48
GII TÍCH (CƠ S) Phn 1. Không gian metric §1. Metric trên mt tp hp. S hi t. Không gian đy đ Phiên bn đã chnh sa PGS TS Nguyn Bích Huy (Typing by thuantd ) Ngày 10 tháng 11 năm 2004 A. Tóm tt lý thuyt 1. Không gian metric Đnh nghĩa 1. Cho tp X = . Mt ánh x d t X × X vào R đưc gi là mt metric trên X nu các điu kin sau đưc tha mãn x, y, z X : i. d(x, y) 0 d(x, y)=0 x = y ii. d(x, y)= d(y,x) iii. d(x, y) d(x, z )+ d(z,y) (bt đng thc tam giác) Nu d là metric trên X thì cp (X, d) gi là mt không gian metric. Nu d là metric trên X thì nó cũng tha mãn tính cht sau |d(x, y) - d(u, v)|≤ d(x, u)+ d(y,v) (bt đng thc t giác) Ví d 1. Ánh x d : R m × R m R, đnh bi d(x, y)= m i=1 (x i - y i ) 2 1/2 , x =(x 1 ,...,x m ), y =(y 1 ,...,y m ) 1

Giai Tich Co So (PGS.ts. Nguyen Bich Huy)

Embed Size (px)

DESCRIPTION

Giai Tich Co So (PGS.ts. Nguyen Bich Huy)

Citation preview

  • GII TCH (C S)

    Phn 1. Khng gian metric1. Metric trn mt tp hp. S hi t.

    Khng gian y

    Phin bn chnh sa

    PGS TS Nguyn Bch Huy(Typing by thuantd)

    Ngy 10 thng 11 nm 2004

    A. Tm tt l thuyt

    1. Khng gian metric

    nh ngha 1. Cho tp X 6= . Mt nh x d t X X vo R c gi l mt metric trnX nu cc iu kin sau c tha mn x, y, z X:

    i. d(x, y) 0d(x, y) = 0 x = y

    ii. d(x, y) = d(y, x)

    iii. d(x, y) d(x, z) + d(z, y) (bt ng thc tam gic)Nu d l metric trn X th cp (X, d) gi l mt khng gian metric.

    Nu d l metric trn X th n cng tha mn tnh cht sau

    |d(x, y) d(u, v)| d(x, u) + d(y, v) (bt ng thc t gic)

    V d 1. nh x d : Rm Rm R, nh bi

    d(x, y) =

    [mi=1

    (xi yi)2]1/2

    , x = (x1, . . . , xm), y = (y1, . . . , ym)

    1

  • l mt metric trn Rm, gi l metric thng thng ca Rm.Khi m = 1, ta c d(x, y) = |x y|Trn Rm ta cng c cc metric khc nh

    d1(x, y) =mi=1

    |xi yi|

    d2(x, y) = max1im

    |xi yi|

    V d 2. K hiu C[a,b] l tp hp cc hm thc x = x(t) lin tc trn [a, b]. nh x

    d(x, y) = supatb

    |x(t) y(t)|, x, y C[a,b]

    l metric trn C[a,b], gi l metric hi t u.

    2. S hi t

    nh ngha 2. Cho khng gian metric (X, d). Ta ni dy phn t {xn} X hi t (hi ttheo metric d, nu cn lm r) v phn t x X nu lim

    nd(xn, x) = 0.

    Khi ta vit

    limn

    xn = x trong (X, d)

    xnd x

    xn xlimxn = x

    Nh vy, limn

    xn = x trong (X, d) c ngha

    > 0,n0 : n N, n n0 d(xn, x) < Ta ch rng, cc metric khc nhau trn cng tp X s sinh ra cc s hi t khc nhau.

    Tnh cht

    1. Gii hn ca mt dy hi t l duy nht.

    2. Nu dy {xn} hi t v x th mi dy con ca n cng hi t v x.3. Nu lim

    nxn = x, lim

    nyn = y th lim

    nd(xn, yn) = d(x, y)

    V d 3. Trong Rm ta xt metric thng thng. Xt phn t a = (a1, . . . , am) v dy {xn} vixn = (xn1 , . . . , x

    nm). Ta c

    d(xn, a) =

    mi=1

    (xni ai)2 |xni ai|, i = 1, . . . ,m

    2

  • T y suy ra:

    limn

    xn = a trong (Rm, d) limn

    xni = ai trong R, i = 1, . . . , n

    V d 4. Trong C[a,b] ta xt "metric hi t u". Ta c

    xnd x ( > 0,n0 : n n0 sup

    atb|xn(t) x(t)| < )

    dy hm {xn(t)} hi t u trn [a, b] v hm x(t)= lim

    nxn(t) = x(t), t [a, b]

    Nh vy, limn

    xn(t) = x(t), t [a, b] l iu kin cn limxn = x trong C[a,b] vi metrichi t u.

    Ch ny gip ta d on phn t gii hn.

    3. Khng gian metric y

    nh ngha 3. Cho khng gian metric (X, d). Dy {xn} X c gi l dy Cauchy (dy cbn) nu lim

    n,md(xn, xm) = 0

    hay > 0,n0 : n,m n0 d(xn, xm) <

    Tnh cht

    1. Nu {xn} hi t th n l dy Cauchy.2. Nu dy {xn} l dy Cauchy v c dy con hi t v x th {xn} cng hi t v x.

    nh ngha 4. Khng gian metric (X, d) gi l y nu mi dy Cauchy trong n u ldy hi t.

    V d 5. Khng gian Rm vi metric d thng thng l y .Tht vy, xt ty dy Cauchy {xn}, xn = (xn1 , . . . , xnm). V

    {d(xn, xk) |xni xki | (i = 1, . . . ,m)lim

    n,kd(xn, xk) = 0 limn,k |x

    ni xki | = 0,

    nn ta suy ra cc dy {xni }n (i = 1, . . . ,m) l dy Cauchy trong R, do chng hi t v Ry .

    t ai = limn

    xni (i = 1,m) v xt phn t a = (a1, . . . , am), ta c limn

    xn = a trong

    (Rm, d).

    V d 6. Khng gian C[a,b] vi metric hi t u d l y .Gi s {xn} l dy Cauchy trong (C[a,b], d).

    3

  • Vi mi t [a, b], ta c |xn(t) xm(t)| d(xn, xm). T gi thit limn,m

    d(xn, xm) = 0 ta

    cng c limn,m

    |xn(t) xm(t)| = 0Vy vi mi t [a, b] th {xn(t)} l dy Cauchy trong R, do l dy hi t. Lp hm x xc nh bi x(t) = limxn(t), t [a, b].Ta cn chng minh x C[a,b] v lim d(xn, x) = 0.Cho > 0 ty . Do {xn} l dy Cauchy, ta tm c n0 tha

    n,m n0 d(xn, xm) < Nh vy ta c

    |xn(t) xm(t)| < , n n0,m n0, t [a, b]C nh n, t v cho m trong bt ng thc trn ta c

    |xn(t) x(t)| , n n0, t [a, b]Nh vy, ta chng minh rng

    > 0,n0 : n n0 supatb

    |xn(t) x(t)|

    T y suy ra:

    Dy hm lin tc {xn(t)} hi t u trn [a, b] v hm x(t), do hm x(t) lin tc trn[a, b].

    limn

    d(xn, x) = 0.

    y l iu ta cn chng minh.

    B. Bi tp

    Bi 1. Cho khng gian metric (X, d). Ta nh ngha

    d1(x, y) =d(x, y)

    1 + d(x, y), x, y X

    1. Chng minh d1 l metric trn X.

    2. Chng minh xnd1 x xn d x

    3. Gi s (X, d) y , chng minh (X, d1) y .

    Gii

    1. Hin nhin d1 l mt nh x t X X vo R. Ta kim tra d1 tha mn cc iukin ca metric

    4

  • (i) Ta c: d1(x, y) 0 do d(x, y) 0d1(x, y) = 0 d(x, y) = 0 x = y

    (ii) d1(y, x) =d(y, x)

    1 + d(y, x)=

    d(x, y)

    1 + d(x, y)= d(x, y)

    (iii) Ta cn chng minh

    d(x, y)

    1 + d(x, y) d(x, z)

    1 + d(x, z)+

    d(z, y)

    1 + d(z, y)

    gn, ta t a = d(x, y), b = d(x, z), c = d(z, y).Ta c a b+ c; a, b, c 0 (do tnh cht ca d)

    a1 + a

    b+ c1 + b+ c

    (do hm

    t

    1 + ttng trn [0,))

    a1 + a

    b1 + b+ c

    +c

    1 + b+ c

    b1 + b

    +c

    1 + c(pcm)

    2. Gi s xn d x. Ta clim d(xn, x) = 0

    d1(xn, x) =d(xn, x)

    1 + d(xn, x)

    Do , lim d1(xn, x) = 0 hay xnd1 x

    Gi s xn d1 x. Tlim d1(xn, x) = 0

    d(xn, x) =d1(xn, x)

    1 d1(xn, x)ta suy ra lim d(xn, x) = 0 hay xn

    d x.3. Xt ty dy Cauchy {xn} trong (X, d1), ta cn chng minh {xn} hi t trong

    (X, d1).

    Ta clim

    n,md1(xn, xm) = 0

    d(xn, xm) =d1(xn, xm)

    1 d1(xn, xm) lim

    n,md(xn, xm) = 0 hay {xn} l dy Cauchy trong (X, d)

    {xn} l hi t trong (X, d) (v (X, d) y ) t x = lim

    nxn (trong (X, d)), ta c x = lim

    nxn trong (X, d1) (do cu 2).

