728
Handbook on Applications of ULTRASOUND EDITED BY DONG CHEN | SANJAY K. SHARMA | ACKMEZ MUDHOO Sonochemistry for Sustainability

Handbook on Applications of Ultrasound - Dong Chen

Embed Size (px)

DESCRIPTION

Ultrasonic irradiation and the associated sonochemical and sonophysical effects are complementary techniques for driving more efficient chemical reactions and yields. Sonochemistry—the chemical effects and applications of ultrasonic waves—and sustainable (green) chemistry both aim to use less hazardous chemicals and solvents, reduce energy consumption, and increase product selectivity.A comprehensive collection of knowledge, Handbook on Applications of Ultrasound covers the most relevant aspects linked to and linking green chemistry practices to environmental sustainability through the uses and applications of ultrasound-mediated and ultrasound-assisted biological, biochemical, chemical, and physical processes.

Citation preview

  • Handbook on Applications of

    UltrAsoUnd

    EditEd by

    dong CHen | sAnjAy K. sHArmA | ACKmez mUdHoo

    Sonochemistry for Sustainability

  • Handbook on Applications of

    UltrAsoUndSonochemistry for Sustainability

  • CRC Press is an imprint of theTaylor & Francis Group, an informa business

    Boca Raton London New York

    Handbook on Applications of

    UltrAsoUnd

    EditEd by

    dong CHen | sAnjAy K. sHArmA | ACKmez mUdHoo

    Sonochemistry for Sustainability

  • MATLAB is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This books use or discussion of MATLAB software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB software.

    CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

    2012 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

    No claim to original U.S. Government worksVersion Date: 20110520

    International Standard Book Number-13: 978-1-4398-4207-2 (eBook - PDF)

    This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

    Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

    For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

    Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.comand the CRC Press Web site athttp://www.crcpress.com

  • To my lovely parents, wife Wei, and daughters Elena and Elisa

    Dong Chen

    In memory of my grandfather, Pt. Vishwambhar Dayal Sharma

    Sanjay K. Sharma

    For Yana, Teena, Assad, mum and dad

    Ackmez Mudhoo

  • vii

    ContentsForewordxiPreface xiiiAcknowledgmentsxvEditorsxviiContributorsxix

    Chapter 1 EmergingUbiquityofGreenChemistryinEngineeringandTechnology1

    Pavel Pazdera

    Chapter 2 IntroductiontoSonochemistry:AHistoricalandConceptualOverview23

    Giancarlo Cravotto and Pedro Cintas

    Chapter 3 AspectsofUltrasoundandMaterialsScience 41

    Andrew Cobley, Timothy J. Mason, Larisa Paniwnyk, and Veronica Saez

    Chapter 4 Ultrasound-AssistedParticleEngineering 75

    Anant Paradkar and Ravindra Dhumal

    Chapter 5 ApplicationsofSonochemistryinPharmaceuticalSciences97

    Robina Farooq

    Chapter 6 Ultrasound-AssistedSynthesisofNanomaterials 105

    Siamak Dadras, Mohammad Javad Torkamany, and Jamshid Sabbaghzadeh

    Chapter 7 UltrasoundforFruitandVegetableQualityEvaluation 129

    Amos Mizrach

    Chapter 8 UltrasoundinFoodTechnology 163

    Taner Baysal and Aslihan Demirdoven

    Chapter 9 UseofUltrasoundinCoordinationandOrganometallicChemistry 183

    Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova, and Ubaldo Ortiz-Mndez

    Chapter 10 UltrasoundinSyntheticApplicationsandOrganicChemistry 213

    Murlidhar S. Shingare and Bapurao B. Shingate

  • viii Contents

    Chapter 11 UltrasoundinSyntheticApplicationsandOrganicChemistry 263

    Rodrigo Cella

    Chapter 12 UltrasoundApplicationsinSyntheticOrganicChemistry 281

    Mohammad Majid Mojtahedi and Mohammad Saeed Abaee

    Chapter 13 Ultrasound-AssistedAnaerobicDigestionofSludge 323

    Ackmez Mudhoo and Sanjay K. Sharma

    Chapter 14 UltrasoundApplicationinAnalysesofOrganicPollutantsinEnvironment 345

    Senar Ozcan, Ali Tor, and Mehmet Emin Aydin

    Chapter 15 ApplicationsofUltrasoundinWaterandWastewaterTreatment 373

    Dong Chen

    Chapter 16 UltrasoundandSonochemistryintheTreatmentofContaminatedSoilsbyPersistentOrganicPollutants407

    Reena Amatya Shrestha, Ackmez Mudhoo, Thuy-Duong Pham, and Mika Sillanp

    Chapter 17 RoleofHeterogeneousCatalysisintheSonocatalyticDegradationofOrganicPollutantsinWastewater 419

    Juan A. Melero, Fernando Martnez, RaulMolina, and Yolanda Segura

    Chapter 18 DegradationofOrganicPollutantsUsingUltrasound447

    Kandasamy Thangavadivel, Mallavarapu Megharaj, Ackmez Mudhoo, andRavi Naidu

    Chapter 19 ApplicationsofUltrasoundtoPolymerSynthesis 475

    Boon Mian Teo, Franz Grieser, andMuthupandian Ashokkumar

    Chapter 20 MechanisticAspectsofUltrasound-EnhancedPhysicalandChemicalProcesses501

    Vijayanand S. Moholkar, Thirugnanasambandam Sivasankar, and Venkata Swamy Nalajala

    Chapter 21 Ultrasound-AssistedIndustrialSynthesisandProcesses 535

    Cezar Augusto Bizzi, Edson Irineu Mller, ricoMarlondeMoraes Flores, Fbio Andrei Duarte, Mauro Korn, Matheus Augusto Gonalves Nunes, Paolade Azevedo Mello, and Valderi Luiz Dressler

  • Contents ix

    Chapter 22 DevelopmentofSonochemicalReactor 581

    Keiji Yasuda and Shinobu Koda

    Chapter 23 UltrasoundforBetterReactorDesign:HowChemicalEngineeringToolsCanHelpSonoreactorCharacterizationandScale-Up 599

    Jean-Yves Hihn, Marie-Laure Doche, AudreyMandroyan, Loic Hallez, andBruno G. Pollet

    Chapter 24 Sonoelectrochemistry:FromTheorytoApplications 623

    Bruno G. Pollet and Jean-Yves Hihn

    Chapter 25 CombinedUltrasoundMicrowaveTechnologies 659

    Pedro Cintas, Giancarlo Cravotto, and Antonio Canals

    Chapter 26 IntegratingUltrasoundwithOtherGreenTechnologies:TowardSustainableChemistry 675

    Julien Estager

  • xi

    ForewordIn theeyesofnature,wecannotachieveasustainable futureby the linearextensionofexistingtechnologiesThisobservationdrivesthequestfornewwaystopracticechemistryOverthepast20years,anapproachtochemistryandengineeringdefinedbythe12principlesofgreenchemistryandgreenengineeringoffersusaprovenandsystematicwaytoaddresssustainabilityfromafirstdesignbasisWeknowtherearemorethan85,000chemicalsusedincommercearoundtheworldandthevastmajorityhasneverbeentestedforhumanhealthandenvironmentalimpactsWeknowtherearetrillionsofdollarsofcapitalinvestedinexistingchemicalmanufacturingplantsthatmustbeconsideredinanytransitionplanTherearenosilverbulletstoaddressingthesystemsalreadyinplaceHowever,asteadyandever-expandingapplicationoftheprinciplesofgreenchemistryandengineeringovertimewillallowustomakeprogressinreplacingourdependenceonpetroleum-derivedfuelsandfeedstocks

    Chemists todaycangototheliteratureandfindtools tosynthesizejustaboutanycompoundonecanconceivebasedonestablishedtransformations,manyofwhichhavebeenaroundformorethanahundredyearsYetweknowmandoesnotpracticechemistrythewaynaturedoeschemistryandthereinliesourhopeforthefutureWemustcontinuetoinventanddevelopthetoolsofgreenchemistrytoallowatransitiontobio-inspiredchemistry

    ThisbookisonesuchcommitmenttobuildingthenewgreenchemistrytoolboxItisfocusedprimarily on transformations aided by the use of sonochemistry (acoustic cavitation) The abil-ity todeliver rapid,high-densityenergy toasystemfacilitatesnewpossibilitiesWhile thecon-ceptsofsonochemistryhavebeenknownformorethan80years,in-depthunderstandingofthisphenomenoncontinues toevolveRecently, the techniquehasbegun to seeapplications rangingfromnanoparticleformationtocarbohydratesynthesistowastedestructionThus,sonochemistryappearstobeapplicabletoawidevarietyofchemicaltransformationsandhasthepotentialtoinflu-enceyields,dramaticallyreducereaction times,andincrease throughputAll theseelementsareconsistentwiththeprinciplesofgreenchemistryandengineering

