51
GAS TURBINE COMBUSTION

GT Combustion

Embed Size (px)

Citation preview

Page 1: GT Combustion

GAS TURBINE COMBUSTION

Page 2: GT Combustion

Scheme of gas turbine

Gas turbine (GT) is composed with turbine (4), compressor (1) and combustion chamber (2) (combustor)

fuel

flue gasair

Page 3: GT Combustion

Principle of GT operation

Kinetic energy of flowing flue gas is converted into the turbinerotor, which shaft has a compressor supplying the combustor withair.

Page 4: GT Combustion

Gas turbines

Rotor of turbine and air compressor on a common shaft.

Page 5: GT Combustion

Types of GT combustors

There are two basic types of combustors:

� annular

� tubular.

Page 6: GT Combustion

ANNULAR COMBUSTION CHAMBERS

Page 7: GT Combustion

Annular chambers

Gas turbines may have from 7 to 16 annular combustion chambers mounted concentrically. Each of combustor has his fuel supply and injection system.

There are three systems of annular combustors: individual, sectional, annular.

Types of combustors: 1 −individual, 2 − sectional, 3 −annular.

Page 8: GT Combustion

Example of GT with annular combustors

Page 9: GT Combustion

Scheme of GT with annular combustors

Temperature at the inlet of GT 1500 C

No. of combustors 16

Page 10: GT Combustion

Annular combustion chambers of GT

Page 11: GT Combustion

Annular combustion chambers in GT

Page 12: GT Combustion

Combustor of annular system of combustion of GT

Low-NOx hybrid burner of V94.3 GT (Siemens)

Page 13: GT Combustion

Scheme of GT combustion chamber

Single combustion chamber

Fuel nozzle primary zone secondary zone dilution zone

Nozzle Swirler Air-slots

Page 14: GT Combustion

Furnace tubes (flame tubes)

Flame tube

Page 15: GT Combustion

Sequential combustion system of GT26(ABB)

Page 16: GT Combustion

TUBULAR COMBUSTION CHAMBERS

Page 17: GT Combustion

TG with tubular combustor

Page 18: GT Combustion

Parallel-flow tubular

combustor

Page 19: GT Combustion

Tubular combustion chamber

Oposite-flow tubular combustor

Page 20: GT Combustion

Details of tubular combustor

Burners

Furnace tube

Jacket

Air channel

Page 21: GT Combustion

Single EV burner (ABB)

Page 22: GT Combustion

Scheme of EV burner (ABB)

Page 23: GT Combustion

EV burner (ABB)

Page 24: GT Combustion

ORGANIZATION OF COMBUSTION PROCESS IN TG

Page 25: GT Combustion

Flame stabilization in GT

Page 26: GT Combustion

Combustion of lean fuels with preliminary evaporation and mixing - LPP

(lean, premixed, prevaporised)

a) The principle is complete evaporation of fuel and mixing with air, because of:

� avoid of droplets,

� Temperature of lean mixture flame is low.

Combustion systems LPP should co-operate with the systems of variable geometry, tu avoid danger of extinction due to LEL for small load.

Page 27: GT Combustion

Flame-holder operation

Principle of stabilization with flame-holder

Page 28: GT Combustion

Influence of flameholder size on the lower limit of stability for different fuels

P = 100 kPa

T0 = 300 K

SMD = 60 µm

U = 30 m/s

Page 29: GT Combustion

Influence of particle size on the lower limit of stability for different fuels

U=15 m/s, T0=300K, p = 100 kPa

Page 30: GT Combustion

Counter-flow stabilisation effect

Recirculation induced stopping of flow

Page 31: GT Combustion

Organisation of the 1-st zone of combustion

Stabilisation by jets collision (counter-flow)

Stabilisation by swirling

Stabilisation by combination of swirling and counter-flow

Page 32: GT Combustion

Fuel staging – design example

Page 33: GT Combustion

COOLING OF FLAME TUBE

Page 34: GT Combustion

Methods of cooling of flame tube

A) Warstwowe

- polega na przenikaniu powietrza na stronę wewnętrznąpłomienicy przez rząd otworków o małej średnicy. Strugi powietrza tworzą kurtynę oddzielającą wewnętrzną stronępłomienicy od gorących spalin.

B) Konwekcyjno-warstwowe

- polega na przedłuŜeniu kanalików doprowadzających powietrze do wnętrza płomienicy. Dzięki temu poprawia się efektywnośćchłodzenia płomienicy, ale zwiększa się jej cięŜar.

C) Transpiracyjne (z porowatą ścianą)

- polega na przenikaniu powietrza przez porowatą ścianępłomienicy i tworząc kurtynę powietrzna od gorących spalin.

Page 35: GT Combustion

Cooling of flame tube

Page 36: GT Combustion

CATALITYC GAS TURBINES

Page 37: GT Combustion

Conventional and catalytic GT

Page 38: GT Combustion

Catalytic combustion chamber (combustor)

Catalytic combustion system applied to gas turbine

Page 39: GT Combustion

Parts of catalytic combustion chamber

Catalysts

Page 40: GT Combustion

HEAT RECOVERY STEAM

GENERATORS

Page 41: GT Combustion

Combined cycle power plantGas turbine combined cycle CTCC

Page 42: GT Combustion

Heat recovery steam generator

Page 43: GT Combustion

Heat recovery steam generator

Page 44: GT Combustion

Scheme of channel burner

Page 45: GT Combustion

Channel burner operation

Page 46: GT Combustion

Channel burners for HRSG’s

GT 100 MW

Page 47: GT Combustion

GAS TURBINE FUELS

Page 48: GT Combustion

GT fuels – general requirements

1. Low cost and easy excess.

2. Low risk of fire.

3. High HCV.

4. High thermal stability..

5. Low pressure of evaporation.

6. High specific heat.

Page 49: GT Combustion

Types of gas turbine fuels

1. Gasoline

2. Kerosines

3. Diesel oil

4. Heating fuel oil

5. Natural gas

6. Syngas

7. Others (H2, NH3, C3H8, C4H10, alcohols,..)

Page 50: GT Combustion

Selected parameters of GT fuels

0.82-0.88

2-4

339-367

253-273

42-43

0.1-0.8

0.793

1.4

311-344

228

42.8

0.01-0.1

Relative density at 311 K

Viscosity 311 K, cSt

Temperature of ignition (Flash point), K

Temperature of freezing (Pour point), K

LHV, MJ/kg

Sulfur, % mas.

KerosineGazolineParameter

Page 51: GT Combustion

Non-conventional GT fuels