    5

  • Bi 2. Cho cc khng gian metric (X1, d1), (X2, d2). Trn tp X = X1 X2 ta nh ngha

    d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2)

    1. Chng minh d l metric trn X

    2. Gi s xn = (xn1 , xn2 ) (n N), a = (a1, a2). Chng minh

    xnd a

    {xn1

    d1 a1xn2

    d2 a2

    3. Gi s (X1, d1), (X2, d2) y . Chng minh (X, d) y .

    Bi 3. K hiu S l tp hp cc dy s thc x = {ak}k. Ta nh ngha

    d(x, y) =k=1

    1

    2k.|ak bk|

    1 + |ak bk| , x = {ak}, y = {bk}

    1. Chng minh d l metric trn X

    2. Gi s xn = {ank}k, n N, x = {ak}k. Chng minh

    xnd x lim

    nank = ak , k N

    3. Chng minh (S, d) y .

    Bi 4. Trn X = C[0,1] xt cc metric

    d(x, y) = sup0x1

    |x(t) y(t)|

    d1(x, y) =

    10

    |x(t) y(t)| dt

    1. Chng minh: (xnd x) (xn d1 x)

    2. Bng v d dy xn(t) = n(tn tn+1), chng minh chiu "" trong cu 1) c th

    khng ng.

    3. Chng minh (X, d1) khng y .

    6

  • GII TCH (C S)

    Phn 1. Khng gian metricPhin bn chnh sa - c phn b sung ca bi trc

    PGS TS Nguyn Bch Huy

    Ngy 6 thng 12 nm 2004

    Ni dung chnh ca mn C sChuyn ngnh: Ton Gii tch

    Phng php Ging dy Ton

    Phn 1: Khng gian metric

    1. Metric trn mt tp hp. S hi t. Khng gian y .

    2. Tp m. Tp ng. Phn trong, bao ng ca tp hp.

    3. nh x lin tc gia cc khng gian metric. Cc tnh cht:

    Lin h vi s hi t Lin h vi nh ngc ca tp m, tp ng. nh x m, nh x ng, nh x ng phi.

    4. Tp compc. Cc tnh cht cn bn:

    H c tm cc tp ng. Tnh cht compc v s hi t. nh ca tp compc qua nh x lin tc.

    Phn 2: o v tch phn.

    1. i s trn tp hp.

    o v cc tnh cht cn bn.

    2. Cc tnh cht ca o Lebesgue trn R (khng xt cch xy dng).

    3. Hm s o c. Cc tnh cht cn bn.

    1

  • Cc php ton s hc, ly max,min trn 2 hm o c. Ly gii hn hm o c (khng xt: hi t theo o, nh l Egoroff, Lusin).

    4. Tch phn theo mt o. Cc tnh cht cn bn (khng xt tnh lin tc tuyt i).

    5. Cc nh l Levi, Lebesgue v qua gii hn di du tch phn.

    Phn 3: Gii tch hm.

    1. Chun trn mt khng gian vect. Chun tng ng. Khng gian Banach.

    2. nh x tuyn tnh lin tc. Khng gian cc nh x tuyn tnh lin tc (khng xt nhx lin hp, nh x compc, cc nguyn l c bn).

    3. Khng gian Hilbert. Phn tch trc giao. Chui Fourier theo mt h trc chun. H trcchun y .

    1 Metric trn mt tp hp. S hi t.Khng gian y

    Phn ny c thm phn b sung ca bi trc

    1. Tm tt l thuyt

    1.1 Khng gian metric

    nh ngha 1 Cho tp X 6= . Mt nh x d t X X vo R c gi l mt metric trnX nu cc iu kin sau c tha mn x, y, z X:

    i. d(x, y) > 0d(x, y) = 0 x = y

    ii. d(x, y) = d(y, x)

    iii. d(x, y) 6 d(x, z) + d(z, y) (bt ng thc tam gic)

    Nu d l metric trn X th cp (X, d) gi l mt khng gian metric.

    Nu d l metric trn X th n cng tha mn tnh cht sau

    |d(x, y) d(u, v)| 6 d(x, u) + d(y, v) (bt ng thc t gic)

    V d. nh x d : Rm Rm R, nh bi

    d(x, y) =

    [mi=1

    (xi yi)2]1/2

    , x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym)

    2

  • l mt metric trn Rm, gi l metric thng thng ca Rm.Khi m = 1, ta c d(x, y) = |x y|. Trn Rm ta cng c cc metric khc nh

    d1(x, y) =mi=1

    |xi yi|

    d2(x, y) = max16i6m

    |xi yi|

    V d. K hiu C[a,b] l tp hp cc hm thc x = x(t) lin tc trn [a, b]. nh x

    d(x, y) = supa6t6b

    |x(t) y(t)|, x, y C[a,b]

    l metric trn C[a,b], gi l metric hi t u.

    1.2 S hi t

    nh ngha 2 Cho khng gian metric (X, d). Ta ni dy phn t {xn} X hi t (hi ttheo metric d, nu cn lm r) v phn t x X nu lim

    nd(xn, x) = 0.

    Khi ta vit

    limn

    d(xn, x) = 0 trong (X, d)

    xnd x

    xn xlim d(xn, x) = 0

    Nh vy, limn

    d(xn, x) = 0 trong (X, d) c ngha

    > 0,n0 : n N, n > n0 d(xn, x) < Ta ch rng, cc metric khc nhau trn cng tp X s sinh ra cc s hi t khc nhau.

    Tnh cht.

    1. Gii hn ca mt dy hi t l duy nht.

    2. Nu dy {xn} hi t v x th mi dy con ca n cng hi t v x.3. Nu lim

    nxn = x, lim

    nyn = y th lim

    nd(xn, yn) = d(x, y)

    V d. Trong Rm ta xt metric thng thng. Xt phn t a = (a1, . . . , am) v dy {xn} vixn = (xn1 , x

    n2 , . . . , x

    nm). Ta c

    d(xn, a) =

    mi=1

    (xni ai)2 > |xni ai|, i = 1, 2, . . . ,m

    T y suy ra:

    limn

    xn = a trong (Rm, d) limn

    xni = ai trong R, i = 1, 2, . . . , n

    3

  • V d. Trong C[a,b] ta xt metric hi t u. Ta c

    xnd x ( > 0,n0 : n > n0 sup

    a6t6b|xn(t) x(t)| < )

    dy hm {xn(t)} hi t u trn [a, b] v hm x(t)= lim

    nxn(t) = x(t), t [a, b]

    Nh vy, limn

    xn(t) = x(t), t [a, b] l iu kin cn limxn = x trong C[a,b] vi metric hit u. Ch ny gip ta d on phn t gii hn.

    1.3 Khng gian metric y

    nh ngha 3 Cho khng gian metric (X, d). Dy {xn} X c gi l dy Cauchy (dy cbn) nu

    limn,m

    d(xn, xm) = 0

    hay > 0,n0 : n,m > n0 d(xn, xm) <

    Tnh cht.

    1. Nu {xn} hi t th n l dy Cauchy.2. Nu dy {xn} l dy Cauchy v c dy con hi t v x th {xn} cng hi t v x.

    nh ngha 4 Khng gian metric (X, d) gi l y nu mi dy Cauchy trong n u ldy hi t.

    V d. Khng gian Rm vi metric d thng thng l y .Tht vy, xt ty dy Cauchy {xn}, xn = (xn1 , . . . , xnm). V

    {d(xn, xk) > |xni xki | (i = 1, . . . ,m)lim

    n,kd(xn, xk) = 0 limn,k |x

    ni xki | = 0,

    nn ta suy ra cc dy {xni }n (i = 1, . . . ,m) l dy Cauchy trong R, do chng hi t v Ry .

    t ai = limn

    xni (i = 1, 2, . . . ,m) v xt phn t a = (a1, . . . , am), ta c limn

    xn = a

    trong (Rm, d).

    V d. Khng gian C[a,b] vi metric hi t u d l y .Gi s {xn} l dy Cauchy trong (C[a,b], d).Vi mi t [a, b], ta c |xn(t) xm(t)| 6 d(xn, xm). T gi thit lim

    n,md(xn, xm) = 0 ta

    cng c limn,m

    |xn(t) xm(t)| = 0.Vy vi mi t [a, b] th {xn(t)} l dy Cauchy trong R, do l dy hi t.

    4

  • Lp hm x xc nh bi x(t) = limxn(t), t [a, b]. Ta cn chng minh x C[a,b] vlim d(xn, x) = 0.

    Cho > 0 ty . Do {xn} l dy Cauchy, ta tm c n0 tha

    n,m > n0 d(xn, xm) <

    Nh vy ta c|xn(t) xm(t)| < , n > n0,m > n0, t [a, b]

    C nh n, t v cho m trong bt ng thc trn ta c

    |xn(t) x(t)| < , n > n0, t [a, b]

    Nh vy, ta chng minh rng

    > 0,n0 : n > n0 supa6t6b

    |xn(t) x(t)| 6

    T y suy ra:

    Dy hm lin tc {xn(t)} hi t u trn [a, b] v hm x(t), do hm x(t) lin tc trn[a, b].

    limn

    d(xn, x) = 0.

    y l iu ta cn chng minh.

    2. Bi tp

    Bi 1 Cho khng gian metric (X, d). Ta nh ngha

    d1(x, y) =d(x, y)

    1 + d(x, y), x, y X

    1. Chng minh d1 l metric trn X.

    2. Chng minh xnd1 x xn d x

    3. Gi s (X, d) y , chng minh (X, d1) y .

    Gii.