    Aswithanynewtechnology,agradualdevelopmentandadoptionprocesssetsinInitialeffortsfocusonunderstandingandscopingthenewtoolsandwenowseesyntheticsonochemistrytechnol-ogyfindinganever-increasingvarietyofapplications

    Thisbookrepresentsawonderfulefforttobringtogetherthelatestdevelopmentsinthefieldandshouldproveusefultoallpracticingscientistswhohaveaninterestinexploringnewmethodstoinputenergyintoareactionprocess

    P. Robert Peoples, PhDAmerican Chemical SocietyGreen Chemistry Institute

    Washington, District of Columbia

  • xiii

    PrefaceFollowingtheestablishmentofthe12 Principles of Green Chemistry(AnastasandWarner,1998),therehasbeenasteadygrowthinourunderstandingofwhatgreenchemistrymeansGreenchem-istryisarelativelyyoungscienceinitsownrespectInterestinthisdisciplineisgrowingrapidlyandistransgressingseveralcascadingresearchareasinscience,engineering,andtechnology(SharmaandMudhoo,2010)Theunderstandingoftheprinciplesthatbackbonegreenchemistryhasspurredmanyoutstanding efforts to implement chemical processes and innovative technologies that areincrementallytakingmodernsocietytowardsaferandmoresustainablepracticesandproductsthatembodyandfosterenvironmentalstewardship

    Sonochemistryisabranchofchemicalresearchdealingwiththechemicaleffectsandapplica-tions of ultrasonic waves, ie, longitudinal sound waves with frequencies above 20kHz that liebeyond theupper limit of humanhearingalthough the rangeof ultrasonic frequencies canbeextendedupto100MHz(CravottoandCintas,2006)Sonochemistryshareswithsustainablechem-istrysuchaimsastheuseoflesshazardouschemicalsandsolvents,areducedenergyconsumption,andanincreasedproductselectivity(CravottoandCintas,2006)In thisregard,ultrasonicheat-ingand irradiationare inmany instancescomplementary techniques fordrivingchemical reac-tionswithahigherefficiencyandeffectivenessUltrasound,anefficientandvirtuallyinnocuousmeansofactivationinsyntheticchemistry,hasbeenemployedfordecadeswithvariedsuccesses(CravottoandCintas,2006)Notonlycan thishigh-energy inputenhancemechanicaleffects inheterogeneousprocesses,butitisalsoknowntoinducenewreactivitiesleadingtotheformationofunexpectedchemicalspeciesSonochemistryisuniqueinitsremarkablephenomenonofcavitation,currentlythesubjectofintenseresearch,andhasalreadyproducedinterestingresults

    Imagingtechniquesusingecholocation,suchasSONARsystemsfortargetdetectionorechog-raphyinhealthcare,representperhaps thebest-knownuseofultrasoundChemicalapplicationsextendtosuchvariedareasasorganicandorganometallicchemistry,materialsscience,aerogels,water and wastewater treatment, food chemistry, and medicinal research (Cravotto and Cintas,2006)Thewritingofthishandbookhasbeenundertakenbecauseitwasearnestlyfelttobringfor-wardanupdatedpoolofthelatestresearchanddevelopmentfindingsthatreasonablyencompassafairnumberofmostrelevantaspectslinkedtoandlinkinggreenchemistrypracticestoenvironmen-talsustainabilitythroughtheusesandapplicationsofultrasound-mediatedandultrasound-assistedbiological,biochemical,chemical,andphysicalprocessesInthishandbook,arichpanoplyofnovelresearchfindingsandapplicationsofultrasonicradiationandsonochemistryhavebeenpresentedSeveralchaptershavebeenpresentedinthefollowingareas:medicalapplications,drugandgenedelivery,nanotechnology,foodtechnology,syntheticapplicationsandorganicchemistry,anaero-bicdigestion,pollutantdegradation,polymerchemistry,industrialsynthesesandprocesses,reactordesign,electrochemicalsystems,andcombinedultrasoundmicrowavetechnologies

    Wesincerelyhope thishandbookprovidesa robustpoolofknowledgeon thegreenapplica-tionsofsonochemistryWealsofeelitprovidesup-to-dateinformationonsomeselectedfieldsofappliedresearchofultrasoundwheretheprinciplesofgreenchemistryarebeingembracedbythescientific,engineering,andtechnologicalcommunitiesforsafeguardingandimprovingthequalityoftheenvironmentandhumanlife,atlargeWealsowanttosharethatProfessorSanjayKSharmaandAMudhoohaverecentlyeditedabook,Green Chemistry for Environmental Sustainability(CRCPress,Taylor&FrancisGroup,2010),whichisanup-to-dateandhumblecontributiontotheliteratureongreenchemistry

  • xiv Preface

    ForMATLABandSimulinkproductinformation,pleasecontact:

    TheMathWorks,Inc3AppleHillDriveNatick,MA,01760-2098USATel:508-647-7000Fax:508-647-7001E-mail:info@mathworkscomWeb:wwwmathworkscom

    REFERENCES

    Anastas,PTandWarner,JC1998Green Chemistry: Theory and PracticeNewYork:OxfordUniversityPress

    Cravotto,GandCintas,P2006Powerultrasoundinorganicsynthesis:Movingcavitationalchemistryfromacademiatoinnovativeandlarge-scaleapplicationsChemical Society Reviews,35:18096

    Sharma,SKandMudhoo,A2010Green Chemistry for Environmental SustainabilityBocaRaton,FL:CRCPress,Taylor&FrancisGroup

    Dong ChenSanjay K. Sharma

    Ackmez Mudhoo

  • xv

    AcknowledgmentsThisboldundertakinghasprovideduswithauniqueopportunitytorenewsomeoldfriendshipsandhopefullyweavesomenewonesinpursuitofgatheringanddistillingtheexpertiserequiredforedit-ingandcompilingthishandbookontheapplicationsofsonochemistryforsustainabalityWithoutany reservation, we heartily thank our esteemed contributors for the way they have graciouslyrespondedwithcharacteristicgoodhumorandpatiencetoourdeadlinesWealsoappreciatetheirconstructivecriticismsandsuggestions,whichhaveenhancedthecontentofthisworkWehopetheyeffortlesslyfeelthatthefinalresultdoesamplejusticetotheirpainstakingeffortsdeployedinpreparingtheirrespectivechapter(s)Weareequallyappreciativetowardothercolleaguesandfel-lowresearcherswhovolunteeredtheirhelpinreviewingthescientificcontentsofthemanuscripts

    ProfessorSanjayKSharmaespeciallyexpresseshisheartfeltgratitudetohisrespectedparents,DrMPSharmaandSmtParmeshwariDeviHealsoextendshisregardstoProfessorRKBansal,whohasbeenasourceofinspirationtohim,andtoDrVKAgrawal,chairmanoftheInstituteofEngineeringandTechnology,Alwar(India),forhisencouragingwords

    Ackmez Mudhoo expresses his appreciation for the faith his parents, Azad A Mudhoo andRuxanaBMudhoo,hisbrotherAssad, sister-in-lawTeena,and lovelynieceYannahaveplacedinhimthroughoutthewritingandcompilationofthishandbookHeisalsothankfultoProfessorKonradMorgan(vice-chancellorandchairmanofSenateof theUniversityofMauritius,Rduit,Mauritius), Professor Romeela Mohee (dean, Faculty of Engineering, University of Mauritius,Rduit,Mauritius),ProfessorPavelPazdera(MasarykUniversity,Brno,CzechRepublic),ProfessorMuthupandian Ashokkumar (Particulate Fluids Processing Centre, University of Melbourne,Australia),ProfessorGiancarloCravotto(UniversitdiTorino,Torino,Italy)andDrVinodKGarg(GuruJambheshwarUniversityofScienceandTechnology,Hisar,Haryana,India)fortheirpres-ence,encouragement,andsupport

    Note:Thisworkwas supportedbyNewFacultyStartingFund fromIndianaUniversityPurdueUniversityFortWayne

  • xvii

    EditorsDr. Dong Chen is an assistant professor at Indiana University-Purdue University Fort Wayne, Indiana He has been doingimportantfundamentalresearchinsonochemistry,environmentalchemistry,andwaterandwastewater treatment technologiesHehas served as the principal and coprincipal investigator of sev-eralfundedscientificresearchprojectsworthover$1millionDrChensworkenjoysahighreputationintheinternationalscientificcommunityandhasbeenwidelycitedbyhispeersHisresearchintheareaofultrasoniccontrolofmembranefoulingwasreportedbymanyscientificnewsmedia,includingNatureHehasmorethan30journal,book,andconferencepublicationsand2USpatentsHehasbeenservingasagrantreviewerfortheUSDepartmentof

    AgricultureandNationalInstituteforWaterResourcesresearchprogramsInaddition,DrChenisaroutinereviewerfor12scientificjournalsandbooksHereceivedhisPhDincivil(environmental)engineeringwithaminoringeologicalsciencefromTheOhioStateUniversity,Columbus,Ohio,in2005Besideshisresearchexperience,DrChenhadbeenworkingasafull-timeengineeringconsultantformorethantwoyearsHeisalicensedprofessionalengineerinthestateofOhio

