27
Geospace Exploration Mission Y. Miyoshi (1), T. Ono (2), T. Takashima (3), M. Hirahara (4), K. Asamura (3), K. Seki (1), Y. Kasaba (2), A. Kumamoto (2), A. Matsuoka (3), H. Kojima (5), K. Shiokawa (1) , M. Fujimoto (3), T. Nagatsuma (6) and ERG working group (1) STEL, Nagoya University, Japan, (2) Tohoku University, Japan (3) ISAS/JAXA, Japan, (4) The University of Tokyo, Japan (5) RISH, Kyoto University, (6) NICT, Japan ERG Energization and Radiation in Geospace 2010 RBSP-SWG

Geospace Exploration Mission ERG - Van Allen Probesrbspgway.jhuapl.edu/sites/default/files/20100830/2010_08_31_02... · THEMIS, GOES/POES, LANL, DSX, SAMPEX, ground networks etc

  • Upload
    lydung

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Geospace Exploration Mission

Y. Miyoshi (1), T. Ono (2), T. Takashima (3), M. Hirahara (4), K. Asamura (3),

K. Seki (1), Y. Kasaba (2), A. Kumamoto (2), A. Matsuoka (3),

H. Kojima (5), K. Shiokawa (1) , M. Fujimoto (3), T. Nagatsuma (6)

and ERG working group

(1) STEL, Nagoya University, Japan, (2) Tohoku University, Japan

(3) ISAS/JAXA, Japan, (4) The University of Tokyo, Japan

(5) RISH, Kyoto University, (6) NICT, Japan

ERGEnergization and Radiation in Geospace

2010 RBSP-SWG

OUTLINE

1. Introduction

- science targets of the mission

2.ERG project

- ERG satellite

- ERG ground networks

- ERG simulation/integrated studies

- science coordination team/project science center

3. International collaboration

4. Collaboration with the RBSP mission (ERG pre-launch phase)

5. Summary

- Particle acceleration

(wave-particle interaction/

adiabatic radial diffusion)

- Particle transportation

(potential field/inductive field)

- Plasma waves

- M-I coupling via FAC

Acceleration via

radial diffusion

Whistler mode waves (kHz)

Acceleration via

W-P interaction

(NASA RBSP website)

1. Introduction ・・・ dynamical coupling in Geospace

RADIATION BELTS (MeV)

PLASMASPHERE (eV)

RING CURRENT (keV)

PLASMA SHEET

ULF pulsation (mHz)

plasmasphere

plasma sheet

inner belt outer belt

thermal

(~eV)

hot

(~ 100 keV)

relativistic

(~ MeV)

L=6L=3

en

erg

yParticles in the inner magnetosphere

distance from the earth

ring current

sub-relativistic

In the inner magnetosphere, widely differing energies over 6 orders

coexist same region.

plasmasphere

ring currentplasma sheet

inner belt outer belt

thermal

(~eV)

hot

(~ 100 keV)

relativistic

(~ MeV)

L=6L=3

en

erg

yExternal Source

external source (radial diffusion) --- violation of third invariant

large magnetic moment

MHD waves

Pc5

Transportation via MHD pulsations (drift-resonance) is

important for particle acceleration.

diffusion

sub-relativistic

PSD profile

(Green and Kivelson, 2004)

plasmasphere

ring current

plasma sheet

inner belt outer belt

thermal

(~eV)

hot

(~ 100 keV)

relativistic

(~ MeV)

L=6L=3

en

erg

y wave growth

acceleration

whistler

internal sources (w-p interactions) – violation of all invariants

Internal Source via wave particle interactions

ring current

sub-relativistic

Whistler mode waves act as a mediating agent via cyclotron resonance

- absorbing a fraction of the power of ring current electrons,

which results in wave growth

- its transfer to the acceleration of high energy electrons.

plasmasphere

ring current

plasma sheet

inner belt outer belt

thermal

(~eV)

hot

(~ 100 keV)

relativistic

(~ MeV)