    1. Hin nhin d1 l mt nh x t X X vo R. Ta kim tra d1 tha mn cc iu kin cametric

    (i) Ta c: d1(x, y) > 0 do d(x, y) > 0d1(x, y) = 0 d(x, y) = 0 x = y

    5

  • (ii) d1(y, x) =d(y, x)

    1 + d(y, x)=

    d(x, y)

    1 + d(x, y)= d(x, y)

    (iii) Ta cn chng minh

    d(x, y)

    1 + d(x, y)6 d(x, z)

    1 + d(x, z)+

    d(z, y)

    1 + d(z, y)

    gn, ta t a = d(x, y), b = d(x, z), c = d(z, y).

    Ta c a 6 b+ c; a, b, c > 0 (do tnh cht ca metric d)

    a1 + a

    6 b+ c1 + b+ c

    (do hm

    t

    1 + ttng trn [0,))

    a1 + a

    6 b1 + b+ c

    +c

    1 + b+ c6 b

    1 + b+

    c

    1 + c(pcm)

    2. Gi s xn d x. Ta clim d(xn, x) = 0

    d1(xn, x) =d(xn, x)

    1 + d(xn, x)

    Do , lim d1(xn, x) = 0 hay xnd1 x

    Gi s xn d1 x. Tlim d1(xn, x) = 0

    d(xn, x) =d1(xn, x)

    1 d1(xn, x)ta suy ra lim d(xn, x) = 0 hay xn

    d x.3. Xt ty dy Cauchy {xn} trong (X, d1), ta cn chng minh {xn} hi t trong (X, d1). Ta c

    limn,m

    d1(xn, xm) = 0

    d(xn, xm) =d1(xn, xm)

    1 d1(xn, xm) lim

    n,md(xn, xm) = 0 hay {xn} l dy Cauchy trong (X, d)

    {xn} l hi t trong (X, d) (v (X, d) y ) t x = lim

    nxn (trong (X, d)), ta c x = lim

    nxn trong (X, d1) (do cu 2).

    Bi 2 Cho cc khng gian metric (X1, d1), (X2, d2). Trn tp X = X1 X2 ta nh ngha

    d ((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2)

    6

  • 1. Chng minh d l metric trn X.

    2. Gi s xn = (xn1 , xn2 ), (n N), a = (a1, a2). Chng minh xn d a

    {xn1

    d1 a1xn2

    d2 a23. Gi s (X1, d1), (X2, d2) y . Chng minh (X, d) y .

    Gii.

    1. Ta kim tra tnh cht i), iii) ca metric. Gi s x = (x1, x2), y = (y1, y2), z = (z1, z2), tac:

    i) d(x, y) = d1(x1, y1) + d2(x2, y2) > 0

    d(x, y) = 0{

    d1(x1, y1) = 0d2(x2, y2) = 0

    {

    x1 = y1x2 = y2

    x = y

    iii) Cng tng v cc bt ng thc:

    d1(x1, y1) 6 d1(x1, z1) + d1(z1, y1)d2(x2, y2) 6 d2(x2, z2) + d2(z2, y2)

    ta cd(x, y) 6 d(x, z) + d(z, y)

    2. Ta cd1(x

    n1 , a1), d2(x

    n2 , a2) 6 d(xn, a) = d1(xn1 , a1) + d2(xn2 , a2)

    Do :

    lim d(xn, a) = 0{

    lim d1(xn1 , a1) = 0

    lim d2(xn2 , a2) = 0

    3. Gi s {xn} l dy Cauchy trong (X, d), xn = (xn1 , xn2 ). Ta c {xni } l dy Cauchy trong(Xi, di) (v di(x

    ni , x

    mi ) 6 d(xn, xm)). Suy ra

    ai Xi : xni di ai (do (Xi, di) y ) xn d a := (a1, a2) (theo cu 2))

    Bi 3 K hiu S l tp hp cc dy s thc x = {ak}k. Ta nh ngha

    d(x, y) =k=1

    1

    2k.|ak bk|

    1 + |ak bk| , x = {ak}, y = {bk}

    1. Chng minh d l metric trn X.

    2. Gi s xn = {ank}k, n N, x = {ak}k. Chng minh

    xnd x lim

    nank = ak , k N

    7

  • 3. Chng minh (S, d) y .

    Gii.

    1. u tin ta nhn xt rng chui s nh ngha s d(x, y) l hi t v s hng th k nhhn 1/2k.

    Vi x = {ak}, y = {bk}, z = {ck}, cc tnh cht i), iii) kim tra nh sau:i) Hin nhin d(x, y) > 0,

    d(x, y) = 0 ak = bk k N x = y

    iii) T l lun bi 1 ta c

    |ak bk|1 + |ak bk| 6

    |ak ck|1 + |ak ck| +

    |ck bk|1 + |ck bk| k N

    Nhn cc bt ng thc trn vi 1/2k ri ly tng, ta c

    d(x, y) 6 d(x, z) + d(z, y)

    2. Ta c

    d (xn, x) =k=1

    1

    2k.|ank ak|

    1 + |ank ak|n N

    Gi s xn x. Ta c: k N

    1

    2k.|ank ak|

    1 + |ank ak|6 d(xn, x) ()

    |ank ak| 62kd (xn, x)

    1 2kd (xn, x)(

    khi n ln d (xn, x) 0 ty . Ta chn s k0 sao cho

    k=k0+1

    12k

    < 2. Xt dy s:

    sn =

    k0k=1

    1

    2k.|ank ak|

    1 + |ank ak|, n N

    Do lim sn = 0 nn c n0 sao cho sn n0.

    Vi n > n0, ta c

    d(xn, x) = sn +

    k=k0+1

    (. . . ) 6 sn +

    k=k0+1

    1

    2k<

    8

  • Nh vy ta chng minh

    > 0 n0 : n > n0 d(xn, x) <

    hay lim d(xn, x) = 0.

    3. Xt ty dy Cauchy {xn} trong (S, d), xn = {ank}k. L lun tng t () ta c

    |ank amk | 62kd(xn, xm)

    1 2kd(xn, xm) 0 khi m,n

    Suy ra {ank}n l dy Cauchy trong R, do hi t.t ak = lim

    nank v lp phn t a := {ak}. p dng cu 2) ta c xn a trong (S, d).

    Bi 4 Trn X = C[0,1] xt cc metric

    d(x, y) = sup06x61

    |x(t) y(t)|

    d1(x, y) =

    10

    |x(t) y(t)| dt

    1. Chng minh: (xnd x) (xn d1 x)

    2. Bng v d dy xn(t) = n(tn tn+1), chng minh chiu trong cu 1) c th khng

    ng.

    3. Chng minh (X, d1) khng y .

    Gii.

    1. Ta c

    |x(t) y(t)| 6 d(x, y) t [0, 1]

    10

    |x(t) y(t)| dt 6 d(x, y) 10

    dt = d(x, y)

    d1(x, y) 6 d(x, y) x, y C[0,1]Do , nu lim d(xn, x) = 0 th cng c lim d1(xn, x) = 0.

    2. K hiu x0 l hm hng bng 0 trn [0, 1]. Ta c:

    d1(xn, x0) = 10|xn(t) x0(t)| dt =

    10n (tn tn+1) dt = n

    (n+1)(n+2) 0 khi n.

    9

  • d(xn, x0) = sup06t61

    n(tn tn+1) = n ( nn+1

    )n. 1n+1

    (hy lp bng kho st hm n(tn tn+1)trn [0, 1]). Do

    limn

    d(xn, x0) = limn

    (n

    n+ 1

    )n.

    n

    n+ 1=

    1

    e6= 0

    Suy ra xnd

    / x0.3. Xt dy {xn} C[0,1] xc nh nh sau:

    xn(t) =

    0 t [0, 1

    2]

    n(t 12) t [1

    2, 12+ 1

    n]

    1 t [12+ 1

    n, 1]

    (n > 2)

    Trc tin ta chng minh {xn} l dy Cauchy trong(C[0,1], d1

    ).

    Tht vy, vi m < n, ta c:

    d1(xn, xm) = 10|xn(t) xm(t)| dt

    = 1/2+1/m1/2

    |xn(t) xm(t)| dt6 1/2+1/m1/2

    1.dt = 1m

    Do limm,n

    d1(xn, xm) = 0

    Ta chng minh {xn} khng hi t trong(C[0,1], d1

    ).

    Gi s tri li:x C[0,1] : lim d1(xn, x) = 0

    Khi

    d1(xn, x) > 1/20

    |xn(t) x(t)| dt = 1/20

    |x(t)| dt , n N

    1/20

    |x(t)| dt = 0 x(t) 0 trn [0, 12].

    Mt khc, vi mi a (12, 1)ta c 1

    2+ 1

    n< a khi n ln.

    Do

    d1(xn, x) > 1a

    |xn(t) x(t)| dt = 1a

    |1 x(t)| dt

    x(t) = 1 t [a, 1] (l lun nh trn)Do a > 1

    2ty , ta suy ra x(t) = 1 t (1

    2, 1].

    Ta gp mu thun vi tnh lin tc ca hm x.

    10

  • 2 Tp m, tp ng. Phn trong, baong ca mt tp hp

    1. Tp m. Phn trong

    Cho khng gian metric (X, d).Vi x0 X, r > 0, ta k hiu B(x0, r) = {x X : d(x, x0) < r}gi l qu cu m tm x0, bn knh r.

    nh ngha 1 Cho tp hp A X.1. im x c gi l im trong ca tp hp A nu r > 0 : B(x, r) A

    2. Tp hp tt c cc im trong ca A gi l phn trong ca A, k hiu IntA hayA. Hin

    nhin ta c IntA A.3. Tp A gi l tp m nu mi im ca n l im trong. Ta qui c l m. Nh vy,

    A m A = IntA (x A r > 0 : B(x, r) A)Tnh cht.