    Professor (Dr.) Sanjay K. Sharmaisawell-knownauthorandeditor of many books, research journals, and hundreds of arti-cles over the last 20yearsOneof his books,Green Chemistry for Environmental Sustainability,hasbeenrecentlypublishedbyCRCTaylor&FrancisGroup,LLC,BocaRaton,FloridaHehasalsobeenappointedasserieseditorbySpringersLondonfortheirprestigiousbookseriesGreen Chemistry for Sustainability

    DrSharmacompletedhispostgraduationin1995andreceivedhis PhD from the University of Rajasthan, Jaipur, in 1999 HisPhDthesiscoveredthefieldofsyntheticorganophosphoruschem-istry and computational chemistry In 1999, he started workingadditionally in the field of environmental chemistry and green

    chemistryandproducedverygoodresearchpapersandbooksduringhis12yearlongstayattheInstituteofEngineeringandTechnology,Alwar,Rajasthan,India

    Hisworkinthefieldofgreencorrosioninhibitorsiswellrecognizedandhasbeenwellreceivedby the international research community He is also actively involved in raising environmentalawareness,especiallywithregardtorainwaterharvesting

    Presently, Dr Sharma works as a professor of chemistry at Jaipur Engineering College andResearchCentre,JECRCFoundation,Jaipur,Rajasthan,Indiaoneof thebestengineeringcol-leges in North Indiawhere he teaches engineering chemistry and environmental engineeringcoursestoBTechstudentsandpursueshisresearchinterestsHehasdeliveredmanyguestlecturesondifferenttopicsofappliedchemistryinvariousreputedinstitutionsHisstudentsappreciatehisteachingskillsandholdhiminhighesteem

    DrSharmaisamemberoftheAmericanChemicalSociety(UnitedStates),theInternationalSocietyforEnvironmentalInformationSciences(Canada),andGreenChemistryNetwork(RoyalSocietyofChemists,UnitedKingdom)Heisalsoalifememberofvariousinternationalprofes-sionalsocieties,includingtheInternationalSocietyofAnalyticalScientists,theIndianCouncilof

  • xviii Editors

    Chemists, the International Congress of Chemistry and Environment, and the Indian ChemicalSociety

    DrSharmahas9booksonchemistryandover40researchpapersofnationalandinternationalreputetohiscredit,whichissufficientevidenceofhisfair trackrecordasaresearcherHealsoworksaseditorinchiefforthreeinternationalresearchjournals,RASAYAN Journal of Chemistry; the International Journal of Chemical, Environmental and Pharmaceutical Research; and the International Journal of Water Treatment and Green Chemistry,andservesasareviewerformanyotherinternationaljournals,includingtheprestigiousGreen Chemistry Letters and Reviews

    Ackmez Mudhoo obtained his BEng (Hons) in chemical andenvironmental engineering from the University of Mauritius in2004 His research interests encompass the bioremediation ofsolid wastes and wastewaters by composting, anaerobic diges-tion, phytoremediation, and biosorption Ackmez has 48 inter-national journal publications (original research papers, criticalreviews,andbookchapters)and5conferencepaperstohiscredit,and an additional 7 research and review papers in the pipelinein his early career Ackmez also serves as peer reviewer forWaste Management; the International Journal of Environment and Waste Management; the Journal of Hazardous Materials;the Journal of Environmental Informatics; Environmental

    Engineering Science;RASAYAN Journal of Chemistry;Ecological Engineering;Green Chemistry Letters and Reviews;Chemical Engineering Journal;andWater ResearchHeisalsotheeditorinchieffortheInternational Journal of Process Wastes TreatmentandtheInternational Journal of Wastewater Treatment and Green Chemistry,andservesashandlingeditorfortheInternational Journal of Environment and Waste ManagementandtheInternational Journal of Environmental EngineeringAckmezalsoreckonsprofessionalexperienceasconsultantchemicalprocessengineerforChinaInternationalWater&ElectricCorp(CWE,Mauritius)fromFebruary2006toMarch2008 He is also the coeditor of Green Chemistry for Environmental Sustainability (Publisher:CRCPress,Taylor&FrancisGroup,LLC,BocaRaton,Florida,454pp,ISBN:978-1-4398-2473-3)HeispresentlyalecturerintheDepartmentofChemicalandEnvironmentalEngineeringat theUniversityofMauritius

  • xix

    Contributors

    Mohammad Saeed AbaeeFacultyofOrganicChemistryandNatural

    ProductsChemistryandChemicalEngineering

    ResearchCenterofIranTehran,Iran

    Muthupandian AshokkumarSchoolofChemistryUniversityofMelbourneParkville,Victoria,Australia

    Mehmet Emin AydinEnvironmentalEngineeringDepartmentSelcukUniversityKonya,Turkey

    Taner BaysalFacultyofEngineeringDepartmentofFoodEngineeringEgeUniversityIzmir,Turkey

    Cezar Augusto BizziDepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil

    Antonio CanalsDepartmentofAnalyticalChemistryNutritionandFoodScienceandInstitute

    ofMaterialsUniversityofAlicanteAlicante,Spain

    Rodrigo CellaOxitenoS/AIndustryandTradeSantoAndre,Brazil

    Dong ChenDepartmentofEngineeringIndianaUniversityPurdueUniversityFortWayne,Indiana

    Pedro CintasFacultyofScienceDepartmentofOrganicandInorganic

    ChemistryUniversityofExtremaduraBadajoz,Spain

    Andrew CobleyFacultyofHealthandLifeSciencesTheSonochemistryCentreCoventryUniversityCoventry,UnitedKingdom

    Giancarlo CravottoDepartmentofScienceandTechnology

    ofDrugUniversityofTurinTorino,Italy

    Siamak DadrasLaserMaterialsProcessingLaboratoryIranianNationalCentreforLaserScience

    andTechnologyTehran,Iran

    Aslihan DemirdovenFacultyofEngineeringandNaturalSciencesDepartmentofFoodEngineeringGaziosmanpaaUniversityTokat,Turkey

    Ravindra DhumalCentreforPharmaceutical

    EngineeringScienceUniversityofBradfordWestYorkshire,UnitedKingdom

    Marie-Laure DocheNationalCentreforScientificResearchUniversityofFranche-ComteBesanon,France

    Valderi Luiz DresslerDepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil

  • xx Contributors

    Fbio Andrei DuarteSchoolofChemicalandFoodFederalUniversityofRioGrandeRioGrandedoSul,Brazil

    Julien EstagerTheQUILLResearchCentreTheQueensUniversityofBelfastBelfast,UnitedKingdom

    Robina FarooqDepartmentofChemicalEngineeringCOMSATSInstituteofInformation

    TechnologyLahore,Pakistan

    rico Marlon de Moraes FloresDepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil

    Franz GrieserSchoolofChemistryUniversityofMelbourneParkville,Victoria,Australia

    Loic HallezNationalCentreforScientificResearchUniversityofFranche-ComteBesanon,France

    Jean-Yves HihnNationalCentreforScientificResearchUniversityofFranche-ComteBesanon,France

    Boris Ildusovich KharisovSchoolofChemicalSciencesAutonomousUniversityofNuevoLeonMonterrey,Mexico

    Oxana Vasilievna KharissovaSchoolofPhysico-MathematicalSciencesAutonomousUniversityofNuevoLeonMonterrey,Mexico

    Shinobu KodaDepartmentofMolecularDesign

    andEngineeringGraduationSchoolofEngineeringNagoyaUniversityAichi,Japan

    Mauro KornDepartmentofMathematicalSciencesandEarthUniversityofBahiaSalvador,Brazil

    Audrey MandroyanCentreNationaldelaRechercheScientifiqueUniversitdeFranche-ComtBesanon,France

    Fernando MartnezDepartmentofChemicalandEnvironmental

    TechnologyUniversidadReyJuanCarlosMadrid,Spain

    Timothy J. MasonFacultyofHealthandLifeSciencesTheSonochemistryCentreCoventryUniversityCoventry,UnitedKingdom

    Mallavarapu MegharajCentreforEnvironmentalRiskAssessment

    andRemediationUniversityofSouthAustraliaAdelaide,SouthAustralia,Australia

    and

    CooperativeResearchCentreforContaminationAssessmentandRemediationoftheEnvironment

    Salisbury,SouthAustralia,Australia

    Juan A. MeleroDepartmentofChemicalandEnvironmental

    TechnologyUniversidadReyJuanCarlosMadrid,Spain

    Paola de Azevedo MelloDepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil

    Amos MizrachAgriculturalResearchOrganizationTheVolcaniCenterTheInstituteofAgriculturalEngineeringBetDagan,Israel

  • Contributors xxi

    Vijayanand S. MoholkarDepartmentofChemicalEngineeringIndianInstituteofTechnologyGuwahatiGuwahati,India

