23
1 GEO Field Trip Columbia River Gorge and Mt. St. Helens Name: ____________________________________________ Date: ________________ Stop 1: Latourell Falls http://en.wikipedia.org/wiki/Latourell_Falls Take the lower trail to the Latourell Falls. Make a drawing of the bedrock outcrop that the falls are flowing over. Focus mostly on the rock and the water, don’t get too distracted by the vegetation. After you make your sketch, go up to the rock and see if you can tell what kind of rock it is. Draw your sketch here: Think about the different parts of a flood basalt (we reviewed these in class and saw some of them at Elephant Rock). Label these different parts of the flood basalt flow on your drawing above. Stop 2: Mt. St. Helens Visitor Center Watch the documentary and take a look at the display. What was the activity of the volcano in the preceding few months before the May 18, 1980 eruption?

GEO Trip Columbia and Mt. St. Helens - science.earthjay.com › instruction › chemeketa › ... · ST 508 ST 502 ST 121 ST 500 ST 14 ST 14 ST5 ST 503 ST 706 ST 505 ST 123 ST7 ST

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

1

GEO Field Trip Columbia River Gorge and Mt. St. Helens  

Name: ____________________________________________ Date: ________________ 

Stop 1: Latourell Falls http://en.wikipedia.org/wiki/Latourell_Falls 

Take the lower trail to the Latourell Falls. Make a drawing of the bedrock outcrop that the falls are flowing over. Focus mostly on the rock and the water, don’t get too distracted by the vegetation. After you make your sketch, go up to the rock and see if you can tell what kind of rock it is.  

Draw your sketch here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Think about the different parts of a flood basalt (we reviewed these in class and saw some of them at Elephant Rock). Label these different parts of the flood basalt flow on your drawing above. 

Stop 2: Mt. St. Helens Visitor Center 

Watch the documentary and take a look at the display.  

What was the activity of the volcano in the preceding few months before the May 18, 1980 eruption? 

 

 

 

 

2

§̈¦205§̈¦84

§̈¦84

§̈¦84

§̈¦5

§̈¦205

§̈¦5

§̈¦5

§̈¦5

ST508

ST502

ST121

ST500

ST14

ST14

ST5

ST503

ST706

ST505

ST123ST7

ST141

ST142

ST507

ST504

ST504

ST12

£¤12

£¤12£¤12

Tucke r Rd.

Spencer R d.

921

925

954

925

954

930

999923

990

988

924

976925

923

923

942

952

947

985 984

8440

2160

956

5603

2329

SilverLake

AlderLake

SpiritLake

YaleLake

Lake Merwin

MayfieldLake

RiffeLake

SilverLake

SwiftReservoir

PackwoodLake

WalputLake

ColdwaterLake

MineralLake

25 miles fromCentralia toOlympia

71 miles from Elbe to Seattle

52 milesfromWhite Passto Yakima

HoodRiver

Portland

Bonneville Dam

Bridge of the Gods Cascade Locks

Multnomah Falls

Centralia

Chehalis

Camas

Carson

Toledo

WhiteSalmon

Woodland

MountAdams12,276'

Amboy

Ashford

Cougar

Elbe

Elk Pass4,075'

Elk Rock3,760'

LowerFalls

Morton

Mossyrock

Packwood

Randle

Salkum

SilverStar4,390'

TroutLake

Yacolt

WindyRidge4,170'

Pine CreekInformation Station

(Summers Only)

MountAdamsRangerStation

MoultonFalls Co. Park

MSHNVMHeadquarters

LavaCanyon

Battle Ground

Vancouver

Paradise !]!]

!]

Cowlitz ValleyRanger Station

!]

WhitePass4,500'

Toutle

!\

Clearwater3,200'!\

!]

!\McClellan

!@

!]

!]

!@

!]

Mount Rainier14,410'

!]

!]

!]

Riffe LakeOverlook

!\

Kalama

Longview

Kelso

Castle Rock

Exit 32

Mount St.Helens8,328'

(2009)

!]

Silver LakeVisitor Center(Washington State Parks)

!]

!]

!@Gifford PinchotNF Headquarters

Mount RainierNational Park

Jackson Hw

y.

Curley Cr. Rd

ClimbersBivouac

Ape Cave

ClimbersRegister

!]!]

Stevenson

Co

wl i t z

Ri v

er

N i s q u a l l y R .

C o w l i t z R i v e r

C o l u m b i aR i v e

r

K

a l a m a R i v e r

G r e e n R i v e r

N o r t h F o r k

To

u

t l e R i v e rS o u t h F o r k T o u t l e R i v e r

L e w i s R i v e r

L ew

isR

i ve

r

W

i nd

R

i v e

r

W a s h ou

ga

lR

i ve

r C o l u m b i a R i v e r

W

h

i te

Sa

lmo

nR

i ve

r

Johnston RidgeObservatory

4,314'

Sunset Falls!\

The Science and Learning Center at Coldwater

Exit 11

Exit 21

Exit 39

Exit 49

Exit 63

Exit 68

Exit 71

Exit 79

Exit 81

Exit 31

Exit 40

Mount St. HelensNational Volcanic Monument

Columbia River GorgeNational Scenic Area

IndianHeaven

Tatoosh

MountAdams

GoatRocks

William O.Douglas

TrapperCreek

GlacierView

0 10 205mi

0 10 20 305km

WashingtonState

For more information, visit our websites at:

http://www.fs.usda.gov/giffordpinchot

or call (360) 891-5000

Gifford Pinchot National Forest Vicinity

Gifford Pinchot NFAdmin. BoundaryMount St, Helens NVMWilderness AreaColumbia River Gorge NSAPaved RoadGravel RoadRecreation Site

Landmarks" Locale# Summit! City, Town, Community

!Ä Airport

!] Information

TransportationInterstate Hwy.US, State or County Hwy.Other Paved Road

"/ Milepost Marker

HydrographyLakes and River AreasRivers

http://www.fs.usda.gov/mountsthelens

USDA Forest Service is an equalopportunity provider and employeer.