    1. H cc tp m c ba tnh cht c trng sau:

    i) , X l cc tp m.ii) Hp ca mt s ty cc tp m l tp m.

    iii) Giao ca hu hn cc tp m l tp m.

    2. Phn trong ca A l tp m v l tp m ln nht cha trong A.

    Nh vy:(B A,B m) B IntA

    V d. Qu cu m B(x0, r0) l tp m.Tht vy, x B(x0, r0) ta c r = r0 d(x, x0) > 0. Ta s ch ra B(x, r) B(x0, r0). Vi

    y B(x, r), ta c d(y, x0) 6 d(y, x) + d(x, x0) < r + d(x, x0) = r0 nn y B(x0, r0).V d. Trong R vi metric thng thng, cc khong m l tp m.

    Tht vy, trong R ta c B(x, r) = (x r, x+ r). Mi khong hu hn (a, b) l qu cu tm a+b

    2, bn knh ba

    2nn l tp m.

    (a,+), (a R) l tp m v x (a,+) ta t r = xa th (x r, x+ r) (a,+).V d. Trong R2 vi metric thng thng mi hnh ch nht m A = (a, b) (c, d) l tp m.

    Tht vy, xt ty x = (x1, x2) A. Ta t r = min{x1 a, b x1, x2 c, d x2} th cB(x, r) A.nh l 1

    1. Mi tp m trong R l hp ca khng qu m c cc khong m i mt khng giaonhau.

    2. Mi tp m trong R2 l hp ca khng qu m c cc hnh ch nht m.

    11

  • 2. Tp ng. Bao ng ca mt tp hp

    nh ngha 2

    1. Tp hp A X gi l tp ng nu X \ A l tp m.2. im x c gi l mt im dnh ca tp A nu A B(x, r) 6= ,r > 0.3. Tp tt c cc im dnh ca A gi l bao ng ca A, k hiu l A hay ClA.

    Hin nhin ta lun c A A.

    Tnh cht.

    1. , X l cc tp ng.Giao ca mt s ty cc tp ng l tp ng.

    Hp ca hu hn tp ng l tp ng.

    2. A l tp ng v l tp ng nh nht cha A.

    Nh vy (B A,B ng) B A3. A ng A = A.

    nh l 2

    1. x A ({xn} A : limxn = x)2. Cc tnh cht sau l tng ng:

    a) A l tp ng;

    b) {xn} A (limxn = x x A).

    V d. Qu cu ng B(x0, r) := {x X : d(x, x0) 6 r} l tp ng.

    Chng minh. Do s tng ng ca tnh cht a), b) nn ta chng minh B(x0, r) c tnhcht b). Xt ty dy {xn} m {xn} B(x0, r), xn x, ta phi chng minh x B(x0, r).Tht vy: {

    d(xn, x0) 6 r n = 1, 2, . . .lim d(xn, x0) = d(x, x0) (do tnh cht 3) ca s hi t)

    d(x, x0) 6 r (pcm)

    12

  • Bi tp

    Bi 1 Chng minh rng trong mt khng gian metric ta c

    1. A B A B;2. A B = A B;

    3. A = A

    Gii.

    1. Ta c: (B l tp ng, B A) B A.2. Ta c: A A B,B A B (do cu 1)) nn A B A B

    Mt khc: {A B l tp ng (do A,B ng)

    A B A B A B A B (do tnh cht nh nht ca bao ng)

    3. Ta c A l tp ng nn n bng bao ng ca n.

    Bi 2 Trong C[a,b] ta xt metric hi t u. Gi s x0 C[a,b]. Ta xt cc tp sau:M1 ={x C[a,b] : x(t) > x0(t)t [a, b]}M2 ={x C[a,b] : x(t) > x0(t)t [a, b]}M3 ={x C[a,b] : t [a, b] : x(t) > x0(t)}

    Chng minh M1 m, M2 v M3 ng.

    Gii.

    Chng minh M1 m. Xt ty x M1, ta cx(t) x0(t) > 0 t [a, b]

    r := infa6t6b

    [x(t) x0(t)] > 0 (v t0 [a, b] : r = x(t0) x0(t0) > 0)

    Ta s chng minh B(x, r) M1. Tht vy, vi y B(x, r) ta c:supa6t6b

    |y(t) x(t)| < r

    |y(t) x(t)| < r t [a, b]y(t) > x(t) r t [a, b]y(t) x0(t) > x(t) x0(t) r > r r = 0 t [a, b]y M1

    13

  • Chng minh M2 ng.Gi s {xn} M2, xn d x, ta cn chng minh x M2. Ta c limnxn(t) = x(t) t [a, b]

    (do xn

    d x)

    xn(t) > x0(t) t [a, b], n N (do xn M2)

    Suy ra x(t) > x0(t)t [a, b] , do x M2. Chng minh M3 ng.

    Cch 1. t M4 ={x C[a,b] : x(t) < x0(t) t [a, b]

    }. Ta c M3 = C[a,b] \M4 v M4 l

    tp m (chng minh tng t M1 m) nn M3 ng.

    Cch 2. Gi s {xn} M3, xn d x ta cn chng minh x M3.Do xn M3 nn tn ti tn [a, b] tha xn(tn) > x0(tn). Dy {tn} b chn nn c dy con{tnk}k hi t v mt t0 [a, b]. Ta s chng minh x(t0) > x0(t0). u tin ta chng minh

    limk

    xnk(tnk) = x(t0) (1)

    Tht vy:

    |xnk(tnk)x(t0)| 6 |xnk(tnk)x(tnk)|+ |x(tnk)x(t0)| 6 d(xnk , x)+ |x(tnk)x(t0)| (2)

    v v v phi ca (2) hi t v 0 khi k nn (1) ng.T xnk(tnk) > x0(tnk) v (1) ta c x(t0) > x0(t0). Ta chng minh t0 [a, b] : x(t0) >x0(t0) hay x M3.

    Bi 3 Trong C[a,b] vi metric hi t u ta xt cc tp hp sau:

    M1 ={x C[a,b] : x l n nh, 0 6 x(t) 6 1 t [a, b]

    }M2 =

    {x C[a,b] : x l ton nh, 0 6 x(t) 6 1 t [a, b]

    }Chng minh M1 khng l tp ng, M2 l tp ng.

    14

  • GII TCH (C S)

    Chuyn ngnh: Gii Tch, PPDH Ton

    Phn 1. Khng gian metric

    3. nh x lin tc(Phin bn chnh sa)

    PGS TS Nguyn Bch Huy

    Ngy 20 thng 12 nm 2004

    Tm tt l thuyt

    1 nh ngha

    Cho cc khng gian metric (X, d), (Y, ) v nh x f : X Y

    Ta ni nh x f lin tc ti im x0 X nu > 0, > 0 : x X, d(x, x0) < = (f(x), f(x0)) <

    Ta ni f lin tc trn X nu f lin tc ti mi x X

    2 Cc tnh cht

    Cho cc khng gian metric (X, d), (Y, ) v nh x f : X Y .

    nh l 1. Cc mnh sau tng ng

    1. f lin tc ti x0 X

    2. {xn} X (limxn = x0) = lim f(xn) = f(x0)

    1

  • H qu. Nu nh x f : X Y lin tc ti x0 v nh x g : Y Z lin tc ti y0 = f(x0)th nh x hp g f : X Z lin tc ti x0.

    nh l 2. Cc mnh sau tng ng

    1. f lin tc trn X

    2. Vi mi tp m G Y th tp nghch nh f1(G) l tp m trong X.

    3. Vi mi tp ng F Y th tp f1(F ) l tp m trong X.

    3 nh x m, nh x ng, nh x ng phi

    Cho cc khng gian metric X, Y v nh x f : X Y .

    nh x f gi l nh x m (ng) nu vi mi tp m (ng) A X th nh f(A) ltp m (ng).

    nh x f gi l nh x ng phi nu f l song nh lin tc v nh x ngc f1 : Y Xlin tc.

    4 Mt s cc h thc v nh v nh ngc

    Cho cc tp X, Y khc trng v nh x f : X Y . Vi cc tp A,Ai X v B,Bi Y , tac

    1. f(iI

    Ai) =iI

    f(Ai), f(iI

    Ai) iI

    f(Ai)

    2. f1(iI

    Bi) =iI

    f1(Bi), f1(iI

    Bi) =iI

    f1(Bi)

    f1(B1 \B2) = f1(B1) \ f1(B2)

    3. f(f1(B)) B ("=" nu f l ton nh)f1(f(A)) A ("=" nu f l n nh)

    Bi tp

    Bi 1. Trong khng gian C[a,b], ta xt metric d(x, y) = supatb

    |x(t) y(t)| v trong R ta xtmetric thng thng. Chng minh cc nh x sau y lin tc t C[a,b] vo R.