    Mohammad Majid MojtahediFacultyofOrganicChemistryandNatural

    ProductsChemistryandChemicalEngineering

    ResearchCenterofIranTehran,Iran

    Raul MolinaDepartmentofChemicalandEnvironmental

    TechnologyKingJuanCarlosUniversityMadrid,Spain

    Ackmez MudhooFacultyofEngineeringDepartmentofChemicalandEnvironmental

    EngineeringUniversityofMauritiusReduit,Mauritius

    Edson Irineu MllerDepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil

    Ravi NaiduCentreforEnvironmentalRiskAssessment

    andRemediationUniversityofSouthAustraliaAdelaide,SouthAustralia,Australia

    and

    CooperativeResearchCentreforContaminationAssessmentandRemediationoftheEnvironment

    Salisbury,SouthAustralia,Australia

    Venkata Swamy NalajalaDepartmentofChemicalEngineeringIndianInstituteofTechnologyGuwahatiGuwahati,India

    Matheus Augusto Gonalves NunesDepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil

    Ubaldo Ortiz-MndezSchoolofMechanicalandElectrical

    EngineeringAutonomousUniversityofNuevoLeonMonterrey,Mxico

    Senar OzcanEnvironmentalEngineeringDepartmentSelcukUniversityKonya,Turkey

    Larisa PaniwnykFacultyofHealthandLifeSciencesTheSonochemistryCentreCoventryUniversityCoventry,UnitedKingdom

    Anant ParadkarCentreforPharmaceutical

    EngineeringScienceUniversityofBradfordWestYorkshire,UnitedKingdom

    Pavel PazderaFacultyofSciencesDepartmentofChemistryCentreforSynthesesatSustainableConditions

    andTheirManagementMasarykUniversityBrno,CzechRepublic

    Thuy-Duong PhamLaboratoryofAppliedEnvironmental

    ChemistryDepartmentofEnvironmentalSciencesUniversityofEasternFinlandMikkeli,Finland

    Bruno G. PolletPEMFuelCellResearchGroupCentreforHydrogenandFuelCellResearchSchoolofChemicalEngineeringTheUniversityofBirminghamEdgbaston,UnitedKingdom

  • xxii Contributors

    Jamshid SabbaghzadehIranianNationalCentreforLaserScience

    andTechnologyTehran,Iran

    Veronica SaezFacultyofHealthandLifeSciencesTheSonochemistryCenterCoventryUniversityCoventry,UnitedKingdom

    Yolanda SeguraDepartmentofChemicalandEnvironmental

    TechnologyUniversidadReyJuanCarlosMadrid,Spain

    Sanjay K. SharmaJaipurEngineeringCollege&

    ResearchCentreJaipur,Rajasthan,India

    Murlidhar S. ShingareDepartmentofChemistryDrBabasahebAmbedkarMarathwada

    UniversityAurangabad,India

    Bapurao B. ShingateDepartmentofChemistryDrBabasahebAmbedkarMarathwada

    UniversityAurangabad,India

    Reena Amatya ShresthaDepartmentofCivilandEnvironmental

    EngineeringLehighUniversityBethlehem,Pennsylvania

    Mika SillanpLaboratoryofAppliedEnvironmental

    ChemistryDepartmentofEnvironmentalSciencesUniversityofEasternFinland

    and

    FacultyofTechnologyLappeenrantaUniversityofTechnologyMikkeli,Finland

    Thirugnanasambandam SivasankarDepartmentofChemicalEngineeringNationalInstituteofTechnologyTiruchirappalli,India

    Boon Mian TeoSchoolofChemistryUniversityofMelbourneParkville,Victoria,Australia

    Kandasamy ThangavadivelCentreforEnvironmentalRiskAssessment

    andRemediationUniversityofSouthAustraliaAdelaide,SouthAustralia,Australia

    and

    CooperativeResearchCentreforContaminationAssessmentandRemediationoftheEnvironment

    Salisbury,SouthAustralia,Australia

    Ali TorEnvironmentalEngineeringDepartmentSelcukUniversityKonya,Turkey

    Mohammad Javad TorkamanyLaserMaterialsProcessingLaboratoryIranianNationalCentreforLaserScience

    andTechnologyTehran,Iran

    Keiji YasudaDepartmentofChemicalEngineeringGraduateSchoolofEngineeringNagoyaUniversityAichi,Japan

  • 11 EmergingUbiquityofGreenChemistryinEngineeringandTechnology

    Pavel Pazdera

    CAUSES OF A CHEMISTRY CURSE

    Thetermschemistry,chemicalindustry,andchemicalsevokeinthemindsofpeopleverynegativeassociationsandoftentimesexcitefearsThereasonsforthesenegativeassociationsareobservedfromthedaysofantiquityuptothepresentduetonegativeorratherbadhumanexperiencesinanumberofphenomenaconnectedwithchemistryanditsconquest

    Atthepresenttime,thesenegativeassociationsarealsoevokedandprovokedbythemediaorbysomeecologicalactivistsItmayalsobesaidthatsuchnegativeassociationswithregardtochemis-tryanditssymptomsarebasedonrationalorirrationalfictionsandfeelings

    InancienttimesandintheMiddleAgeswhenalchemyreignedasthepredecessorofpresentchemistry,peopleconnectedalchemyandalchemistactivitieswithevils,ghosts,demons,ghouls,devils,andSataninspiteofallpositivethingsthatitbroughttohumancivilizationsuchasnewpracticalandapplicableknowledge,findingsandobservations,chemicalelements,compounds,andnewmedicalproductsOntheotherhand,newpoisonsandtoxicdrugs,causticagents,blackgun-powder,andothernegativitieswereinventedandused(Armitage,2010;Brown,2006)

    ThenineteenthandthetwentiethcenturiesbroughttomankindagreatdealofnewdiscoveriesaswellaspracticalandapplicableknowledgeAlso,duringthistimechemistrygavehumankindnewmaterials,medicalproducts,phytoeffectors,newtechnologies,andsyntheticprocedures(phytoef-fectorsmaybedefinedassubstancesortheirmixturesthatenablevegetablestodevelopprosper-ouslyfromgerminationtoharvesttimeandtheycontainnotonlypesticidesbutalsostimulantsforgrowthandimmunity)

    Chemistry helped to boost the quality of human life and its development though it had itsowndisadvantagesMoreover,chemistryanditsproductsmaybemisappropriatedknowinglyor

    CONTENTS

    CausesofaChemistryCurse1WastesasRealEffectoftheAnthropogenicActivities4AnthropogenicWastesandTheirImpactsonNatureandDevelopmentofHumankind4ChemicalWastes7ChemicalWastesandSyntheticChemistryMetrics9SustainableDevelopment:StartingPointandPreventionofanUlteriorBeingofHumanCivilization 12SustainableDevelopment,Chemistry,andItsEngineeringandTechnologicalApplication 14PrinciplesandGoalsofGreenChemistry 16MethodologyandMethodsofGreenChemistry 17ReferencesandLiteratureResources 19

  • 2 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    unpredictably Several examples of badly applied chemistry can be demonstrated Phosgene(carbonyl dichloride, dichloromethane) (Merck Index, 11th edition, 7310), yperite (mustard gas,1,5-dichloro-3-thiapentaneorbis(2-chloroethyl)sulfide)(Cook,1999),newbrilliantexplosives(eg,2,4,6-trinitrophenolTNP, 2,4,6-trinitrotolueneTNT) (Urbanski, 1964; Ferro and Morrow Jr,2005),andotherchemicalproductsweredevelopedandusedforkillingsoldiersduringWorldWarIPhosgeneaswellasdiphosgene(trichloromethylchloroformate)ortriphosgene(bis(trichloromethyl)carbonate),safertohandlethanphosgene(KuritaandIwakura,1979),wasusedforthesynthesisoffunctionalderivativesofcarbonicacidForexample,carbamateshavebeenappliedaspesticidesorplastics(polyurethane)

    AtthetimeofWorldWarII,manymen,mainlyJews,werepoisonedwithCyclonB(ie,hydro-gencyanide)(Zabecki,1999)ingaschambersofNaziconcentrationcampsWidespreadbiologi-calapplicationofhydrogencyanidewasinitiallylimitedtothefumigationofvaluabletreecrops,namely,citrusfruit,spreadingin1887fromCaliforniatoSpainandothercountries(Baur,1984)HydrogencyanideisstillinproductionintheCzechRepublicintheSyntheticFactoryDraslovkaKolnCo in thecityofKolnunder the trademarknameUraganD2and issoldforeradicatinginsectsandsmallanimalsOtherfumigantssuchasmethylbromide,cyanogens(dicyan),andcar-bonylsulfidearealsoused(MessengerandBraun,2000)Since2000BC,thehumanpopulationhasutilizedsubstancesor theirmixtureswithphytoeffectoraction toprotectand intensify theircropsSomeofthephytoeffectors,whichwerelatercalledpesticides,wereatfirstappliedasnaturalcompounds,eg,sulfurorextractsfromtobaccoOvertime,thepreparationofsyntheticmoleculesandsubstancesbegan