L=6L=3

en

erg

y wave growth

acceleration

whistler

ring current

sub-relativistic

Variations of the plasmasphere are also essential to control the acceleration conditions,

because the plamasphere plays as an ambient media of plasma waves.

internal sources (w-p interactions) – violation of all invariants

Internal Source via wave particle interactions

plasmasphere

ring current

plasma sheet

inner belt outer belt

thermal

(~eV)

hot

(~ 100 keV)

relativistic

(~ MeV)

L=6L=3

en

erg

y wave growth

acceleration

whistler

ring current

sub-relativistic

Cross-Energy Coupling between particles of widely differing

energies over 6 orders via wave-particle interactions is

important to generate relativistic electrons in the inner

magnetosphere.

MeV electron acceleration is a manifestication of

cross-energy coupling.

internal sources (w-p interactions)

Internal Source via wave particle interactions

PSD profile

(Green and Kivelson, 2004)

2. The ERG project

project goal –

understanding cross-energy couplings for

generation and loss process of relativistic particles

&

variation of geospace during space storms

Target 1: Dynamics of the radiation belts

particle acceleration, transportation and loss

Target 2: Dynamics of the space storms

ring current and electro-magnetic field

variation associated with M-I coupling

Target 3: Dynamics of the plasmasphere

Significance of this project.

・ direct observations on generation of relativistic electrons

contribution to understanding of the particle acceleration

in the universe.

・ instrumental development to measure plasma and fields

under the incidence of radiation belt particles with small satellite

contribution to the future Jovian mission.

REMOTE SENSING

ERG-satelliteERG-ground networks

ERG Project Group

IN-SITU OBSERVATION

Science Coordination Team

Project Science Center

NUMERICAL SIMULATION/MODELING

ERG-simulation/integrated studies

ERG Working Group (~90 researchers in 20 universities/institutes, 2010/06)

PI: T. Ono (Tohoku Univ.),

Mission Manager: T. Takashima (ISAS/JAXA), Science Manager: Y. Miyoshi (STEL, Nagoya Univ.)

ERG-satellite

Particle Instrument: M. Hirahara (U. Tokyo), T. Yanagimachi (Rikkyo Univ.) T. Takashima, K. Asamura,

Y. Saito, T. Abe, H. Matsumoto, S. Kasahara, M. Shimoyama , N. Higashio (JAXA), W. Miyake(Tokai Univ.),

K. Ogasawara (SwRI), Y. Kazama, C. Z. Cheng (NCKU)

Plasma Wave& Electric Field Instrument: Y. Kasaba, T. Ono, A. Kumamoto, Y. Kato (Tohoku Univ.),

Y. Kasahara, S. Yagitani, T. Imachi, Y. Goto (Kanazawa Univ.), H. Kojima, Y. Omura, Y. Ueda (Kyoto Univ.),

M. Iizima (Daijyo Syukutoku), H. Hayakawa, T. Muranaka (JAXA), T. Okada, K. Isisaka, S. Miyake

(Toyama Pref. Univ)

Magnetic Field Instrument: A. Matsuoka (JAXA), M. Tanaka, H. Shirasawa (Tokai Univ.), K. Shiokawa

(Nagoya Univ.), Y. Tanaka (NIPR), K. Yumoto (Kyushu Univ.), T. Nagatsuma (NICT), M. Shinohara

(Kagoshima Tech. College)

ERG-ground networks

K. Shiokawa, N. Nishitani, T. Kikuchi, Y. Otsuka, R. Fujii (Nagoya Univ.), K. Yumoto, H. Kawano, A. Yoshikawa

(Kyushu Univ.), N. Sato, A. Yukimatsu, H. Yamagishi, A. Kadokura, Y. Ogawa (NIPR), M. Taguchi