    2

  • 1. f1(x) = infatb

    x(t)

    2. f2(x) =ba

    x2(t)dt

    Gii. 1. Ta s chng minh |f1(x) f1(y)| d(x, y) (*)Tht vy

    f1(x) x(t) = y(t) + (x(t) y(t)) y(t) + d(x, y) t [a, b]= f1(x) d(x, y) y(t), t [a, b]= f1(x) d(x, y) f1(y) hay f1(x) f1(y) d(x, y)Tng t, ta c f1(y) f1(x) d(x, y) nn (*) ng. T y, ta thy{xn}, lim

    nxn = x = lim

    nf1(xn) = f1(x)

    2. Xt ty x C[a,b], {xn} C[a,b] m limxn = x, ta cn chng minh lim f2(xn) = f2(x)Ta c

    |x2n(t) x2(t)| = |xn(t) x(t)|.|xn(t) x(t) + 2x(t)| d(xn, x).[d(xn, x) +M ] (M = sup

    atb2|x(t)|)

    = |f2(xn) f2(x)| b

    a

    |x2n(t) x2(t)|dt

    d(xn, x)[d(xn, x) +M ](b a)

    Do lim d(xn, x) = 0 nn t y ta c lim f2(xn) = f2(x) (pcm)

    Ghi ch. Ta c th dng cc kt qu v nh x lin tc gii bi tp 3 (2). V d, chngminh tp

    M = {x C[a,b] : x(t) > x0(t), t [a, b]} (x0 C[a,b] cho trc )

    l tp m, ta c th lm nh sau. Xt nh x

    f : C[a,b] R, f(x) = infatb

    (x(t) x0(t))

    Ta c:

    f lin tc (l lun nh khi chng minh f1 lin tc)

    3

  • M = {x C[a,b] : f(x) > 0} = f1((0,+)), (0,) l tp m trong R

    Bi 2. Cho cc khng gian metric X, Y v nh x f : X Y . Cc mnh sau l tngng

    1. f lin tc trn X

    2. f1(B) f1(B) B Y

    3. f(A) f(A) A X

    Gii. 1) 2) Ta c{f1(B) l tp ng (do f lin tc v B Y l tp ng)f1(B) f1(B)

    = f1(B) f1(B) (do tnh cht "nh nht" ca bao ng)

    2) 3) t B = f(A) trong 2), ta c f1(f(A) ) f1(f(A)) ADo f(f1(f(A) )) f(A) = f(A) f(A)

    3) 1) Xt ty tp ng F Y , ta cn chng minh f1(F ) l tp ng.t A = f1(F ), ta c

    f(A) f(A) = f(f1(F )) F = F (do F ng)= f1(f(A)) f1(F )= A AVy A = A nn A l tp ng.

    Bi 3. Trong C[a,b] ta xt metric d(x, y) = sup{|x(t) y(t)|, a t b}. Cho : [a, b]R Rl hm lin tc. Chng minh nh x sau y lin tc

    F : C[a,b] C[a,b], F (x)(t) = (t, x(t))

    Gii. C nh x0 C[a,b], ta s chng minh F lin tc ti x0.t M = 1 + sup

    atb|x0(t)|. Cho > 0 ty .

    Hm lin tc trn tp compact D := [a, b] [M,M ] nn lin tc u trn D. Do ,tn ti s 1 > 0 sao cho

    (t, s), (t, s) D, |t t| < 1, |s s| < 1 = |(t, s) (t, s)| <

    4

  • t = min(1, 1). Vi mi x C[a,b], d(x, x0) < , ta c|x(t) x0(t)| < t [a, b]x(t) [M,M ] (do |x(t) x0(t)| < 1, t [a, b])

    Do , |(t, x(t)) (t, x0(t))| < , t [a, b]= |F (x)(t) F (x0)(t)| < , t [a, b]= d(F (x), F (x0)) <

    Nh vy, ta chng minh

    > 0, > 0 : x C[a,b], d(x, x0) < d(F (x), F (x0)) < hay F lin tc ti x0.

    Bi 4. Cho cc khng gian metric X, Y v song nh f : X Y . Chng minh cc mnh sau tng ng

    1. f1 : Y X lin tc

    2. f l nh x ng

    Gii. Ta c (f1 : Y X lin tc) (A X,A ng (f1)1(A) ng trong Y ) (A X,A ng f(A) ng) (f : X Y l nh x ng)

    Bi 5. Cho khng gian metric (X, d). Vi x X, 6= A X, ta nh ngha

    d(x,A) = infyA

    d(x, y)

    Chng minh cc khng nh sau y

    1. nh x f : X R, f(x) = d(x,A) lin tc

    2. x A d(x,A) = 0

    3. Nu F1, F2 l cc tp ng, khc v F1F2 = th tn ti cc tp m G1, G2 sao cho

    F1 G1, F2 G2, G1 G2 =

    Gii. 1. Ta s chng minh |f(x) f(x)| d(x, x) (*)Tht vy, ta c d(x, y) d(x, x) + d(x, y) y A

    = infyA

    d(x, y) d(x, x) + infyA

    d(x, y)

    = d(x,A) d(x, A) d(x, x)

    5

  • 2. Ta c

    d(x,A) = 0 ({xn} A : limn

    d(x, xn) = 0) (do tnh cht ca inf v d(x,A) 0) ({xn} A : limxn = x) x A

    3. Ta xt nh x g : X R, g(x) = d(x, F1) d(x, F2)Ta c g lin tc theo cu 1)

    t G1 = {x X : g(x) < 0}, G2 = {x X : g(x) > 0}, ta c

    G1 G2 = G1, G2 l cc tp m (do G1 = g1((, 0)), G2 = g1((0,+)), (0,+),(, 0)l cc tp m v g lin tc).

    F1 G1 v x F1 {

    d(x, F1) = 0

    d(x, F2) > 0 (do x / F2 v kt qu cu 2)) g(x) < 0

    Tng t, F2 G2

    Bi tp t gii c hng dn

    Bi 6. Cho cc khng gian metric X, (Y1, d1), (Y2, d2). Trn Y1 Y2, ta xt metricd((y1, y2), (y

    1, y

    2)) = d1(y1, y

    1) + d2(y2, y

    2)

    Gi s rng f1 : X Y1, f2 : X Y2 l cc nh x lin tc. Chng minh rng nh xf : X Y1 Y2, f(x) = (f1(x), f2(x)) lin tc.

    Hng dn

    S dng nh l 1 v iu kin hi t trong khng gian metric tch trong bi tp 1.

    Bi 7. Cho cc khng gian metric X, Y v nh x f : X Y . Chng minh cc mnh sautng ng:

    1. f lin tc trn X

    2. f1(IntB) Int f1(B) B Y

    6

  • Hng dn

    1) 2) p dng nh l 2 v tnh cht "ln nht" ca phn trong.

    2) 1) p dng nh l 2 v tnh cht G = IntG nu G m.

    Bi 8. Cho cc khng gian metric (X, d), (Y, ) v cc nh x lin tc f, g : X Y . Ta nhngha nh x

    h : X R, h(x) = (f(x), g(x)), x X

    1. Chng minh h lin tc

    2. Suy ra rng tp A := {x X : f(x) = g(x)} l tp ng.

    Hng dn

    1. Chng minh rng nu dnd x th h(xn) h(x) trong R, s dng tnh cht yn y,

    zn z th (yn, zn) (y, z)

    2. A = h1({0}), {0} l tp ng trong R

    Bi 9. Cho khng gian metric (X, d) v A, B l cc tp ng khc , khng giao nhau. Chngminh rng tn ti nh x lin tc f : X R sao cho

    0 f(x) 1, x X,f(x) = 0, x A,f(x) = 1, x B

    Hng dn

    Chng minh hm f(x) =d(x,A)

    d(x,A) + d(x,B)cn tm.

    7

  • GII TCH (C S)

    Chuyn ngnh: Gii Tch, PPDH Ton

    Phn 1. Khng gian metric

    4. Tp compact, khng gian compact(Phin bn chnh sa)

    PGS TS Nguyn Bch Huy

    Ngy 20 thng 12 nm 2004

    Tm tt l thuyt

    1 nh ngha

    Cho cc khng gian metric (X, d)

    1. Mt h {Gi : i I} cc tp con ca X c gi l mt ph ca tp A X nu A iI

    Gi

    Nu I l tp hu hn th ta ni ph l hu hn.

    Nu mi Gi l tp m th ta ni ph l ph m.

    2. Tp A X c gi l tp compact nu t mi ph m ca A ta lun c th ly ra cmt ph hu hn.

    3. Tp A c gi l compact tng i nu A l tp compact.

    1

  • 2 Cc tnh cht

    2.1 Lin h vi tp ng

    Nu A l tp compact trong khng gian metric th A l tp ng.

    Nu A l tp compact, B A v B ng th B l tp compact.

    2.2 H c tm cc tp ng

    H {Fi : i I} cc tp con ca X c gi l h c tm nu vi mi tp con hu hn J IthiJ

    Fi 6= .

    nh l 1. Cc mnh sau l tng ng:

    1. X l khng gian compact.

    2. Mi h c tm cc tp con ng ca X u c giao khc .

    nh l 2. Gi s f : X Y l nh x lin tc v A X l tp compact. Khi , f(A) ltp compact.

    H qu. Nu f : X R l mt hm lin tc v A X l tp compact th f b chn trn Av t gi tr ln nht, nh nht trn A, ngha l:

    x1, x2 A : f(x1) = inf f(A), f(x2) = sup f(A)

    nh l 3 (Weierstrass). Trong khng gian metric X, cc mnh sau l tng ng:

    1. Tp A X l compact.

    2. T mi dy {xn} A c th ly ra mt dy con hi t v phn t thuc A.

    2.3 Tiu chun compact trong Rn

    Trong khng gian Rn (vi metric thng thng), mt tp A l compact khi v ch khi n ngv b chn.

    2.4 Tiu chun compact trong C[a,b]

    nh ngha. Cho tp A C[a,b].

    2

  • 1. Tp A c gi l b chn tng im trn [a, b] nu vi mi t [a, b] tn ti s Mt > 0sao cho |x(t)| Mt, x A.Tp A c gi l b chn u trn [a, b] nu tn ti s M > 0 sao cho

    |x(t)| M , t [a, b], x A.

    2. Tp A gi l ng lin tc tc trn [a, b] nu vi mi > 0, tn ti s > 0 sao cho vi

    mi t, s [a, b] m |t s| < v vi mi x A th ta c |x(t) x(s)| < .

    V d. Gi s A C[a,b] l tp cc hm x = x(t) c o hm trn (a, b) v |x(t)| 2,t (a, b).