µ

For Road and Recreation Conditions Report, go to this link:http://www.fs.usda.gov/recmain/giffordpinchot/recreation#cond

Printed June, 2012

This map is intended for general reference and is approximate in

general proportions.

Elevations are in Feet

1Latourell

Falls

2 3

3

#*

#*

#*

#*

#*

#*

!!

!!

!!

!!

!!

!!

!!!!

!! !!

!!

!!!!

!!!!!!

!!

!!

!!

!!

!!

!!

!!

!!

!!!!

!!!! !! !!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!!!

!!

Green RiverHorse Camp

WakepishTrailer Drop

Castle LakeViewpoint

Hummocks

SouthColdwater

Elk Pass4075'

LoowitViewpoint

Donnybrook

ClearwaterViewpoint

Lower SmithCreek

June LakeMuddy River

Big CreekFalls Curly Creek Falls

Eagle Cliff

Elk RockViewpoint

3760'

Iron CreekFalls

McClellanViewpoint

Merrill Lake

Pine CreekInformation Station

Ryan Lake

SwiftYale Park Cougar Camp

Beaver Bay

F

F

Blast Edge

!F

!5!_

!F

!F

!F

!F

!F

!5

!F

!9!_!5!²

!_!5

!F!_!G

!]

!9

Red RockPass!F

!F ApeCanyon

Lahar Viewpoint

!f!_

Woods CreekWatchable Wildlife

Bear MeadowNorway

Pass

Miner's Car

Meta Lake

Independence PassHarmony

Smith CreekWindy Ridge

4170'

Lava Canyon

Lower FallsRecreation

AreaClimber's

Bivouac

3750'

Marble MountainSno-ParkCougar

Sno-Park

Ape Cave

2077'

Trail of TwoForests

Cascade Peaks

!F!_!²

5

!5!_!F

!_!F!f

!f!Ö!b

!F!_!²

!f!_!]!F

!F

!_!F!f !_

!_

!F!_!b!f!9

!F!f!_ !b!_!F

!_!f!]

!f!b!5!Ö!_

Blue Lake!F!Ë

!_

!F!Ë

Coldwater LakeRecreation Area

Johnston RidgeObservatory

4314'

!f!b!]!¬

!5!b!F!_!¬

The Science andLearning Center

at Coldwater

Cl e

ar

wa

terC

r ee

k

ColdwaterPeak

VansonPeak

MarbleMountain

MountSt. Helens

8,363'

SpencerButte

Mt. Margaret

925

926

981

99039

98322

925

976

999

925

990

993

981

983

92612

983

Single LaneWith Turnouts

Single LaneWith Turnouts

TORANDLE£¤12

993

Q830

98123

930

Curley Creek Rd.

TO TROUTLAKE

TO CARSONHWY 14

!

925

ST503TO WOODLAND§̈¦5

SwoffordPond

DeadmansLake

MerrillLake

RiffeLake

Saint HelensLake

ElkLake

LakeMerwin

LakeScanewa

Castle Lake

YaleLake

Swift Reservoir

Spiri

t Lak

e

Coldwater Lake

Co

wl i t z

R i v e r

N o r t hF o r k T o u t l e R i v e r

S o u t h F o r kT o u t l e R i v e r

Mu d d

yR

iv

er

Pi n

eC

r e ek

K a l am

aR i v

er

L e wi s

Ri v

er

G r e e n R i v e r

225

237

31

216G

220

240

216F

217

211C

240

211

216A

218

229

216B

1H

1

216E

184

221

1E

231

230A

234

216

216D

24

213

227

30

213A

207

238

230

205

227A

224

216C

238

213

217

218

213

1

220

1

1

1

11

1

211

230

211

227

216

216

30

28A

237

238

216

216

Stay On TrailsNo Bicycles, Pets or Stock

Day Use Only

Climbing PermitsRequired

Mt. MargaretBackcountry

(camping permit required)

!f!¬!9!³!_!́!̧

COUGAR

Climber's Register !S

!9

!9!5!_

Iron Creek!F!9!b!5

!9!F

KalamaHorse Camp!Ë

2

3

1

3

0 1 2 3 40.5Miles

0 4 8 122Kilometers

µ

Know the Rules

Restricted Area #1Closed to ALL public entry.

Restricted Area #2Climbing permit required above 4,800 feet.

!

!

Restricted Area #3Day use ONLY.!

!

!

!

Disturbing or removing natural features is prohibitedin all areas.

!

Off trail travel is prohibited.

Pets, bicycles and horses are prohibited. (Bikes OKon 230A to 230, east to 1, north and east to NorwayPass Trailhead only.)

Camping and fires are prohibited.

!b

!9

!f

!] InformationPasses Sold

Barrier Free

Campground

!F Trail Access

!¬ Telephone

!5 Picnic Area

!Ö Interpretive Trail

!_ Restrooms

!² Water

!́ Food

!̧ Fuel

!!< Gift Shop

General Store!³

!Ë Horse Area !¬ Emergency Call Box

Mount St. HelensNational Volcanic Monument

Giffore Pinchot NFAdmin BoundaryMount St. Helens NVMRestricted Area

!! No Fees Required!! Recreation Day Pass Required!! Monument Pass Required!! Campground with Fee

TransportationPaved RoadsGravel RoadsDirt RoadsTrails

HydrographyMajor RiversMajor Waterbodies

Recreation This map is intended for general reference and is approximate in

general proportions.