(Rikkyo Univ.), K. Hosokawa (U. of Electro-Communications), K. Hashimoto (KUHW),

K. Kitamura (Tokuyama Tech. College) , F. Tsuchiya (Tohoku Univ.)

ERG-simulation/integrated studies

K. Seki, Y. Miyoshi, A. Ieda, Y. Ebihara, Y. Miyashita, T. Umeda, S. Masuda, Y. Matsumoto, T. Hori,

S. Saito, T. Amano (STEL, Nagoya Univ.), K. Murata, H. Shimazu, T. Tanaka, H. Shinagawa, H. Jin (NICT),

M. Nakamura (Osaka Pref. Univ.), N. Terada (Tohoku Univ.) , M. Nose, T. Iyemori, Y. Omura, S. Machida,

A. Shinbori (Kyoto Univ.), M. Fujimoto, I. Shinohara, H. Hasegawa, K. Maezawa, T. Obara, M. Yamada (JAXA),

S. Watanabe, K. Komatsu (Hokkaido Univ.), T. Higuchi, G. Ueno, S. Nakano (ISM), M. Hoshino,

T. Terasawa (U. of Tokyo), T. Nagai, K. Asai, R. Kataoka (TITEC), S. Arvelius (IRF), T. Takada (Koch Tech. College)

The ERG satellite

・apogee geocentric distance: 5.0 Re (L~10) ・perigee altitude: 300 km

・ inclination angle: 31 deg

・MLT of initial apogee: 9:00 (± 1:00)

・planned launch date: FY2014 -2015

・mission line: > 1yr

Size: 0.95 m X 0.95 m X 1.705 m (w/o projection)

Weight: 350 kg

Spin: Sun-oriented spin (7.5 RPM)

Attitude accuracy: less than 0.5 deg (star sensor)

Appearance of the ERG satellite

plasmasphere

ring current

plasma sheet

inner belt outer belt

1 eV

100 keV

1 MeV

ERG : plasma & particles

LEP-i

MEP-i

1 keVLEP-e

MEP-e

HEP-e

XEP

10 MeV

PPE: Plasma and Particle Experiment (PI: M. Hirahara, U. Tokyo)

ion electron

-ERG/ PPE measure widely differing energies with ion mass discriminations

(H+, O+, He+, He++).

- The energy coverage of particle instruments overlaps each other.

ring current

sub-relativistc

XEP FOVMEP FOV

DC

1 Hz

1 kHz

Whistler

(~kHz)

MHD waves

(~mHz)

Convective

Field

PWE

Magnetic

Field

1mHz MGF(fluxgate)

PWE

(search coil)

10 kHz

PWE: Plasma Wave and Electric Field Experiment (PI: Y. Kasaba, Tohoku. U.)

MGF: Measurement of Geomagnetic Field (PI: A. Matsuoka, ISAS)

electric field magnetic field

- ERG/ PWE and MGF measure electric and magnetic field for wide frequency

range from DC to MHz.

- Frequency spectrum and wave-form observations (E: ~100 kHz/B:~20kHz)

EMIC

(~Hz)

magnetosonic

wave

(~100Hz)

100 kHz UHR

1 MHz

ERG: Field and Waves

・Magnetometer Network:MAGDAS/CPMN, Silk-Road, Antarctic Network, ULTIMA

・Radar Network: SuperDARN network (HOK, KSR, SWE, SWS), FM-CW radar

- global convective electric field

- ULF pulsation (Pc5)

- Electric field penetration

- ionospheric current /ring current.

- ULF pulsation (Pc5).

- EMIC (Pc1).

- diagnostics of plasmasphere

・Optical Imager Network:Canada, Norway, Siberia, Antarctica

- Measurement of electron/proton precipitations

- Estimation of ionospheric conductivity

The ERG ground networks (PI: K. Shiokawa, STEL)

Sakaguchi et al. JGR, 2008

・Riometer observations:Antarctica

・VLF observations: Antarctica

- whistler (chorus, hiss) observations

- Imaging of precipitation of tens keV electrons

・LF-wave observations : Svalbard

- Estimation of MeV electron precipitations

The ERG ground networks

The ERG simulation/integrated studies (PI: K. Seki, STEL)

Saito, Miyoshi, and Seki. JGR, 2010

-High-precision test particle simulation

code in realistic 3D magnetic fields

during storm time.