    Two types of pesticides played a key role in the middle of the twentieth century: the veryunfortunate case of DDT (1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane) and the 1:1 mixtureof isooctyl 2,4-dichlorophenoxyacetate and 2,4,5-trichlorophenoxyacetate contaminated by2,3,7,8-tetrachlordibenzo-p-dioxine (TCDD), well known as Agent Orange DDT is one of theworldsmostfamoussyntheticpesticideswithalong,unique,andcontroversialhistoryTheSwisschemistPaulHermannMllerwasawarded theNobelPrize inPhysiologyorMedicine in1948forhisdiscoveryofthehighefficiencyofDDTasacontactpoisonagainstseveralarthropods(http://nobelprizeorg/nobel_prizes/medicine/laureates/1948/)AfterWorldWarII,DDTwasusedasanagriculturalmiraculousinsecticide,andsoonitsproductionandwidespreaduseeruptedItsdeclineoccurredafter thediscovery thatDDTisapersistentorganicpollutantand isextremelyhydrophobicandstronglyabsorbedbysoilFurther,DDTanditsmetabolitesaretoxictoawiderange of animals in addition to insects, includingmarine animals suchas crayfish,daphnids, seashrimp,andmanyspeciesoffishTheyarelesstoxictomammalsbutmaybemoderatelytoxictosomeamphibianspecies,especiallyinthelarvalstageMostsignificantly,theyareareproductivetoxicantforcertainmarineandcontinentalbirdspeciesThesearchforfurthernegativeeffectsofDDThasbeenpursuedrelentlesslybytheWorldHealthOrganizationandbyotherinternationalandnationalspecializedagenciesItisaterriblefactthatsomepoorAfricancountriesusedDDTtilllately(USEnvironmentalProtectionAgency,1975)

    AgentOrange is thecodenameforoneof theherbicidesanddefoliantsusedby theUSArmyinitsherbicidalwarfareprogramduringtheSecondVietnamWar(from1961to1971)(Stellman,2003)

    Dioxin,namely,2,3,7,8-tetrachlordibenzo-p-dioxin, is thesyntheticby-productof thereactionof two phenoxyl herbicides mentioned earlier: iso-octyl ester of 2,4-dichlorophenoxyacetic acidand2,4,5-trichlorophenoxyaceticacidAgentOrangeisnotachemicalagentagainstmilitantsItwasappliedtoaidthesapperagentindestroyingthelandscapeblanketedbyfull-grownplantsandforestswhichservedasanaturalcoverforthenativewarriorsofVietConginVietnam,Laos,andCambodiaHowever, allnegative impactsofAgentOrangewereobservedbothon thewarriorsofVietCongandtheUSmilitaryVietnamesescientistshavebeenconductingepidemiologicalresearchontheimpactofdioxinonhumanhealthsincethelate1960sAccordingtotheVietnam

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 3

    RedCross,asmanyas3millionVietnamesepeoplewereaffectedbyAgentOrangeincludingatleast150,000childrenbornwithcongenitaldefectsThequestionastowhetherornottheexposuretodioxinaffectedthehealthof theVietnamesewasdebatedsincethetimeof thewarwhenthefirstanimalstudieswerereleasedshowingthat2,3,7,8-tetrachlorodibenzo-p-dioxinecausedcan-cerandcongenitaldefectsinrodentsStudiesofUSveteranswhoservedinthesouthduringthewarcomparedtothosewhodidnotgosouthfoundincreasedratesofcancerandnerve,digestive,skin,andrespiratorydisordersamongtheformerAmongthecancers,veteransfromthesouthhadhigher rates of throat cancer, acute/chronic leukemia, Hodgkins lymphoma and non-Hodgkinslymphoma,prostatecancer,lungcancer,softtissuesarcoma,andlivercancer(USEnvironmentalProtectionAgencyDioxinWebsite)

    The second very unfortunate case connected with 2,3,7,8-tetrachlordibenzo-p-dioxine tookplace on July 10, 1976, in a small chemical manufacturing plant approximately 15km northofMilan in theLombardy region in Italyand isknownasSevesoDisaster (DeMarchietal,1972) The factory of the company Industrie Chimiche Meda Societ Azionaria (ICMESA)produced 2,4,5-trichlorophenol from 1,2,4,5-tetrachlorobenzene as an intermediate productfor 2,4,5-trichlorophenoxyacetic acid The reaction of 1,2,4,5-tetrachlorobenzene with sodiumhydroxideshouldhaveproceededundercontrolledtemperatureHowever,excessivepressureputtheoperationoutofcontroland6tonsofreactionmaterialwasdispersedoveranareaof18km2This material also included about 1kg of 2,3,7,8-tetrachlorodibenzodioxin, which is normallyseenonly in traceamountsof less than1ppmHowever, in thehigher-temperatureconditionsassociatedwiththerunawayreaction,theproductionofthementioneddioxinapparentlyreached100ppmormore Industrialsafety regulationscalled theSevesoDirectivepassed theEuropeanCommunity in1982 imposingmorestringentandharsher industrial regulationsTheSevesoDirective was updated in 1999, amended again in 2005, and is currently referred to as theSevesoIIDirective(orCOMAHRegulations in theUnitedKingdom)Similardirectiveswerealsoestablishedbygovernmentagenciesofothercountries(eg,USEnvironmentalProtectionAgencyEPA)

    AnothersimilardisastercausedbyerroneoushandlingoftechnologicalequipmentoccurredduringthenightofDecember23,1984,inBhopal,MadhyaPradesh,IndiaThisindustrialcatas-trophe isgenerallywellknownas theBhopalDisasteror theBhopalGasTragedy(Broughton,2005)InapesticideplantofUnionCarbideIndiaLimited(UCIL),atankcontainingabout40tonsofmethylisocyanate(MIC)asanintermediateinthemanufacturingthepesticideCarbaryl(1-naphthylN-methylcarbamate,trademarkSevin)enteredintocontactwithlargeamountsofwaterThiscausedveryrapiddecompositioncombinedwithanacuteriseintemperatureandpressure(exothermicreactionundercarbondioxideformation),andleadingtotheworstindustrialdisastertodateAnexplosionresultedinalargevolumeofmixedtoxicgases,includingMIC,whichcon-taminatedtheregionofBhopalTheofficialdeathtollwasinitiallyrecordedataround5000Manysourcesindicatedthat18,000haddiedwithin2weeks,anditisestimatedthataround8000havediedsincethenasvictimsofgas-poisoning-relateddiseasesthatcroppedup(Browning,1993)Thedecisivefactorsthatcontributedtothedisasterincludethechemicalplantspoorlychosenlocation,theuseofhazardousingredientchemicalssuchasMICinsteadoflessdangerousones,storageofthesechemicalsinlargetanksinsteadofseveralsmallerstoragetanks,poormaintenanceandcontrolofequipmentatthechemicalplant,failureofseveralsafetysystems,whichwerenotinoperationatthetime(Carbarylisnotatpresentregisteredforpesticideusebecauseitisclassifiedasalikelyhumancarcinogen)

    Boththesedisastersledtotighterspecificationsofsafetyinthechemicalindustryandtechnol-ogyapplicationsectorsThetragedyofThalidomide(Mogheetal,2008)isalsoaverywell-knownchemicaldisasterbecauseofliteraryandcinematographicelaborationsThalidomide((RS)-2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione) was introduced as a sedative drug in the late1950sinWestGermanyandconsequentlyintherestoftheworldexcepttheUnitedStatesInthe

  • 4 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    late1950sandearly1960s,morethan10,000childrenin46countrieswerebornwithdeformitiessuchasphocomeliaasaconsequenceofthalidomideuse

    In1962,theUSCongressenactedlawsrequiringtestsforsafetyduringpregnancybeforeadrugcould receiveapproval for sale in theUnitedStatesOthercountriesenactedsimilar legislation,andthalidomidewasnotprescribedorsoldfordecadesThelaterexamplesofasadandbadappliedchemistry, riskofsomechemicals,chemical technologies, industry,andpollutionof theenvironmentbydifferentwastescontributetotheexplanationoftheexecrationofchemistryOntheotherhand,chemistryanditsproductsareemployedbypeopledaily,and,withoutthem,thenatureandcontemporarycharacteristicsofhumanlifeandqualitywouldbecomegenerallyverydifficult

    WASTES AS REAL EFFECT OF THE ANTHROPOGENIC ACTIVITIES

    Often,wehearviewsthatregardchemicalsassomethingbad,intheformofafoodand/oradrinkIfwedefine the termchemicals as elements, their compounds, andcompoundmixtures (Hilletal,2005),itrevealstheabsurdityoftheseviews,because,bystrictdefinition,drinkingwater,air,bread,hamandeggs,steak,housefly,dog,manyothers,and,evenmancouldbechemicalsFinally,wecandefinelifeasahighlysophisticatedself-organizedsetoftransformationsandpro-cessesofsomechemicalsintootherchemicalswhichtakeplaceinsidealivingorganismfromthetimeoftheirconceptiontothemomentoftheirfatality(Koshland,2002)Inthecourseoftheirlifecycle,wastes are formed (containingwater, inorganic, andorganic substances), andproducts ofaerobicand/oranaerobicrespiration(carbondioxideandoxygen),deadmatteroftabernacles,andotherresiduesareproduced