Prinited June 2012

For Road and Recreation Conditions Report, go to this link:

Elevations are in feet

http://www.fs.usda.gov/recmain/giffordpinchot/recreation#cond

4 5 6

4Pringle, 2002

5 Pringle, 2002

65

4

32

Cast

le

Lake

Gard

ner

Coun

tyPa

rk

6

GEO Field Trip Columbia River Gorge and Mt. St. Helens  

How did geologists interact with the local authorities? 

 

 

 

How did the Silver Lake form? 

 

 

 

Stop 3: Harry Gardner County Park 

While parked at the north side of the HWY, near the restroom, exit the bus and head down to the river bank immediately downstream of the bridge embankment. We will take a look at the sediment stratigraphy exposed in the river bank. Locate the Wentworth Grain Size Classification Chart in your guidebook. For your geologic descriptions below, use information like color, mineralogy, particle size, crystal size, clast size, etc. What grain sizes do you see? Poorly sorted or well sorted? What types of rocks do you see? What is the percentage of angular vs. rounded rocks in the deposits? Your observations in the field are the same observations geologists use to map geologic deposits, make geologic maps, and formulate hypotheses about the geologic history of a region. How many layers did we identify in the river bank? __  

Describe the upper sedimentary unit: 

 

 

 

 

 

 

Describe the lower sedimentary unit: 

 

 

 

 

 

 

7

GEO Field Trip Columbia River Gorge and Mt. St. Helens  

Walk to the north of the parking lot at the northern most area of the park. Head towards the river and take a look at the small (10‐20 ft high) cliff on the east side of the river. There are trees growing in the upper surface of the cliff and some dead trees that are mid slope down the cliff. In your drawing, try to show if there are any different sedimentary units exposed in the cliff. Poke around in the sediments to help you make a better drawing below. Draw a sketch of the cliff here: 

 

 

 

 

 

 

 

 

 

 

 

How might the dead trees relate to the different sedimentary units exposed in the cliff? When do you think those trees might have died? What tests might you conduct to test your hypothesis? 

 

 

 

 

 

Stop 4: Elk Rock Viewpoint Spirit Lake Hwy 

“The dark fine‐grained rocks here are hornfels formed by the heat of intrusions that formed the dikes of the site. This rock slope failed during the winter of 1991/92 on a low angle discontinuity located near the base of the cut. Most of the rock debris was removed back to an area in which rock bolting could occur. About 600 linear meters of post tensioned rock bolts were installed to stabilize the slope. Rock bolting was used at seven other sites on SR 504. The large rock mass in the lower portion of the cut is supported by a concrete buttress. The oversteepened colluvial slope to the east of the cut was covered by wire mesh to prevent rock‐fall. The highest rock cut here was re‐sloped because of extensive zones of hydrothermal alteration and previously undetected discontinuities.” Burns, Scott (Portland State University Geologist) 

8Pringle, 2002

9

GEO Field Trip Columbia River Gorge and Mt. St. Helens  

“Jackson Creek, the stream that drains Spud Mountain into the North Fork Toutle River valley, was temporarily dammed by the 1980 debris avalanche, forming Jackson Lake. The basin behind the blockage filled and breached its dam during the summer of 1980. The flat, swampy areas between the debris avalanche levee and the valley wall is what remains of the lake. The levee is a longitudinal ridge of material deposited at the edge of the debris avalanche as it flowed down valley adjacent to the valley wall.” Pringle (2002) 

Sketch Castle Lake and its relation to the Toutle River. Use the figures in this guidebook to help you determine the names of the different landforms, rivers, and lakes. Label your drawing of the landscape. Note any blown down trees. What is the origin of water for Castle Lake? __________________________  

Sketch your drawing here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

GEO Field Trip Columbia River Gorge and Mt. St. Helens  

Stop 5: Castle Lake Viewpoint Spirit Lake Hwy, no restrooms 

“This stop provides a spectacular overview of the volcano and the debris‐avalanche deposit, as well as the structure of the neighboring bedrock valleys. To the east is Coldwater falls where Coldwater Lake has cut its outlet down through the debris‐avalanche dam to bedrock. The lake level was stabilized by the U.S. Army Corps of Engineers in 1981. Numerous erosional terraces are visible along the North Fork Toutle River and expose debris‐avalanche, lahar, and fluvial deposits. Directly to the east, the North Fork Toutle River has eroded fluvial deposits. Directly to the east, the North Fork Toutle River has eroded debris‐avalanche deposits as it has shifted back and forth across the broad area of the valley floor. 

“Across the valley to the south is Castle Lake, which was born when its valley was dammed by the south levee of the debris avalanche. Engineers cut an outlet to keep the lake at a safe level. Wells drilled into the debris‐avalanche blockage are monitored for changed in the ground‐water flow or other factors that could signal reduced stability of the debris dam. Pringle (2002) 

What is the relation of Castle Lake to the deposits in the Toutle river valley? 

 

 

Draw a sketch of your view here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11Pringle, 2002

12

GEO Field Trip Columbia River Gorge and Mt. St. Helens  

Stop 6: Coldwater Ridge Visitor Center Spirit Lake Hwy 

“The Coldwater Lake area is one of the best places to get views of the hummocky 1980 debris‐avalanche deposit. The spectacular valley that extends to the north was carved by Pleistocene valley glaciers originating in the granitic highlands to the north.  

“The 1980 debris avalanche left a deposit typified by irregular topography. Hummocks and depressions, some containing ponds, create a surface with as much as 200ft (60 m) of relief. Some hummocks poke out of the south end of Coldwater Lake as islands. The lake was created when the debris avalanche dammed the creek's valley. Pringle 2002 

“The debris avalanche is 2.5 km wide here and over 50 m thick. Note the beautiful lateral moraine on the northeast side of Coldwater Lake. It is of Evans Creek Age (22,000‐ 11,000 years B.P.) We are located in the Mt. St. Helens Seismic Zone which stretches for 140 km to the NW and SE. The zone shows right lateral strike slip and is capable of producing at magnitude of 6.8, with a near source ground acceleration approaching .5g. All bridges and buildings here have been constructed to withstand this potential shaking. Landslide scars can be seen on the valley walls where unstable glacial deposits have been modified. Robert Burns, Portland State University Geologist. 