    Tp A l lin tc ng bc. Tht vy, do nh l Lagrange ta c|x(t) x(s)| = |x(c)(t s)| 2.|t s|

    Do , cho trc > 0, ta chn =

    2th c:

    x A, t, s [a, b], |t s| < |x(t) x(s)| <

    Nu thm gi thit A b chn ti im t0 [a, b] th A b chn u trn [a, b]. Tht vy|x(t)| |x(t) x(t0)|+ |x(t0)| = |x(c).(t t0)|+ |x(t0)|

    2(b a) +Mt0 t [a, b],x A

    nh l 4 (Ascoli - Arzela). Tp A C[a,b] (vi metric hi t u) l compact tng i khiv ch khi A b chn tng im v ng lin tc trn [a, b].

    Bi tp

    Bi 1. 1. Cho X l khng gian metric compact, {Fn} l h cc tp ng, khc rng, thamn Fn Fn+1 (n = 1, 2, . . . ). Chng minh

    n=1

    Fn 6=

    2. Gi s {Fn} l h c tm cc tp ng, b chn trn R. Chng minhn=1

    Fn 6=

    Gii. 1. Ta chng minh {Fn} l h c tm. Nu J N l tp hu hn, ta t n0 = max Jth s c

    nJ

    Fn = Fn0 6=

    Ghi ch. Dng khc ca cu 1) l: Cho F1 l tp compact, Fn (n 2) l cc tp ngkhc v F1 F2 . Khi

    n=1

    Fn 6=

    3

  • 2. Ta xy dng dy tp hp {Kn} nh sau:

    K1 = F1, Kn =n

    k=1

    Fk (n 2)

    Th th ta c

    Kn compact, Kn 6= (do h {Fn} c tm)

    F1 F2 ,n=1

    Kn =n=1

    Fn

    Do , theo ghi ch trn ta cn=1

    Kn 6=

    Bi 2. Cho X l khng gian compact v f : X R lin tc. Chng minh f b chn trn Xv t gi tr nh nht.

    Gii. t a = inf f(x), ta c a (ta hiu cn di ng ca tp khng b chn di l). Ta lun c th tm c dy s {an} sao cho an > an+1, lim an = a. Ta t Fn = {x X : f(x) an} (n 1), ta c

    Fn l tp ng (do Fn = f1((, an]))

    Fn 6= (do an > a = inf f(X)

    Fn Fn+1 (do an > an+1)

    Do , theo bi 1) th tn ti x0 n=1

    Fn. Ta c

    f(x0) an n = 1, 2, . . . f(x0) a

    Vy f(x0) = a, ni ring a 6= . Ta c pcm.

    Bi 3. Cho khng gian metric (X, d) v A, B l cc tp con khc ca X. Ta nh nghad(A,B) = inf

    xA,yBd(x, y)

    1. Gi s A, B l cc tp compact, chng minh tn ti x0 A, y0 B sao chod(A,B) = d(x0, y0)

    2. Gi s A ng, B compact v A B = , chng minh d(A,B) > 0.Nu v d chng t kt lun khng ng nu thay gi thit B compact bng B ng.

    4

  • Gii. 1. Tn ti cc dy {xn} A, {yn} B sao cho lim d(xn, yn) = d(A,B). Do Acompact nn {xn} c dy con {xnk}k hi t v mt phn t x0 A. Xt dy con tngng {ynk}k ca {yn}. Do B compact nn {ynk}k c dy con {ynki}i hi t v mt phnt y0 B.Ta c:

    limi

    xnki = x0 (v l dy con ca {xnk}) lim

    id(xnki , ynki ) = d(A,B) (v l dy con ca {d(xn, yn)})

    limi

    d(xnki , ynki ) = d(x0, y0) (h qu ca bt t gic)

    Do , d(x0, y0) = d(A,B)

    2. Gi s tri li, d(A,B) = 0. Khi , ta tm c cc dy {xn} A, {yn} B saocho lim d(xn, yn) = 0.

    Do B compact nn {yn} c dy con {ynk}k hi t v y0 B. Td(xnk , y0) d(xnk , ynk) + d(ynk , y0)

    ta suy ra limk

    xnk = y0

    Do A l tp ng, {xnk} A nn ta suy ra y0 A, mu thun vi gi thitA B = .

    Trong R2 ta xt metric thng thng v tA = {(t, 0) : t R},B =

    {(t,1

    t

    ): t > 0

    }Ta c A, B l cc tp ng, A B = t x = (t, 0), y =

    (t,1

    t

    )(t > 0)

    Ta c d(x, y) =1

    t 0 (t +)

    Do , d(A,B) = 0

    Bi 4. Cho khng gian metric (X, d) v A X, l tp compact, V l tp m cha A. Ta khiu B(A, ) := {x X : d(x,A) < }

    Chng minh tn ti s > 0 sao cho B(A, ) V .

    Gii. Cch 1Do A V v V l tp m nn x A,rx > 0 : B(x, 2rx) V

    5

  • H {B(x, rx) : x A} l mt ph m ca tp compact A nn tn ti x1, . . . , xn sao cho

    A n

    k=1

    B(xk, rxk)

    t = min{rx1 , . . . , rx2}, ta s chng minh B(A, ) V .Xt ty y B(A, ), ta c

    d(y, A) <

    x A : d(y, x) < k = 1, n : x B(xk, rxk)

    Khi , d(y, xk) d(y, x) + d(x, xk) < + rxk 2rxkDo , y B(xk, 2rxk) V

    Cch 2t B = X \ V , ta c B ng v A B = nn theo bi 3 ta c d(A,B) > 0. Chn = d(A,B). Ta s chng minh B(A, ) V hay ch cn chng t B(A, ) B = Tht vy, nu c y B(A, ) B, th ta c

    d(y, A) < x A : d(y, x) < Mt khc x A, y B nn d(x, y) d(A,B) = . V l.

    Bi 5. Cho X, Y l cc khng gian metric, vi X l khng gian compact v f : X Y lsong nh lin tc. Chng minh f l nh x ng phi.

    Gii. Ta cn chng minh nh x ngc f1 lin tc. Do mt bi tp 3, ch cn chng t fl nh x ng.

    Vi A X l tp ng, ta cA compact f(A) compact

    f(A) ngVy f l nh x ng.

    Cc bi tp t gii

    Bi 6. Cho cc khng gian metric compact X, Y v nh x f : X Y . Chng minh cc mnh sau tng ng:

    1. f lin tc

    2. f1(K) l tp compact vi mi tp compact K Y

    6

  • Hng dn

    S dng lin h gia tnh compact v tnh ng.

    Bi 7. Cho khng gian metric (X, d) v cc tp A, B khc , trong A compact. Chngminh tn ti im x0 A sao cho d(x0, B) = d(A,B).

    Hng dn

    S dng d(A,B) = infxA

    d(x,B)

    Bi 8. Cho khng gian metric (X, d) v f : X X l nh x lin tc. im x gi l im btng ca f nu f(x) = x.

    1. Chng minh tp im bt ng ca f l tp ng.

    2. Gi s X l compact v f khng c im bt ng no. Chng minh tn ti s c > 0 sao

    cho d(f(x), x) c x X

    Hng dn

    t h(x) = d(f(x), x), x X th h : X R lin tc.

    1. Ch rng: x bt ng h(x) = 0

    2. Cn chng minh infxX

    h(x) > 0

    Ngoi ra, cu 1) c th chng minh trc tip da vo lin h gia tnh cht ng v s hi

    t, cu 2) c th dng phn chng gii.

    7

  • GII TCH (C S)Ti liu n thi cao hc nm 2005

    Phin bn chnh sa

    PGS TS Nguyn Bch Huy

    Ngy 26 thng 1 nm 2005

    5. Bi n tpBi 1:

    Trn X = C[0,1] ta xt metric hi t u. Cho tp hp A = {x X : x(1) = 1, 0 x(t) 1 t [0, 1]} v nh x f : X R, f(x) =

    10

    x2(t) dt.

    1. Chng minh inf f(A) = 0 nhng khng tn ti x A f(x) = 0.2. Chng minh A khng l tp compact.

    Gii1. t = inf f(A). Ta c f(x) 0 x A nn 0.Vi xn(t) = t

    n, ta c xn A

    f(xn) = 10

    t2n dt =1

    2n+ 1 0 (n)

    Do = 0.

    Nu f(x) = 0, ta c:( 10

    x2(t) dt = 0, x2(t) 0, x2(t) lin tc trn [0, 1])

    = x(t) = 0 t [0, 1]= x / A.

    2. Ta c: {f lin tc trn X, nhn gi tr trong R (xem bi tp 3)f(x) 6= inf f(A) x A

    = A khng compact (xem l thuyt 4).

    1

  • Bi 2:Cho (X, d) l khng gian metric compact v nh x X X tha mn

    d(f(x), f(y)) < d(x, y) x, y X, x 6= y. (1)Chng minh tn ti duy nht im x0 X tha mn x0 = f(x0) (ta ni x0 l im bt ng canh x f).

    GiiTa xt hm g : X R, g(x) = d(f(x), x), x X. Ta ch cn chng minh tn ti duy nht

    x0 X sao cho g(x0) = 0.p dng bt ng thc t gic v iu kin (1), ta c

    |g(x) g(y)| = |d(f(x), x) d(f(y), y)| 2d(x, y)nn g lin tc. T y v tnh compact ca X ta c:

    x0 X : g(x0) = inf g(X) (2)Ta s chng minh g(x0) = 0. Gi s g(x0) 6= 0; ta t x1 = f(x0) th x1 6= x0, do :

    d(f(x1), f(x0)) < d(x1, x0) d(f(x1), x1) < d(f(x0), x0) g(x1) < g(x0), mu thun vi (2).