    ProcessesofwasteformationandtheircirculationareinevitableforlifeBecauseotherorgan-ismsconsumeandderivebenefitfromsuchwastesorthesewastesstayintheenvironmentassedi-mentaryrocks(limestone,flintstone,guano,coalbed,andotherrock),onemayfindsomeregionswithhighconcentrationsofthesewastes(Blattetal,1980)

    Allhighlysophisticatedself-organized transformationprocessesofwastes,and theiruseandreuseintheenvironment,includingthebiosphere,proceedthereforeinclosedandwell-balancedcycles(Beckett,1981)AnyorganismneedschemicalsubstancessuchasfoodandproductsotherthanchemicalsubstancessuchaswastesandalloccurthroughoutthecomplexfoodchainsandfoodwebsAsimpleexamplewouldbegreenplantsthatarefoodforfauna,astheyyieldoxygenfortheanimalkingdomandplantsViceversa,animalsproduceexcrementsandexpiredcarbondioxideasafoodforflora(PolisandWinemiller,1996)

    ANTHROPOGENIC WASTES AND THEIR IMPACTSONNATURE AND DEVELOPMENT OF HUMANKIND

    Wastesproducedbythehumansocietyprofoundlyunderliedifferentprocessesbecauseofthedif-ferentqualitiesandquantitiesofthewastesthatareproducedattheendofthesecomplexprocessesThequantityofwastesincreasesduetoariseinpopulation,andthequalityofwasteismorediversebecause of the ever-increasing industrial activities and their complexity Both are affected by achangeinlifestyleofhumansandbythegrowthintheirconsumptionpatternsOvertime,thedevel-opmentofhumankindleadstothereleaseoftoxicchemicalsintotheenvironmentThesetoxicchemicalsascompoundsofheavymetalsorradioactivechemicalsgetconcentratedintheenvironmentTheconcentrationof toxicorhazardoussubstanceshasaverynegativeeffectontheenvironmentincluding thebiosphereThis isbecause thenaturalenvironmentalcyclescannotassimilateanddegradethesepollutantsanyfurtherinasustainableandeffectivemannerProcessesofwasteaccu-mulationarethereforenon-sustainableAtthetimeoftheindustrialandpostindustrialsociety,thetermwastetookonanewdimension(PongrczandPohjola,2004)

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 5

    Wastemaybedefinedasmass(orenergy)thatisformedduringthemanufacturingprocessofaproductwithautilityvalueandwhichremainswhenthisproductlosesitsutilityvalueThiswastecontinuestobeawasteuntilitiseitherreintegratedintoanenvironmentoritischangedintoanewproduct(s)withanewutilityvalue

    AcopyofthenewspaperThe Timescanhelpasanexamplefortheabove-mentioneddefinitionItisevidentthatduringthepreparationprocessofacopyofThe Timesadifferentbutbroadspec-trumofwastesisproducedHowever,thisisnotaproblemformostnewspaperreaderssincetheylookforwardtolearnaboutcurrentnewsThenewspaperhasforthemanactualutilityvalueequaltothepriceof1,whichforamajorityofreadersacquireszero-valueafteraread-throughandturnsintowasteendingupinacontainerItisinprinciplebadwhenthiswasteisterminatedasmunicipalwastebecauseitscurrentutilityvalueisnegativeOntheotherhand,thiswastepapermaybereusedasfiringmaterial(smallbutstillwithapositiveutilityvalue)orpreferablyrecycledasfreshrawmaterial(anetmorepositiveutilityvalue)Archivingnewspapersinlibraries,archives,orinrecordofficesisanunusualwayofusingread-throughnewspapersTheutilityvalueofthisread-throughcopyofThe Timesispositiveand,overaperiodoftime,itincreases

    In this context, itpoints towardaproductof life-cycleassessment (LCA)LCA(CooperandFava,2006)maybedefinedasamethodtoassesstheenvironmentalaspectsandpotentialimpactsassociatedwithaproductbasedoncompilinganinventoryofrelevantenergy,materialinputs,andenvironmentalreleases,onevaluatingthepotentialenvironmentalimpactsassociatedwithidenti-fiedinputsandreleasesincludingpotentialhazards,andoninterpretingtheresultshelptocomeupwithamoreinformeddecision

    Thepossibilityofaccessingthesourcesofbasematerialsandenergyisthesecondmostimpor-tant factor in the development of humankind These sources can be classified in terms of theiravailabilityaspermanent(eg,basematerialssuchaswater,saltyseaandoceanwater,nitrogen,oxygen,andotherairgasesandenergysuchassolarandgeothermalenergyandkineticorpotentialenergyofflowingwaterandagitateair)orasrenewable(eg,greenalgaeandplants,charcoal,andnuclearenergy)biomassThepermanentandrenewablesourcesarethereforeclassifiedassustain-ablewhereas thenonrenewable sourcesarecategorizedasnon-sustainable (Lancaster,2002) Inthesequel,anumberofhumanactivitiesconnectedwiththeirdevelopment,namelyinthetimeofindustrialandpostindustrialsociety,havealwaysresultedinhazardousconsequencesAsexamples,clearingofforestandtropicalrainforest(Moran,1993)forobtainingagriculturalfarms,landforcivilconstructions,orforobtainingroundwoodasrawmaterial(Hartman,1992);theuseofcyanideforgoldmining(Ali,2006);ortheuseofsulfuricacidforuraniumminingresultinthepollutionofwaters,productionofgreenhouseandotherhazardousatmosphericgasesFurthermore,theproduc-tionandexploitationofgenerallytoxicandhazardousproductsandtheapplicationofmethodsfortheirproductionleadtoenvironmentalpollution

    Thepossibilityofhazardisthethirdimportantfactorinthedevelopmentofhumankind(EricsonIII,2005)Bynature,hazardinvolvessomethingthatcouldpotentiallybeharmfultoapersonslife,health,property,ortheenvironment(MacCollum,2006)Onekeyconceptinidentifyinganyhaz-ardisthepresenceofstoredenergythat,whenreleased,cancausedamageStoredenergycanoccurinmanyforms:chemical,mechanical,thermal,radioactive,orelectricalAnotherclassofhazarddoesnotinvolvethereleaseofstoredenergyRather,itinvolvesthepresenceofhazardoussitua-tionsExamplesincludeconfinedorlimitedegress,oxygen-depletedatmospheres,awkwardposi-tions,repetitivemotions,andlow-hangingorprotrudingobjectsHazardandvulnerabilityinteracttogethertocreaterisk

    Thecauseofthe20082009worldwidefinancialandeconomiccrisis,whichhadarisenasa result of derivatives of dangerous financial products or phosgene substitution by dimethylcarbonatewhichisproducedduringahazardoushigh-pressuresynthesisfrommethanolandcarbondioxideconstitutesthepossibilityofhazardHazardcannotbecompletelyeliminatedbutcanbeavoidedbyexperthandlingofsafetydevices,andcanthusbeminimizedItisneces-sarytoeliminatehazardoussituationsorstateswhicharenon-sustainableItstandstoreason

  • 6 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    thattheLCAforapapercopyoftheThe Timesandfortheabove-mentionedherbicideAgentOrangewillbetotallydifferentThepaperversionoftheThe TimesthereforecontinuestobeissuedwhereasAgentOrangeisforbiddenforuse

    ThequantityofwasteduringamanufacturingprocessofatargetproductcanbedefinedasthemassdifferencebetweentheamountofrawmaterialsandthetargetproductThevalueiscommen-surabletotheefficiencyofrawmaterialexploitation,productioncosts,andthefinalpriceofproducts

    Waste isdirectly linked tohumandevelopment,both technologically and sociallyThecom-position of different wastes has varied over time and location, with industrial development andinnovationExamplesofthisincludeplasticsandnucleartechnologyAnthropogenicwastetypesdefinedbymodernsystemsofwastemanagement(Rhyner,1995)aremunicipalsolidwaste(MSW),constructionanddemolitionwaste(C&DW),institutionalwaste,commercialwaste,andindustrialwaste(IC&I),medicalwaste(alsoknownasclinicalwaste),hazardouswaste,radioactivewaste,andelectronicwaste

    Wastesthatareformedduringanthropogenicactivitiesmaybelocalizedinanintegralenviron-ment,ie,onthesurfaceoftheEarthinsoils,inthewaterofrivers,seas,oceansandsubterraneanwaters,andintheatmosphereChemicalsubstanceswhicharecontainedinanthropogenicwastesmaybetransformedintheenvironmentbynaturalenvironmentalprocesses,eg,duringbiodegra-dationinsoil,water,andairbytheenzymaticactionoflivingorganismssuchasbacteria,yeasts,andgreenplantsunderaerobicand/oranaerobicconditions(Diaz,2008)