Excerpt from Doukas (1990): The view from the Coldwater exit affords an excellent view of the debris‐avalanche deposit and its diverse parts. The following description comes from reports by Glicken (1986) and Meyer (1986 a, b).  

The eruption on May 18, 1980, was initiated by a magnitude 5.1 earthquake, which triggered a large landslide off the volcano; the landslide was quickly hidden by the advancing cloud of steam and hot rocks of the lateral "blast." Beneath this maelstrom came the 2.7‐km3 (0.7 mi3)‐volume debris avalanche.  

The failure of the avalanche took place as huge slices or slide blocks (Glicken, 1986). Slide block I consisted of the north face of Mount St. Helens, mostly young rocks less than 2,500 years old (dacite, andesite, and basalt). The block remained relatively intact, depositing material on and adjacent to Johnston Ridge as it passed over the ridge; part of it went into Spirit Lake, and part of it flowed down‐valley to form the material on the margins of the debris‐avalanche deposit. Slide block I unroofed the magma chamber (cryptodome) that had been growing inside the mountain for 6 weeks. The explosions that resulted from depressurization of the cryptodome burst through slide block II and created a pyroclastic density current (the "blast") that devastated 212 mi2 (550 km2) of the surrounding landscape. 

Most of the volume of slide block II, as well as all of slide block III, made a 90° turn to the west at Harrys Ridge and Johnston Ridge and became a flowing‐debris avalanche. Slide block II contained fragments of ancestral dacite from the core of the volcano; slide block III contained fragments of ancestral dacite and "blast" dacite of the cryptodome. 

The debris avalanche moved in part as a flow of blocks that traveled 10 mi (16 km). Much of slide block III moved as an explosively motivated flow that traveled over the debris‐avalanche blocks of slide block II and moved 17.6 mi (28 km) from the crater. The avalanche reached its present length in 3 to 10 minutes.  

13

GEO Field Trip Columbia River Gorge and Mt. St. Helens  

Water contained within and under the avalanche and from melted ice was squeezed up through the debris and coalesced into a lahar that moved down the valley of the North Fork Toutle River.  

The debris‐avalanche deposit is characterized by extremely irregular topography. Hummocks of many shapes and sizes are interspersed with irregular and circular depressions, creating a surface with as much as 246ft (75 m) of relief. Surface expression on the debris‐ avalanche deposits results from (1) lateral spreading during primary deposition; (2) differential compaction of the deposit after deposition; (3) phreatic explosions resulting from hot debris coming in contact with water (ice melt or preexisting streams); (4) post‐lahar bank failures; and (5) melting of buried ice.  

One of the most striking features of the post‐1980 geomorphology of the North Fork Toutle River debris‐avalanche deposit is the development of major stream channels. Here, near the Coldwater Creek blockage area, the channels are those of Coldwater Creek and the upper North Fork Toutle River (figs. 38, 39). Coldwater Creek, downstream from Coldwater Lake, formed during the controlled release of Coldwater Lake July 1981. In May 1985, outflow from Spirit Lake was diverted into the South Fork Coldwater Creek through a tunnel under Harrys Ridge. In response to the additional flow, the channel widened 65 ft (20 m) and incised about 13 ft (4 m). 

The upper North Fork Toutle River developed along a 2‐mi (3 km)‐long, aligned group of closed depressions. Individual depressions had 20 to 100 ft ( 6‐30 m) of local relief. Some lahars formed in this area on May 18, 1980, but the through‐flowing channel was created by the November 7, 1980, breaching of Carbonate Lake, a temporary lake on the debris avalanche. Subsequent channel modification has resulted from (1) breakout of small lakes on the surface of the debris‐avalanche deposit; (2) storm flow; (3) lahars, primarily those of March 19, 1982, and May 14, 1984; and (4) pumping from Spirit Lake during 1982‐84. 

Across the outlet channel to the south are hummocks that consist of semi‐coherent blocks of volcanic rock (fig. 39). The closer ones, within the deposits of slide block I, are chiefly composed of andesite and basalt. Beyond the sharp escarpment, which marks a marginal avalanche levee, are deposits mainly of block II, composed of dacite from ancestral domes within the volcano. The marginal levees can be found throughout the middle part of the debris‐avalanche deposit; they formed along valley walls or across the mouths of tributary valleys, as the debris‐avalanche flowed down valley. Coldwater, Castle, and Jackson Lakes and numerous unnamed ponds were impounded by this facies of the debris‐avalanche deposit (Voight and others, 1981). To the south, east of Castle Lake, the surface of the debris‐avalanche deposit is mantled with blast deposit, creating a relatively flat surface (fig. 38). Along the north margin of the flat, landslide scarps mark the left bank of the North Fork Toutle River. This bank is highly unstable because of a high water table and ground‐water outflow. Brown "bathtub rings" from the May 18, 1980, lahar are present throughout most low‐lying areas of the Coldwater Creek blockage. The lahar was formed on the surface of the debris‐avalanche deposit by slumping and flowing of water‐saturated debris, and by dewatering of the deposit through numerous springs (Meyer, 1986 a). 

References Doukas, M. P., 1990. Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington: U.S. Geological Survey, Open File Report 

1859, 64 p. Glicken, Harry, 1986, Rockslide‐debris avalanche of May 18, 1980, Mount St. Helens Volcano: Santa Barbara, University of California, Ph.D. 

thesis, 303 p. Meyer, D.F., 1986 a, Channel formation and modification under various water and sediment discharges, South Fork Coldwater Creek, 

Washington, in Iverson, R.M., and Martinson, H.A., eds., Mount St. Helens; American Geomorphological Field Group, Field Trip Guidebook and Abstracts, 178 p. 