    Vy g(x0) = 0 hay f(x0) = x0. chng minh s duy nht ta gi s tri li, c x 6= x0 v x = f(x). Khi :

    d(x, x0) = d(f(x), f(x0)) < d(x, x0)

    Ta gp mu thun.

    Bi 3:Cho cc khng gian metric (X, d), (Y, ) v nh x f : X Y . Trn X Y ta xt metric

    d1((x, y), (x, y)) = d(x, x) + (y, y), (x, y), (x, y) X Y.

    v xt tp hp G = {(x, f(x)) : x X}.

    1. Gi s f lin tc, chng minh G l tp ng.

    2. Gi s G l tp ng v (Y, ) l khng gian compact, chng minh f lin tc.

    Gii1. Xt ty dy {(xn, f(xn))} G m lim(xn, f(xn)) = (a, b) (1)Ta cn chng minh (a, b) G hay b = f(a).

    T (1), ta c

    limxn = a (2), lim f(xn) = b (3).

    2

  • T (2) v s lin tc ca f ta c lim f(xn) = f(a); kt hp vi (3) ta c b = f(a) (pcm).

    2. Xt ty tp ng F Y , ta cn chng minh f1(F ) l tp ng trong X: chng minh f1(F ) ng, ta xt ty dy {xn} f1(F ) m limxn = a v cn chng t

    a f1(F ).Ta c: {

    f(xn) F, n NF l tp compact (do F ng, Y compact)

    = {xnk} : limk

    f(xnk) = b F .Khi :

    limk

    (xnk , f(xnk)) = (a, b), (xnk , f(xnk)) G,G ng= (a, b) G hay b = f(a).

    Vy f(a) F hay a f1(F ) (pcm).

    Bi 4:Cho khng giam metric compact (X,d) v cc nh x lin tc fn : X R (n N) tha mn

    cc iu kin sau:

    f1(x) f2(x) . . . , limn

    fn(x) = 0 x X ()

    Chng minh dy {fn} hi t u trn X v khng, ngha l:

    > 0 n0 : n n0 = supxX

    |fn(x)| < ()

    p dng phng php sau: vi > 0 cho, t

    Gn = {x X : fn(x) < }, n NCh cn chng minh tn ti n0 sao cho Gn0 = X.

    GiiTrc tin t gi thit (*) ta suy ra rng fn(x) 0 x X, n N. Ta c:Gn l tp m (do fn lin tc v Gn = f

    1n (, ))

    Gn Gn+1, (do fn(x) fn+1(x))X =

    n=1

    Gn (do x X nx : n nx fn(x) < )

    Do X l khng gian compact ta tm c n1, n2, . . . , nk sao cho

    X =k

    i=1

    Gni

    3

  • t n0 = max{n1, . . . , nk} ta c X = Gn0 . Khi n n0 ta c Gn Gn0 nn Gn = X. T yta thy (**) ng.

    Bi 5:Cho khng gian metric compact (X, d) v nh x lin tc f : X X. Ta nh ngha

    A1 = f(X), An+1 = f(An), n = 1, 2, . . . , A =n=1

    An.

    Chng minh A 6= v f(A) = A.

    GiiTa c

    6= A1 X,A1 compact (do X compact v f lin tc).Dng quy np, ta chng minh c rng

    6= An An+1, An compact n = 1, 2, . . .T y ta c {An} l h c tm cc tp ng trong khng gian compact. Do A 6= 0.

    Bao hm thc f(A) A c suy t

    f(A) f(An1) = An n = 1, 2, . . . ( do A An1, vi quy c A0 = X).

    chng minh A f(A), ta xt ty x A. V x An+1 = f(An) nn

    n = 1, 2, . . . xn An : x = f(xn).

    Do X compact nn c dy con {xnk}, limk

    xnk = a. Khi

    x = limk

    f(xnk) (do cch xy dng {xn})= f(a) (do f lin tc)

    Ta cn phi chng minh a A. C nh n, ta c

    xnk An khi nk n (do xnk Ank An)= a = lim

    kxnk An (do An ng).

    Vy a An n = 1, 2, . . . ; do a A v x = f(a) f(A). (pcm).

    4

  • GII TCH (C S)

    Chuyn ngnh: Gii Tch, PPDH Ton

    Phn 2. Khng gian nh chun

    nh x tuyn tnh lin tc

    1. Khng gian nh chun(Phin bn chnh sa)

    PGS TS Nguyn Bch Huy

    Ngy 25 thng 2 nm 2005

    L thuyt

    1 Chun

    Gi s X l mt khng gian vect (k.g.v.t) trn trng s K (K = R hoc K = C). Mt nhx p : X R c gi l mt chun trn X nu tha mn cc iu kin sau cho mi x, y X,mi K:

    i) p(x) 0p(x) = 0 x = ( ch phn t khng trong X)

    ii) p(x) = ||p(x)

    iii) p(x+ y) p(x) + p(y)

    S p(x) gi l chun ca phn t x.

    Thng thng, ta dng k hiu ||x|| thay cho p(x).

    Mnh 1. Nu p l mt chun trn k.g.v.t X th ta c:

    1

  • 1. |p(x) p(y)| p(x y) (hay |||x|| ||y||| ||x y||) x, y X.

    2. d(x, y) := p(x y) l mt mtric trn X, gi l mtric sinh bi chun p (hay d(x, y) =||x y||)

    V d 1. Trn Rn nh x

    x = (x1, . . . , xn) 7 ||x|| =(

    nk=1

    x2k

    )1/2l chun, gi chun Euclide. Mtric sinh bi chun ny chnh l mtric thng thng ca Rn.

    V d 2. Trn C[a, b], nh x x 7 ||x|| := supatb |x(t)| l mt chun mtric sinh bi chunny l mtric hi t u trn C[a, b]

    2 Khng gian nh chun

    nh ngha 1.

    Khng gian vect X cng vi chun || || trong n, c gi l mt khng gian nh chun(kgc), k hiu (X, || ||).

    Cc khi nim hi t, tp m, ng, compact, dy Cauchy, trong (X, || ||) c hiul cc khi nim tng ng i vi mtric sinh bi chun.

    Ni ring, trong (X, || ||) ta cB(x0, r) = {x X : ||x x0|| < r}

    ( limn

    xn = x(cng vit xn|||| x)) lim

    n||xn x|| = 0

    ({xn} l dy Cauchy) limn,m

    ||xn xm|| = 0.

    nh ngha 2. Kgc (X, || ||) c gi l khng gian Banach nu X vi mtric sinh bi || ||l khng gian y .

    V kgc l trng hp c bit ca khng gian mtric nn tt c cc kt qu v khng gian

    mtric cng ng cho kgc. Ngoi ra, ta c cc kt qu sau v kgc.

    Mnh 2. Cho Kgc (X, .) trn trng s K v cc dy {xn}, {yn} X, {n} K,limxn = x, lim yn = y, limn = . Khi :

    1. lim xn = x

    2. lim(xn + yn) = x+ y, limnxn = x.

    H qu. Cc nh x f, g : X X, f(x) = x + 0 + x, g(x) = 0x (0 K\{0}) l ngphi.

    2

  • 3 Chun tng ng

    nh ngha 3. Hai chun .1, .2 trn kgvt X gi l tng ng (vit .1 .2) nu tnti cc hng s dng a, b sao cho

    x1 ax2 , x2 bx1 x X

    Mnh 3. Gi s .1, .2 l hai chun tng ng trn kgvt X. Khi :

    1. (limxn = x theo .1) (limxn = x theo .2)

    2. (X, .1) y (X, .2) y .

    4 Mt s khng gian nh chun

    4.1 Khng gian nh chun con

    Cho kgc (X, .) v X0 l mt kgvt con ca X. K hiu .0 l thu hp ca . trn X0 th.0 l mt chun trn X0. Cp (X0, .0) gi l kgc con ca (X, .).

    4.2 Tch ca hai kgc

    Cho cc kgc (X1, .1), (X2, .2). Tch cc X1 X2 s tr thnh kgvt nu ta nh nghacc php ton

    (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) (x1, x2) = (x1, x2)

    Kgvt X1 X2 vi chun(x1, x2) := x11 + x22 ()

    hoc vi chun tng ng vi (*), gi l kgc tch ca cc kgc (X1, .1), (X2, .2).Ta d dng kim tra c cc tnh cht sau:

    Dy (xn1 , xn2 ) hi t v phn t (x1, x2) trong kgc tch khi v ch khi cc dy {xni } hi tv xi trong kgc (Xi, .i), i = 1, 2.

    Nu (Xi, .i)(i = 1, 2) l cc khng gian Banach th kgc tch cng l khng gian Banach.

    4.3 Kgc hu hn chiu

    Gi s X l kgvt m chiu v e = {e1, . . . , em} l mt c s ca X. Khi nh x

    x =mk=1

    kek 7 xe :=(

    mk=1

    |k|2)1/2

    l mt chun, gi l chun Euclide sinh bi c s e.

    3

  • Mnh 4.

    1. Trn mt khng gian hu hn chiu, hai chun bt k lun tng ng vi nhau.

    2. Trn kgc hu hn chiu, mt tp l compact khi v ch khi n ng v b chn.

    3. Mt khng gian nh chun hu hn chiu lun l khng gian u . Do , mt kgvt

    con hu hn chiu ca mt kgc l tp ng trong khng gian .

    nh l 1 (Riesz). Nu qu cu B(, 1) := {x X : x 1} ca cc kgc X l tp compactth X l khng gian hu hn chiu.