    Solongaswastesarenottransformedintheenvironmentintoenvironment-friendlyandaccept-ablederivatives,theyfunctionaspollutantswithallnegativeresults,eg,asgeneraltoxicresiduesandagentsdepletingtheozonelayerItisgenerallyknownthatchemicalcompoundswithstrongchemicalbondssuchaspolyaromatichydrocarbons(PAHs),chlorinatedand/orfluorinatedhydro-carbons such as chlorofluorocarbons (CFCs, freons), chloromethanes, and the above-mentioneddioxinsaredangerousfortheenvironment(Williamsetal,2000)

    Wastes can also be classified according to their state of matter such as solid, liquid, and/orgaseousortheirmaterialuniformitysuchashomogeneousorheterogeneous;industrialwastecanbecategorizedbythelocationoftheirgenesis,eg,atsourceorendofpipewastesThebestsituationistohavewastesthatarenotgeneratedPreventionofwasteproductionandpreventionofpollutionareprincipalapproachesofwastemanagement(ClarkandMacquarrie,2002)Disposalofendofpipewastesincludesallanthropogenicwastetypesandmaybedescribedbythefollowingsequenceofprocedures:

    1Reuseoforiginalproductmaterialasfreshresourcesofmaterialorenergy 2Biodegradationbycompostingorusageinaerobic/anaerobicsewerageplants 3Wasteincinerationwithcleaningofcombustionproducts 4Controlledwastedumping 5Wasteincinerationwithoutcleaningofcombustionproducts 6Noncontrolledwastedumping

    WasteseparationgenerallypreventsitsdisposalTheenvironmentaladvantageofthissequenceisdecreasing,andishenceratheranalogoustomaterialmeritandutilityvalueThehazardofthe presented procedures escalates especially for events 46 Cost-efficiency is variable anddependsonwastecharacteristics,costsofprocedure,andenvironmentalassessment(DobleandKruthiventi,2007)

    Moreover,somecompaniesmovepollutingmanufacturingprocessesfromdevelopedcountriestothepoorerdevelopingcountries(least-developedcountries),forreasonsthatneednocomment,inanefforttosavecoststhereafterThissolutiondoesnotpreventtheconsequencesOntheotherhand,itcreatesforthesecompaniesproblemswithflexibilityofproductionandtransportForthepreventionofhazardousorriskysituations,disasters,andaccidents,themonitoringandanalysisofallhazardousfactors(Mannan,2005)areimportantThemonitoringandanalysisofthemovement

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 7

    ofchemicalsubstancesincludeallwastetypesintheenvironment,a toxicityanalysisofcurrentandnewchemicals,acapacityassessmentofmaterialandenergysources,otherhazardousfactors,andenvironmentalcostsConsequently,ariseinthequalityandquantityofwastes,theirlocalandtemporalconcentrations,andtheself-regulatedprocessesintheenvironmentmaybeinhibitedandtheentiresystemmaybedeflectedfrombalance

    Anumberofpersons(environmentalistsandpoliticians)haverealizedthisfatalproblemofenvironmentalpollutionAndfortheperpetuityofhumancivilization,thesepeoplehaverecentlystartedseekingsolutionsTheapproachestoaddresstheseimpendingenvironmentalhealththreatsarediscussedinthefollowingsection

    CHEMICAL WASTES

    Asmentionedearlier,theexistenceofcontemporaryhumancivilizationwithoutchemistry,chemi-cals,andthepharmaceuticalindustry,andwithoutchemicalprocessesasapplicableintheprocess-ingindustryandenergyindustryishardlyconceivableHowever,humanactivitiesconnectedwithchemistry,chemicalengineeringprocesses,andthechemicalindustryyieldverynegativeimpactsontheenvironmentandcreateallsortsofhazards

    Polyacrylonitrile(PAN)preparedbyfree-radicalvinylpolymerizationofmonomeracryloni-trile(vinylcyanide)isaresinous,fibrous,orrubberyorganicpolymer(Morgan,2005)Thesyn-theticretro-projectionofPANmanufacturingisillustratedinScheme11Itisgenerallyknownasamaterialforuseinthetextileindustry,oftenincombinationwithnaturalfiberssuchascottonandwoolPANfibersarealsothechemicalprecursorsofhigh-qualitycarbonfibersTheyarechemicallymodifiedtomakecarbonfibersfoundinplentyofbothhigh-techandcommondailyapplications suchasprimaryand secondary structuresof civil andmilitaryaircraft,missiles,solidpropellantrocketmotors,pressurevessels,fishingrods,tennisrackets,badmintonrackets,andhigh-techbicyclesAlmostallPANresinsarecopolymersmadefrommixturesofmonomerswithacrylonitrileasthemaincomponentItisacomponentrepeatunitinseveralimportantcopo-lymers,suchasstyreneacrylonitrile (SAN)andacrylonitrilebutadienestyrene(ABS)plasticEvidently,PANanditscopolymersareveryimportantfortheexistenceofcontemporaryhumanlifeOntheotherhand,PANisaverystablematerialwhichishoweverproblematicallyintegratedintotheenvironmentbecauseofitsincompletecombustionthatproduceshydrogencyanideandnitrogenoxides

    Monomeracrylonitrile (Dalinetal,1971) ismanufacturedby thecatalyticammoxidationofpropyleneorbythecatalyticadditivereactionofhydrogencyanidewithacetylene(Goodrichpro-cess)HydrogencyanideisproducedmainlybytheAndrussovoxidationprocessinwhichmethaneandammoniareactinthepresenceofoxygenatabout1200CoveraplatinumcatalystMethane,propylene,andacetylenearepetrochemicalproducts,andthereforenonrenewablerawmaterialsHowever,ammoniacanbecharacterizedasarenewablerawmaterialandoxygenasapermanentoneAllthechemicalsusedforacrylonitrilemanufacturingincludingacrylonitrileitselfarehighly

    CNCN

    CH HCN HC

    HC

    H3C

    CH

    CH4 + NH3 + O2CH2 + NH3 + O2

    +CC* *H

    H2

    nnH2C

    SCHEME 1.1 Syntheticretro-projectionofPANmanufacturing

  • 8 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    hazardousandexplosiveinamixturewithair,flammable,andgenerallytoxicThesetechnologicalprocessesarealsohazardousbecausetheyinvolvehighpressuresandhightemperatures

    Ibuprofen(nowoutdatedinthenomenclatureiso-butyl-propanoic-phenolicacid,Brufen,Nurofen,andAdvil,systematicchemicalIUPACname(RS)-2-(4-(2-methylpropyl)phenyl)propanoicacid)isoneofthreemass-appliedpharmaceuticals(theothertwobeingaspirinacetylsalicylicacidASA,andParacetamolN-acetyl-4-aminophenolAPAP) with analgesic, antiphlogistic (anti-inflammatory),andantipyreticeffects(Rainsford,1999)Scheme12depictsthesyntheticretro-projectionproductionofibuprofenbytheBootsmethodandScheme13showsthesyntheticretro-projectionofibuprofenmanufacturingbytheHoechstmethod

    Ibuprofen is manufactured currently (procedure of Hoechst company, Presidential [USA]GreenChemistryChallenge:GreenerSyntheticPathwaysAwardin1997)byathree-stepsynthe-sisstartingwiththeFriedelCraftspara-acetylationofiso-butylbenzenebyacetanhydrideinthepresenceofhydrogenfluorideastheLewisacidcatalystThissyntheticstepproducesaceticacidandhydrogenfluorideaswaste,butaceticacidcanbeusedasarawmaterialforotherchemicalsynthesesandhydrogenfluoridecanbereusedJustusinghydrogenfluorideisveryinnovativebecauseFriedelCraftsacetylationofaromaticsusingaluminiumchlorideasaLewisacidarecommonlyapplied

    Ontheotherhand,thereisnodoubtthatbothaceticacidandincreasinglyhydrogenfluoridearehazardoussubstances In thenext step,4-acetylated iso-butylbenzene ishydrogenatedonRaneynickelasaheterogeneouscatalystunderpressuretogivethecorrespondingalcohol,whichinathirdstepundergoespalladium-catalyzedcarbonylationbycarbonmonoxide

    Onceagain,alltheabovereagents,intermediateproducts,andcatalystsaresomehowhazardousIntermsofthesourceinputs,nickelandpalladiumarenon-renewable,andhydrogenandcarbon

    O

    O

    O

    ClCH2COOC2H5

    NaOC2H5O

    (CH3CO)2O

    AlCl3

    NOH

    NH2OH OH+/H2O

    O

    OH

    HydrolysisN

    Dehydratation

    SCHEME 1.2 Syntheticretro-projectionofibuprofenmanufacturingbyBootsmethod

    OH

    O

    OH

    O

    H2, Raney Ni

    CO, [Pd]