14

GEO Field Trip Columbia River Gorge and Mt. St. Helens  Meyer, D.F., 1986 b, Surficial processes and deposits at the Coldwater Drainage, in Iverson, R.M. and Martinson, H.A., eds., Mount St. Helens: 

American Geomorphological Field Group field trip guidebook and abstracts, 178 p. Pringle, P.T., 2002. Roadside Geology of Mount Saint Helens National Volcanic Monument and Vicinity: Washington Department of Natural 

Resources, Division of Geology and Earth Resources Information Circular 88, 1993 (Revised Edition 2002). Voight, Barry, Glicken, Harry, Janda, R.J., and Douglass, P.M., 1981, Catastrophic rockslide avalanche of May 18, in Lipman, P.W., and 

Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, p. 347‐377. 

Draw a sketch of the view from this stop. Label the parts of the landscape that you can identify.  

15Pringle, 2002

16

Figu

re 6

0. G

ener

aliz

ed li

thol

ogic

map

of d

ebris

-ava

lanc

he d

epos

it, sh

owin

g in

terp

reta

tions

of a

reas

of d

epos

ition

of s

lide

bloc

ks.

Gen

eral

ized

from

pla

te 4

. (II

) in

dica

tes p

rimar

ily sl

ide

bloc

k II

I but

incl

udes

subo

rdin

ate

volu

me

of sl

ide

bloc

k II

.

76 Rockslide-Debris Avalanche of May 18, 1980, Mount St. Helens volcano, Washington

Spir

it La

ke

Cas

tleLa

ke

Col

dwat

erLa

ke

EXPL

AN

ATIO

N

DEB

RIS-

AVA

LAN

CHE

DEP

OSI

T

Blo

ck fa

cies

uni

ts

Pyro

clas

tic-f

low

dep

osits

Dis

tal u

nit

Mix

ed b

lock

and

� m

atrix

faci

es u

nit

Exte

nt o

f slid

e-bl

ock

depo

sitio

n --

� D

ashe

d w

here

app

roxi

mat

e;�

que

ried

whe

re e

xten

t unc

erta

in

Cont

act

Dep

osit

of fl

ow o

f�de

bris

-ava

lanc

he b

lock

sD

epos

it of

exp

losi

vely

-�m

otiv

ated

flow

III(

II)

dd

dd

dd

dmx

dab

dmu

dmx

dab Cra

ter

KILO

MET

ERS

dmx

122°

20´

122°

25´

46°�

15´

122°

15´

122°

10´

pf

And

esite

and

bas

alt u

nit

Mod

ern

daci

te u

nit

Mod

ern

undi

ffere

ntia

ted

unit

Old

er d

acite

uni

t

dmu

dod

dab

I

dmuda

b

pf

dod

dod

dmd

dmd

II &

III

II &

III

I

I

?

dab

dab

dab

dmd

dmu

dab

dab

dab

dmu

dod

dmd

dmd

dod

dod

dod

dabda

bI

05

30

KILO

MET

ERS

MIL

ES

Gliken, 1996

17

photographs after this time. Moore and Rice (1984) statethat a major collapse of the south crater rim occurred at8:33.4 a.m., but their inference is based only on a changein the morphology of the eruption cloud observed on avideotape (S.G. Malone, University of Washington, writ-ten commun., 1984). However, explosions resulting fromthe depressurization of parts of the cryptodome wereobserved to continue, possibly as new parts of thecryptodome were exposed by continuing mass move-ments.

These continuing mass movements are collectivelycalled slide block III. Slide block III consisted of manydiscrete failures; it is likely that the blocks of materialfrom these failures were, at least in part, transported bypyroclastic currents that were generated from the con-tinuing blast explosions.

After the explosively generated pyroclastic currentsand debris-avalanche blocks of slide block III moved outof the crater and down the north flank, they were stronglydeflected by topography, resulting in velocities that wereless than sonic (Kieffer, 1981) and were considerablyslower than the initial blast surge. Depressurization of

the cryptodome continued, but the change in character ofthe pyroclastic current generated from the depressuriza-tion suggests that material was erupted at a slower veloc-ity and at a lower rate than at the start of the blastexplosions.

Some of the slide block III material may have movedinto Spirit Lake to become part of the 0.43 km3 of mate-rial filling Spirit Lake, and some may have moved overpasses on Johnston Ridge (Fisher and others, 1987),depositing as the 0.06 km3 of mixed block and matrixfacies unit ("avalanche II" of Fisher and others, 1987) inSouth Coldwater Creek, but most of the 1.3-km3 slideblock flowed down the valley of the North Fork ToutleRiver. Some of the debris-avalanche blocks were depos-ited as lithologic units of the block facies that are mappedeast of the break-in-slope west of Maratta Creek, andsome of the pyroclastic currents were deposited as matrixfacies (which contains juvenile material) east of thebreak-in-slope. The balance of the material from slideblock III was deposited as the mixed block and matrixfacies unit west of the break-in-slope near Maratta Creek.

Figure 62. Oblique aerial photograph, looking west from Spirit Lake. Arrows show interpreted paths of slide blocks. Dotted line shows trace of slide block III, deposited first, and slide block II, deposited over slide block III material. Photograph by Austin Post, U.S. Geological Survey, June 4, 1980.