( calculation error less than 1% over 24 hour)

Ring Current Model Radiation Belt Model

Amano, Seki, Miyoshi et al., submitted to JGR.

-Self-consistent simulation with 5-D Boltzmann

equation/Maxwell equation.

- It is possible to simulate ULF waves (fast/slow/

Alfven mode waves) in the inner magnetosphere.

Comprehensive simulations which can be compared with the observations

are necessary for the ERG project. STEL/GEMSIS project is one of core

activities of the ERG simulation/integrated study group.

・Science Coordination Team (Ld. Y. Miyoshi, STEL)

-Planning and coordination of science program of the ERG project.

-Making an arrangement of the international collaborations.

Science Coordination Team/Project Science Center

Science Coordination Team/Project Science Center

・Project Science Center (Ld. K. Seki)

- The science data of the ERG project will be archived in the CDF file.

- We are developing software package based on the THEMIS-IDL tool

to analyze observations and modeling/simulation data.

- We start the collaboration with the THEMIS mission about

the development of the software.

210 MM magnetic field data

SuperDARN data HOK

KSR

3. International Collaboration: international fleet of satellites

US/RBSP

Canada/ORBITALS

Japan/ERG

US/THEMIS

Russia/RESONANCE

Sun

Solar Wind

Optical Imager

Geospace-

Ionosphere

Aurora

Magnetometer

ORBITALS

Radiation Belts

Ring Current

RBSP

ERG

Radar

RESONANCE

LANL

GOES

POES

Geospace-

Magnetosphere

THEMIS

Geotail

Cluster

Reimei

FORMOSAT-5

CASSIOPE

CINEMA

3. International Collaboration: coordinate studies

SAMPEXDSX

BARREL

FOV of SuperDARN

Hokkaido Radar

Outer radiation belt

Footprint of

the satellite

4. Collaboration with RBSP (ERG-pre launch phase)

Magnetic Bay/Pc5/Pc1 observations Global convective electric field / Pc5

Proton/Electron aurora observations

1. Ground network observations at sub-auroral latitudes :Coordinated observations between the ground based observations and the RBSP satellites.

The CDF files of the related data will be downloaded from the ERG-science center.

Pc1

5577

6300

H beta

Sakaguchi et al., 2008

4. Collaboration with RBSP (ERG-pre launch phase)

2. Comparative study between the simulations and the RBSP observations

Self-consistent ULF wave (fast mode) simulation is important to

understand the shock accelerations of MeV electrons.

Evolution of plasma flow and current (RC and FAC) Evolution of MHD mode waves

Spatial / pitch angle distribution of energetic particles

Simulation in the realistic magnetic field is important

to understand the dynamics of the trapped particle.

e.g., pitch angle distributions at different positions.

Amano et al.

Saito et al., 2010

4. Collaboration with RBSP (ERG-pre launch phase)

3. Coordinated studies with the Akebono satellite (1989-present)

Coordinated observations between the equatorial plane and

middle-latitudes.

- wave observations (1 Hz – 5000 kHz)

- energetic electrons (300keV, 900 keV, 2500 keV)

Plasma wave observations (1Hz -5000 kHz)

Tadokoro et al., 2009

Radiation Monitor

>2500 keV 950 keV 300 keV

Seki et al., 2005

Akebono

CRRES--RBSP

5. Summary

- The ERG satellite has been nominated as the second mission of

the small satellite program of ISAS/JAXA. Further approval by JAXA/HQ

will be required. The planned launch will be FY 2014-15.

- The ground network observations/integrated studies/science center

have started their activity.

- International collaboration with RBSP, ORBITALS, RESONANCE,

THEMIS, GOES/POES, LANL, DSX, SAMPEX, ground networks etc.

would be very good chance for study of geospace during the solar maximum.

- We hope to collaborate on the coordinate observations between

the RBSP satellites and ERG ground observations as well as

comparative studies with the simulations.