    5 Chui trong kgc

    Nh c php ton cng v ly gii hn, trong kgc ta c th a ra khi nim chui phn t

    tng t khi nim chui s.

    nh ngha 4. Cho kgc (X, .) v dy {xn} cc phn t ca X. Ta ni chui phn tn=1

    xn ()

    hi t v c tng bng x nu nh x = limn sn, trong : s1 = x1, sn = x1+ +xn (n N) Nu chui s n=1 xn hi t th ta ni chui (**) hi t tuyt i.

    Mnh 5. Nu X l khng gian Banach th mi chui hi t tuyt i l chui hi t

    4

  • Bi tpBi 1. K hiu C1[a,b] l khng gian cc hm thc x = x(t) c o hm lin tc trn [a, b]. C

    1[a,b]

    l kgvt trn R vi cc php ton thng thng v cng hai hm v nhn hm vi s thc. Tanh ngha p1(x) = |x(a)|+ sup

    atb|x(t)| , p2(x) = sup

    atb|x(t)|, p3(x) = sup

    atb{|x(t)|+ |x(t)|}

    1. Chng minh p1, p2, p3 l cc chun trn C1[a,b].

    2. Chng minh p2 6 p33. Chng minh p1 p3

    Gii.

    1. lm v d, ta kim tra p1 l chun.

    i) Hin nhin ta c p1(x) 0 x C1[a,b]; hn na

    p1(x) = 0{

    x(a) = 0

    x(t) = 0 t [a, b] {

    x(a) = 0

    x(t) l hm hng s x(t) = 0t [a, b].

    ii) p1(x) = |x(a)|+ supatb

    |x(t)| = ||(|x(a)|+ sup

    atb|x(t)|

    )= ||p1(x)

    iii) Vi x, y C1[a,b] ta c

    |x(a) + y(a)|+ |(x(t) + y(t))| |x(a)|+ |y(a)|+ |x(t)|+ |y(t)| p1(x) + p1(y) t [a, b]

    = p1(x+ y) p1(x) + p1(y).

    2. D thy p2(x) p3(x) x C1[a,b]. Ta s chng minh khng tn ti s c > 0 sao cho

    p3(x) cp2(x) x C1[a,b] ()

    Xt dy xn(t) = (t a)n, n N. D dng tnh c:

    p2(xn) = (b a)np3(xn) = (b a)n + n(b a)n1

    Do , nu tn ti c > 0 (*) ng th ta c

    (b a)n + n(b a)n1 c(b a)n n = 1, 2, b a+ n c(b a) n = 1, 2, Ta gp mu thun.

    5

  • 3. Ta d dng kim tra p1(x) p3(x) x C1[a,b] Mt khc ta c:|x(t)| |x(a)|+ |x(t) x(a)| = |x(a)|+ |x(c)(t a)|(p dng nh l Lagrange)

    |x(a)|+ (b a) supatb

    |x(t)|Mp1(x) t [a, b] (M = max{1, b a})

    |x(t)| p1(x) t [a, b].Do p3(x) (M + 1)p1(x) x C1[a,b].Vy p1 p3.

    Bi 2. K hiu l2 l khng gian cc dy s thc x = {k}k tha mn iu kink=1

    2k <

    vi cc php ton thng thng v cng hai dy s v nhn dy s vi s thc. Trn l2 ta xt

    chun x =(

    k=1

    2k

    )1/2nu x = {k} l2

    1. Xt cc dy s en = {n,k}k (n N) trong n,k = 1 nu n = k, n,k = 0 nu n 6= k.Chng minh rng nu x = {k} l2 th x =

    n=1

    nen

    2. Chng minh l2 y .

    Gii.

    1. t sn = 1e1 + + nen, ta cn chng minh limn

    sn = x

    Ta c:

    sn = (1, , n, 0, 0, )

    x sn = (0, , 0, n+1, n+2, ), x sn =( k=n+1

    2k

    )1/2

    V chuik=1

    2k hi t nn limn

    k=n+1

    2k = 0.

    Vy limn

    x sn = 0 (pcm).

    2. Gi s {xn} l dy Cauchy trong l2, xn = {nk}k, n N.

    Vi mi k N, ta c:

    |nk mk | (

    k=1

    |nk mk |2)1/2

    = xn xm (1)

    6

  • v {xn} l dy Cauchy nn {nk}n l dy Cauchy trong R, do hi t.t ak = lim

    nnk (k N) v lp dy s a = {ak}

    Tip theo ta s chng minh a l2 v limn

    xn a = 0Cho > 0 ty . Do {xn} l dy Cauchy ta c n0 tha mn

    n,m N, n,m n0 xn xm < .

    T (1) ta cNk=1

    |nk mk |2 < 2 N N,n,m n0

    Nk=1

    |nk ak|2 2 N N,n n0(ta cho m trong bt trn)

    k=1 |nk ak|2 2 n n0 (2)T (2) ta suy ra xn a l2 (n n0) v do a = xn (xn a) cng thuc l2. Hnna, ta chng minh:

    > 0n0 : n n0 = xn a

    hay l lim xn a = 0

    Ghi ch

    trn ta khng kim tra l2 l kgvt v cc iu kin ca chun. lm v d, ta s chng

    minh rng nu x = {k} l2, y = {k} l2 th x + y l2 v x + y x + y. Tht vy,ta c theo bt ng thc Bunhiakowski:N

    k=1(k + k)2 =

    Nk=1

    2k + 2

    Nk=1 kk +

    Nk=1

    2k

    x2 + 2x.y+ y2 N N.

    Cho N ta c pcm.

    Bi 3. Gi m l khng gian cc dy s thc x = {k}k b chn vi chun x = sup{|k| : k N}.

    1. Chng minh m l khng gian Banach.

    2. K hiu C l tp hp cc dy s hi t. Chng minh C l khng gian con ng ca m.

    Gii. 1.

    Vi mi k N, ta c:

    7

  • |nk mk | sup{|nk mk | : k N} = xn xmv do {xn} l dy Cauchy nn {nk}n l dy Cauchy trong Rv do vy, hi t.t ak = lim

    nnk v lp dy s a = {ak}k.

    Ta chng minh a m v lim xn a = 0Cho > 0, ta tm c n0 sao cho

    n,m n0 xn xm <

    Ta c:

    |nk nk | < k N,n,m n0 |nk ak| k N,n n0(cho m trong bt trn) sup

    k|nk ak| n n0.

    Nh vy, ta chng minh:

    * (xn a) m, do a = xn (xn a) m.* > 0 n0 : n n0 xn a hay lim xn a = 0.

    2. Gi s ta c dy {xn} C, xn = {nk}k m xn hi t v a = {ak} m ta cn chng minha C. Mun vy, ta ch cn chng minh a l dy Cauchy.Cho > 0, ta tm c n sao cho

    supk|nk ak| = xn a < /3(do a = lim xn trong m)

    V xn = {nk }k C nn n l dy Cauchy, do c k0 sao cho:

    k, l k0 |nk n

    l | < /3.

    Vi k0 ny, ta c:

    k, l k0 |ak al| |ak nk |+ |nk nl |+ |nl al|< /3 + /3 + /3 =

    Vy {ak} l dy Cauchy (pcm).

    Bi 4. Cho kgc X v cc tp A,B X khc . Chng minh

    1. Nu A m th A+B m

    8

  • 2. Nu A,B compact th A+B compact.

    3. Nu A ng, B compact th A+B ng

    Gii.

    1. Trc tin ta chng minh rng b B th A+ b l tp m.Tht vy, nh x f : X X, f(x) = x+ b l ng phi nn

    A m f(A) m hay A+ b m

    Do A+B =bB

    (A+ b) nn A+B m.

    2. Xt ty dy {xn} A + B, ta chng minh {xn} c dy con hi t v phn t thucA+B.

    Ta c: xn = an + bn vi an A, bn B.Do A compact nn {an} c dy con {ank}k hi t v mt a A. Do B compact nn dy{bnk}k c dy con {bnkl}l hi t v b B. Tng ng vi dy {bnkl}l ta c dy {ankl}lvn hi t v a.

    Suy ra dy con xnkl = ankl + bnkl hi t v a+ b (pcm).

    Ghi ch: Cu ny c th gii nh sau:

    Xt kgc tch X X v nh x f : X X X, f(x, y) = x+ y. Ta c:(f lin tc, AB l tp compact trong X X) = f(AB) l tp compact trong X.Do f(AB) = A+B ta c pcm.

    3. Xt dy ty {xn} A+ B, xn = an + bn, an A, bn B m limxn = x, ta cn chngminh x A+BDo B compact nn {bn} c dy con {bnk} hi t v mt b B. Khi ank = xnk bnkhi t v x b v v A ng nn x b A.Ta c x = (x b) + b nn x A+B (pcm).

    Bi 5. Cho kgc (X, .) v X0 l khng gian con hu hn chiu ca X. Chng minh tn tix0 X0 sao cho

    a x0 = infxX0

    a x

    9

  • Gii. t d = inf{a x : x X0} v chn dy {xn} X0 tha mn lim a xn = d.Ta c: xn a+ a xn nn {xn} b chn

    M > 0 : {xn} B(,M)

    Tp B(,M)X0 compact (do dimX0 0 sao cho

    infxX0

    a x = infxX0B(,M)

    a x

    Sau s dng tnh compact ca tp X0 B(,M) v tnh lin tc ca hm x 7 a x

    Bi 6. Cho kgc X v A X l tp li. Chng minh tc tp A, IntA cng li.

    Gii (Hng dn). C nh s t (0, 1)

    chng minh tA+ (1 t)(A) (A) ta dng lin h gia im dnh v s hi t.

    chng minh t IntA + (1 t) IntA IntA ch cn kim tra v tri l tp m, chatrong A.

    Bi 7. Gi s trong kgc X, tp S = {x X : x = 1} l compact. Chng minh dimX