78 Rockslide-Debris Avalanche of May 18, 1980, Mount St. Helens volcano, Washington

Pringle, 2002

Gliken, 1996

18

ablation- the loss of snow and ice from a glacier due to melting, erosion, evaporation, or sublimation.

accretion - that process by which one terrane, a fault-bounded body of rock of regional size, is attached to another having a dif-ferent history. Typically accretion occurs during tectonic collision.

accretionary lapilli- a mass of cemented ash 1-10 mm in size.

alluvium- a general term for stream deposits.

amphibole- a group of dark, rock-forming ferromagnesian silicate minerals; for example, hornblende.

andesite- a fine-grained extrusive igneous rock generally con-taining abundant plagioclase, lesser amounts of hornblende and biotite, little or no quartz; 54-62 percent silica.

anticline- a convex-upward fold having stratigraphically older rocks in its core.

ash - see volca1ic ash.

ash cloud an eruption cloud of volcanic gas and fine particles.

basalt- a fine-grained volcanic rock, typically dark, that contains 45-54 percent silica.

bed load - sediment, such as cobbles, pebbles, and granules, that is transported along the bed of a river but is not in suspension.

biotite - “black mica”; a common mafic mineral.

blast- the enormous volcanic explosion and pyroclastic density current on May 18, 1980.

blast dacite- the bluish-gray to gray rocks, chilled pieces of the cryptodome, that were erupted in the blast on May 18, 1980.

blast density flow -see blast.

blast zone- see devastated area.

breadcrust bombs - volcanic bombs that have a breadcrust-like (open cracks) texture on their outer surface caused by contrac-tion during sudden cooling.

breccia - a rock composed of coarse, angular fragments in a ma-trix of finer particles.

calcite- a common mineral composed of calcium carbonate (CaC03).

caldera- a large, typically steep-sided, volcanic basin produced by collapse of an underlying magma chamber.

cinder cone- a fairly small, cone-shaped volcanic vent consisting mainly of accumulated cinders and other pyroclastic fragments.

cirque- a glacially carved, horseshoe-shaped hollow at the head of a valley.

Pringle, 2002

19

clast - general term for any fragment or individual piece of rock.

coal - a black, combustible sedimentary rock formed by compaction of plant matter.

cohesive lahar- a volcanic debris flow or mudflow that contains more than 4 percent clay minerals in its matrix.

composite volcano- a steep-sided volcano consisting of alternating layers of lava and pyroclastic debris. A strato-volcano.

conglomerate- a coarse-grained sedimentary rock consist-ing of rounded rocks cemented together in a finer matrix.

contact metamorphism - a type of recrystallization or change in rocks that takes place adjacent to a magma body; also known as “thermal metamorphism”.

creep - slow downhill movement of surficial materials (such as soil).

crevasse- a deep fissure in the surface of a glacier.

cross dating- a method of matching tree rings that uses the known patterns or characteristics of tree rings in an area to precisely date wood or trees such as those buried in volcanic deposits or injured by volcanic activity.

cryptodome- the near-surface intrusion of magma that produced the pre-May 18, 1980, bulge in the north flank of Mount St. Helens.

dacite- a fine-grained extrusive igneous rock typically having 62-69 percent silica.

debris avalanche- a granular flow of unsorted rock debris that typically moves at high velocity.

debris flow - a moving mass of debris, typically saturated.

debris slide- a shallow mass movement of the soil layer or other geologic material.

dendrochronology - the scientific study of tree rings.

devastated area- the area of downed and singed vegeta-tion created by the volcanic events at Mount St. Helens on May 18, 1980.

dike - a tabular intrusive rock body that forms where magma cuts across the bedding planes of other rock bodies.

diorite- a coarse-grained intrusive igneous rock having roughly the same chemical composition as andesite (54-62 percent silica).

discharge- the rate of stream flow at a given time in units of volume per unit of time (ft3 / s or m3/s).

dome- see volcanic dome.

drift- a general term for any glacial deposit.

earthflow- a type of mass movement that typically takes place along well-defined failure planes and may involve more than one failure process, such as slumping and plastic flow.

faceted spur- the end of a ridge that has been ground down by the action of ice or water.

fault- a fracture along which a rock mass has been dis-placed.

feldspar- a common rock-forming mineral group con-sisting of silicates of aluminum, sodium, potassium, and calcium.

ferromagnesian minerals- silicate minerals such as olivine, pyroxenes, and amphiboles, that contain considerable amounts of iron and magnesium.

firn- a material that is transitional between snow and glacier ice.

fission-track dating - a method of determining the age of a rock based on the number of tracks recording emission of subatomic particles during radioactive deterioration.

flood basalt - plateau basalt; the lava produced by enor-mous fissure eruptions, such as the Columbia River basalt flows.

flow breccia -a deposit of angular rock fragments, some of which are welded together, that is produced in associa-tion with a lava flow.

fold -a bend in a rock stratum or layer.

fumarole- a volcanic vent that emits gases.

gabbro - a coarse-grained intrusive igneous rock consist-ing mainly of calcium-bearing plagioclase and pyroxene minerals and having roughly the same chemical composi-tion as basalt (45-54 percent silica).

glacier - a mass of ice, mainly recrystallized snow, that is heavy enough to move under its own weight.

granite- a coarse-grained intrusive igneous rock com-posed of potassium feldspar, plagioclase, quartz, and some mafic minerals; more than 69 percent silica.

granodiorite- a coarse-grained intrusive rock, similar to a granite, in which plagioclase minerals are more common than potassium feldspar; 62-69 percent silica.

groundmass - the fine-grained matrix of a porphyritic igneous rock.

20

half-life- the time required for half of the atoms in a sam-ple of a radioactive isotope to decay.

heavy mineral - slang for ferromagnesian or mafic miner-als.

hornblende- a mafic mineral of the amphibole group.

hornfels- a fine-grained metamorphic rock formed by recrystallization.

hydrothermal activity - the migration of hot, typically mineral-rich fluids produced by magma or by reactions of magma with adjacent rocks and (or) ground water.

hydrothermal alteration- the alteration of rocks or miner-als owing to contact with hydrothermal waters.

igneous rock - a rock formed by the cooling of magma.

intrusive rock- an igneous rock that solidifies under the surface of the Earth.

isotope - one of two or more forms of an element having different atomic weights.

joint a fracture in a rock along which movement has not occurred.

juvenile material- volcanic rocks derived directly from magma that has reached the surface.

