.8 nsfe=16

    1 1.925 2 1.750 3 1.925 4 2.125 5 1.925 6 1.925 7 1.925 8 2.125 11 1.520 1.212 1.000 1.213 1.520 1.214 1.000 1.215 1.520 1.216 1.000 1.217 1.520 1.218 1.000 1.2

    O

    O

    O

    O

    OH

    H

    H

    H

    From UA0

    vdWRR f =

  • 0 RH H V E = + =

    0

    0

    1 12 2

    12

    el R R R

    R

    G E V H V V

    H V

    = = +

    = +

    To get the free energy we have to subtract the work spent in polarizing the solvent

    By solving the equation we get

    E H= The internal energy of the solvated system

    0el elG G G = Electrostatic solvation free energy:

    Electrostatic interactionsGaussian OutputGaussian Output

  • --------------------------------------------------------------------

    Variational PCM results

    =======================

    (a.u.) = -98.568013

    (a.u.) = -98.573228

    Total free energy in solution:

    with all non electrostatic terms (a.u.) = -98.569083

    --------------------------------------------------------------------

    (Polarized solute)-Solvent (kcal/mol) = -3.27

    --------------------------------------------------------------------

    Cavitation energy (kcal/mol) = 5.34

    Dispersion energy (kcal/mol) = -3.08

    Repulsion energy (kcal/mol) = 0.34

    Total non electrostatic (kcal/mol) = 2.60

    --------------------------------------------------------------------

    OutputOutput

    12

    RV

    0 12

    el RG H V= +

    Nonelectrostaticterms

    E H=

  • By doing first a gas-phase calculation: keyword = scfvac

    Variational PCM results======================= (a.u.) = -509.799632 (a.u.) = -509.821720 (a.u.) = -509.823898 (a.u.) = -509.797139 (a.u.) = -509.823917

    (Unpolarized solute)-Solvent (kcal/mol) = -13.86

    (Polarized solute)-Solvent (kcal/mol) = -16.80

    Solute polarization (kcal/mol) = 1.56

    Total electrostatic (kcal/mol) = -15.24

    0 0 0 0H H

    12

    RV

    0 012

    RV

    0 0 0el elG G H =