K-Ar dating- see Potassium-Argon dating.

lahar- general term for a volcanic debris flow, a moving mixture of pyroclastic material and water that originates at a volcano.

lahar runout - the muddy flood caused by dilution of a lahar as it mixes with stream water. The deposits are typically very sandy and have fewer large rocks than lahar deposits.

lapilli- volcanic particles in the range of 2-64mm.

lateral blast - see blast.

lateral moraine- an accumulation of till along the sides of a glacier where it meets the valley wall.

lava- magma that reaches the Earth’s surface.

levee - an area of deposits marginal to a flow that roughly records the maximum height of the flow.

lithic pyroclastic flow - a pyroclastic flow that contains a significant percentage of previously formed rock frag-ments mixed in with the juvenile rocks.

lithification - the process by which sediment is converted into solid rock.

mafic rock- a rock that contains more than 50 percent ferromagnesian minerals.

magma - molten rock; can contain liquids, gases, and crystals.

magmatism - the formation and movement of magma.

magnitude- a scale for measuring the energy released by an earthquake.

mass movement- the movement of geologic materials downslope under the influence of gravity.

mass wasting- see mass movement.

metamorphic rock- a rock whose composition and (or) texture has changed because of heat and (or) pressure.

mineral- a naturally formed solid chemical substance having a fixed crystal structure and range of chemical com positions.

moraine - a landform composed of till or drift.

mudline - the maximum level of inundation by a lahar or flood based on the height of mud marks on trees or rocks.

normal fault- a steeply dipping fault in which the hanging wall has moved downward relative to the footwall.

outburst floods- jokuhlhaups; sudden releases of water stored in or adjacent to a glacier or in a glacial lake.

outcrop- an exposure of rock or a deposit.

outwash- stratified deposits produced by glacial meltwa-ter.

pahoehoe- [pa·hoy’·hoy] a Hawaiian term for basaltic lava flows having a smooth or ropy surface.

phenocryst - a large individual crystal in a porphyritic igneous rock.

phreatic explosion or eruption- an explosive mixture of steam and fine rock debris produced when water con-tacts hot rock.

plastic flow- change in shape of a solid that takes place without rupture.

Plinian column - a strong, turbulent, and sustained verti-cal eruption column.

pluton - the cooled body of a large intrusive igneous rock mass.

porphyritic- a texture of igneous rock in which coarse mineral crystals are scattered among finer grains and (or) glass.

21

porphyry copper deposit a type of hydrothermal mineral deposit associated with plutons that contains associated copper minerals.

potassium-argon dating - the radiometric determination of the age of a rock sample based on the ratio of ar-gon.-40 to potassium-40.

proglacial- immediately in front of or just beyond the limits of the glacier.

pumice - solidified rock froth; a porous volcanic rock that floats.

pyroclastic density current- a general name for any of the mixtures of volcanic gas and particles (including surges and flows) that move downslope on the flanks of a volca-no under the influence of gravity.

pyroclastic flow - a mass of hot, dry, pyroclastic debris and gases that move rapidly along the ground surface. They can be caused by an eruption or collapse of a dome.

pyroclastic surge- a turbulent, mixture of gases and par-ticles that flows above the ground surface at high veloc-ities. It can develop from a pyroclastic flow and is highly mobile.

pyroxene- a group of mafic silicate minerals.

Quaternary - the geologic period lasting from about 1.7 Ma to the present. It consists of the Pleistocene Epoch (ending about 10 ka) and the Holocene (10 ka to present).

radiocarbon dating - the calculation of the age of geologic material by any of the methods based on nuclear decay of natural radioactive elements in carbonaceous material.

radiocarbon years -years before 1950 (by convention) based on the proportion of the 14C isotope to normal carbon atoms. Typically radiocarbon years differ from “calendar years” because of variations of the carbon iso-tope content of atmospheric carbon dioxide through tine. A calibration to adjust these ages on the basis of tree rings (for about the last 11,000 years) has been devised; however, for simplicity, only the raw radiocarbon ages are presented in this guidebook. For the most part, these ages do not differ radically from actual calendar years. Tree ring dates for Mount St. Helens deposits laid down since A.D. 1480, however, are given in calendar years.

radiometric age- see radiometric dating.

radiometric dating -a method of estimating the age of a rock or mineral by measuring the proportion of radioac-tive elements to their decay products in a rock sample.

raveling- erosion involving the movement of individual rocks and grains down a slope.

rock flour- fine rock particles produced by glacial pulveri-zation.

rootless explosion crater- small, shallow craters produced by phreatic explosions.

St. Helens zone- a linear zone of earthquake activity that extends from north of Mount St. Helens through the vol-cano almost to the Columbia River.

scoria- an igneous rock containing abundant cavities (ves-icles) but which does not float.

shield volcano- a large, broad volcano having fairly shal-low slopes formed by the eruption of highly fluid basalt lava.

sill- a tabular intrusive rock body that forms where mag-ma is injected between two layers of rock.

singe zone- the zone at the periphery of the devastated area in which trees were scorched or damaged but not blown down.

slickensides striated or polished surface of a rock pro-duced by abrasion along a fault.

slips- debris slides.

slosh line- see trimline.

slump- a type of mass wasting in which blocks of material fail with a backward rotational motion.

snag the trunk of a dead tree.

stratigraphy - the study of strata, its succession and com-position, fossils and other characteristics.

striation - a scratch or groove on a rock produced by the passage of a glacier or other geologic agent.

strike- the bearing or azimuth along which a fault or fold or other planar feature is oriented.

strike-slip fault- a fault in which displacement has been parallel to the strike of the fault.

suspended load -fine sediment carried in suspension by a river.

syncline-~ fold that is concave upward, like a trough.

talus - rock debris, typically coarse, that accumulates at the base of a cliff or slope.

tarn- a small mountain lake that occupies a cirque.

tephra- a general term for all sizes of rock and lava that are ejected into the air during an eruption.

terrace- a long, narrow, nearly flat surface that forms a step-like bench in a slope.

22

terrane- a large block of the Earth’s crust, bounded by faults, that can be distinguished from other blocks by its geologic character.

Tertiary - the geologic period lasting from about 65 Ma to 1.8 Ma.

thrust fault- low-angle fault (less than 45°) in which the hanging wall has moved upward relative to the footwall; typically caused by horizontal compression.

till- an unsorted glacial deposit produced directly under, within, or on top of a glacier.

transform fault- strike-slip faults that separate major geo-logic plates or plate segments.

trimline- boundary between the area affected by scour or scrape and undisturbed terrain that denotes the max-imum height of run-up or inundation by an avalanche, debris flow, flood, wave, or glacier.

tuff- a fine-grained rock composed mostly of volcanic ash.

valley glacier- a glacier that heads at a cirque or cirques and then flows into, and is confined by, a valley; an alpine glacier.

viscosity - resistance to internal flow.

volcanic arc- a curved belt of volcanoes and volcanic rocks associated with a subduction zone.

volcanic ash fine-grained pyroclastic particles (less than 2 mm in diameter).

volcanic dome a steep-sided bulbous mass of lava, such as the Lava Dome, that is commonly

formed by eruptions of highly viscous dacite or rhyolite lava.

volcanic earthquakes- the sudden release of strain energy under or in a volcano as magma or volcanic gas pushes its way to the surface.

volcaniclastics- a general name for all fragmental material produced by a volcano.

vug a cavity in a vein or rock. Some vugs are lined with crystals.

Pringle, 2002

23

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

256

128

200

100

5040

30

20

10

54

3

2

1

.5

.4

.3

.2

.1

.05

.04

.03

.02

.01

.005

.004

.003

.002

.001

64.053.945.333.132.026.922.617.016.013.411.39.528.006.735.664.764.003.362.832.382.001.631.411.191.00.840.707.545.500.420.354.297.250.210.177.149.125.105.088.074.062.053.044.037.031

.016

.004

.008

.002

.001

10.1"

5.04"

2.52"

1.26"

0.63"

0.32"

0.16"

0.08"inches

mm1

1/2

1/4

1/8

1/16

1/32

1/64

1/128

1/256

1/512

1/1024

2 1/2"2.12"

1 1/2"1 1/4"1.06"

3/4"

3/8"5/16".265"

5/8"

45678

101214161820253035404550607080100120140170200230270325400

2"

1 1/2"

1.05"

.742"

.525"

.371"

3

456789

1012141620242832354248606580100115150170200250270325

1.2

.59

.86

.42

.30

.215

.155

.115

.080 2900

1000

350

120

43

15

5.6

2.0

.72 .6

1.5

4.5

13

35

91

240

580

1700

10050

4090

80

70 30

60

5020

40

30

20109876

108765

5

4

3

2

43

2

11.0

0.50.50.329

0.10.085

0.023

0.01

0.0057

0.00140.001

0.00036

0.0001

200

150

100

90

80

70

60

50

40

30

20 26

30

40

50

100

PE

BB

LE

S

COBBLES

SA

ND

SIL

TC

LA

Y

BOULDERS

verycoarse

coarse

medium

fine

verycoarse

coarse

medium

fine

veryfine

coarse

medium

fine

veryfine

No

te:

Ap

plie

s t

o s

ub

ang

ula

r t

osu

bro

un

ded

qu

artz

san

d

No

te:

Ap

plie

s t

o s

ub

ang

ula

r t

osu

bro

un

ded

qu

artz

san

d

No

te:

Sie

ve o

pen

ing

s d

iffe

r b

y a

sm

uch

as

2%

fro

m

mm

sca

le

No

te:

So

me

sie

ve o

pen

ing

s d

iffe

rsl

igh

tly

fro

m

mm

sca

le

No

te:

Th

e r

elat

ion

bet

wee

n t

he

beg

inn

ing

of

tra

ctio

n t

ran

spo

rt a

nd

th

e v

elo

city

dep

end

s o

n t

he

hei

gh

t a

bo

ve t

he

bo

tto

mth

at t

he

vel

oci

ty i

s m

easu

red

, an

d o

no

ther

fac

tors

.

SIEVESIZES

SIZE TERMS

Fra

ctio

nal

mm

and

Dec

imal

in

ches

Tyle

rM

esh

No

.

AS

TM

No

.(U

.S.

Sta

nd

ard

)

Numberof grainsper mg

Qu

artz

sph

eres

Nat

ura

lsa

nd

SettlingVelocity(Quartz,

20°C)

Sp

her

es(G

ibb

s, 1

971)

Cru

shed

cm/sec

ThresholdVelocity

for tractioncm/secφ

Minimum(Inman,1949)

(Nev

in,1

946)

(mo

dif

ied

fro

mH

juis

trom

,193

9)

Sto

kes

Law

(R

= 6

πrηv

)

ph

i ph

i

1/2"7/16"

(afterWentworth,1922)

Clay/Siltboundary

for mineralanalysis

PHI - mmCOVERSION

φ = log (d in mm)21µm = 0.001mm

Inte

rmed

iate

dia

met

ers

of

nat

ura

l g

rain

seq

uiv

alen

t t

o s

ieve

siz

e

1 mabovebottom

( in

mm

)

> -8φ_

mm

( )

veryfine

Granules