    (CH3CO)2O

    HF

    SCHEME 1.3 Syntheticretro-projectionofibuprofenmanufacturingbyHoechstmethod

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 9

    monoxidecanbemarkedaspartlyrenewablerawmaterialsClassificationinbothcasesdependsontheusedenergyandcarbonmonoxideoncarbonsourceAsustainablemethodforcarbonmonoxidemanufacturingishencebasedeitheronthereactionofcarbon(ie,charcoal)withcarbondioxide,controlledoxidationofcharcoal,orcellulosepyrolysis

    Evaluations of synthetic processes are necessary for an assessment of their environmentalimpacts, theutilizationofmaterialandenergy inputs,wasteproduction,andcosts involvedWethereforeneedtodefinethecontentofasyntheticprocessorofachemicalsynthesisChemicalsynthesismaybedefinedasaprocessthatstartsfromthetimeoflocationofreagent(s),possiblesolvent(s),catalyst(s),andauxiliariesinareactoruptothepointofendingtheirreaction,separation,andpurificationprocessofreactionproduct(s),finallyculminatingintheadjustmentofproduct(s)ThefirstandlastpartsofthedefinitionareimportantbecausetheyhelptoexploretherequirementofenergyandworkandtheircostsforallprocessesOntheotherhand,theyhelptoobtainarealoutlookonsomesensationalso-calledsolvent-freesynthesesThesecasesarereportedveryoften,but, in a further view, they are not solvent-free syntheses Respective reactions proceed indeedwithoutasolvent,butamixtureofreagentshavebeenmixedinsolvents(fordepositiononsolidsupport)and/or thefinal (solid)producthasbeenpurifiedbyusingasolventTheadvantagesofone-pot,multicomponent,anddominoreactionsexcelinthecontextofthesyntheticprocessdefinedearlierbecauseseveralsyntheticorreactionstepsarelocatedinthesamereactorwithoutseparation,purification,transport,andadjustmentoftheintermediaryproduct

    CHEMICAL WASTES AND SYNTHETIC CHEMISTRYMETRICS

    Achemicalone-stepsynthesismaybedescribedasinScheme14Anidealgoalofsyntheticprocessesisthefullconversionofstartingreactantsintoapurefinal

    targetproductCwithouttheapplicationofothersubstances(catalyst,solvent,auxiliaries)andwith-outenergyclaimsInaddition,thisprocessshouldbeconductedwithouttheformationofregio-and/orstereoisomersofthetargetproductC,C,by-product(s)D,nonconvertededucts%A,%B,catalyst,solvents,andauxiliaries,whichareabreedinggroundforwasteformationbecausetheyarenotembeddedintheproduct,andadditionalenergyandlaborareneededfortheirseparationHowever,idealsyntheticproceduresoccurverysporadicallyHence,trade-offsmustbesoughtandconsideredDesigningsyntheticprocesseshelpsoptimizethesecompromises

    Currentchemistry,engineering,andtechnologyuseanumberofindexes(syntheticchemistrymetrics)toassesstheefficiencyofsyntheticprocesses(LapkinandConstable,2008):

    1ConversionXofreactantAorB(oneoftwoismarkedaskeyorlimitingreactant)isthedegreeofitsutilizationforanyproductformationinagivenmomentThisindex(avalueof01or0%100%,theoreticalmaximumX=1orX=100%)showshowmanykeyreactantsareutilizedforproductformationandsignifieshowmuchofitisleftaswasteforwastemanagement Conversion may be increased by the arrangement of synthetic procedure

    A + B C+C+C+D+%A+%B

    Catalyst, solvent,auxiliaries

    Energy and work

    SCHEME 1.4 Generalschemeofone-stepchemicalsyntheticprocess(A,B:Startingreactants,educts;C:targetproduct;C,C:isomers,bothregioandstereo,ofthetargetproduct(undesirable);D:by-product(undesirable);%A,%B:nonconvertededucts;catalyst:acidbase,metalcomplex,homogeneousorhetero-geneoussolventforreactionand/orforpurification;auxiliaries:sorbentforpurification,surfactant, inertgas;energyforheating,cooling,stirring,highpressure,vacuum,transportandworkofstaff)

  • 10 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    conditions,eg,byachangeofsolvent,andapossiblepressure-ortemperature-induceddisplacementofchemical/dynamicequilibrium

    2YieldofthetargetproductCistheamountofproductobtainedasaresultofachemicalreactionTherelationshipbetweenyieldYandconversionXisgivenbythemultiplicationoperationY=XS,whereSisaselectivityofreactionforthetargetproduct,allcalculatedonmolarbasisOtherwise,arelationshipisfoundbetweenthemassofthetargetproductanditstheoreticalcalculatedvalue,rangingfrom0to1or0%to100%,withatheoreticalmaximumforY=1orY(%)=100%Yieldaswellasconversionandreactionselectivitymaybeincreasedbyachangeofsyntheticprocedureconditions

    3Effectivemassyieldisdefinedastheratiobetweentheweightofthetargetproductandthemassofallnon-benignmaterials incident in thecourseof itssynthesis(ie, regio-and/orstereoisomersofthetargetproduct,by-product(s),catalyst,solvents,andauxilia-ries)TheweaknessofthismetricistherequirementforafurtherdefinitionofabenignsubstanceItisassumedthatthesehavenoenvironmentalriskassociatedwiththem,eg,water,low-concentrationbrine,inertgases,diluteethanol,autoclavedcellmassmaybereferredtoasbenignThisdefinitionisverysubjectivebecauseenvironmentaldatamaybeincomplete

    4Environmentalfactor(E-factor):RogerSheldonsE-factor(Sheldon,1992,1994,1997a,b,2000,2007,2008)canbeviewedascomplexandthoroughandontheotherhandassimplewhenrequiredAssumptionsonsolventandotherfactorscanbemadeoratotalanalysiscanbeperformedTheE-factorcalculationisdefinedbytheratioofthemassofwasteperunitofproductThisvalueisverysimpletounderstandandtouseE-factorignoresrecy-clablefactorssuchasrecycledsolventsandreusedcatalysts,whichobviouslyincreasetheaccuracybutignoretheenergyinvolvedintherecoveryThemaindifficultywithE-factorsistheneedtodefinesystemboundariesbeforereliableandmeaningfulcalculationscanbeperformedandthesedifferfromassessortoassessorThislimitationisthemaindraw-backofallmetricswith theexceptionof theextremelycomplexLCAofaproductByincorporatingyield,stoichiometry,andsolventusage,theE-factorisanexcellentmetricCrucially,E-factorscanbecombinedtoassessmultistepreactionsstepbysteporinonecalculationSheldondemonstratedinhisdocumentsthatthechemicalindustrysectorwithabulkytonnageofannualproductionachievingrelativelysmallvaluesofE-factor,eg,petrochemicalindustryandindustry,producedbulkchemicalshavinganE-factorof015atanannualproductionof104108tonsOntheotherhand,chemicalcompaniesproduc-ingfinechemicalsandpharmaceuticalshadfortheirannualproductionof10410tonsanE-factorincomparablyhigherat5100ThesedatahencedemonstratethatoilcompaniesproducealotlesswastethanpharmaceuticalsasapercentageofmaterialprocessedThisreflectsthefactthattheprofitmarginsintheoilindustryrequirethemtominimizewasteandfindalternativeusesforproductswhichwouldnormallybediscardedaswaste,oritmaybetransformedbycatalyticprocessestoreusablefundamentalproducts(methane,ethane,ethylene,andhydro-craftingofheavynaturalresinparaffines)Bycontrast,thepharmaceuticalsectorismorefocusedonmoleculemanufacturingandqualityTheactuallyhighprofitmarginswithinthepharmaceuticalsectormeanthatthereislessconcernaboutthecomparatively largeamountsofwaste thatareproduced(especiallyconsidering thevolumesused)althoughithastobenotedthat,despitethepercentageofwasteandE-factorbeinghigh,thepharmaceuticalsectorproducesmuchlowertonnageofwasteperproductunit thananyother sectorAsmentionedearlier,byobtaining the relevantdata for thecalculationofaconversion,yield,effectivemassyield,andE-factor,asyntheticorprocessexperiment may be performed Synthetic or process experiments are not necessary forthecalculationofafurther46chemistrymetricsbecauseofthechemicalsynthesisandsyntheticprocessmodelingdiscussedbelow

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 11

    5Atomeconomy(atomefficiencyAE)isdesignedinadifferentwayfromalltheabovemetricsItcanbedesignedasamethodbywhichorganicchemistswouldplanoncleanersyntheticprocessesverysimplyTheessentialdefinitionofatomeconomyisbasedonhowmuchofthereactantremainsinthefinalproductForasingle-stepprocedureoftheabovesynthesis,atomeconomymaybecalculatedas

    AE

    molecular weight of Cmolecular weight of A B

    =

    +( )

    Forageneralmultistepreactionscheme

    A + B C followed C + D E and next E + F G

    themathematicaldefinitionofatomeconomyisdescribedas

    AE

    molecular weight of Gmolecular weight of

    =

    + + +(A B D F)

    The weakness of AE is that the used catalyst, solvents, and auxiliaries are ignored astheyarenotincorporatedintothefinalproductAEalsoignoresthepossibilityforreuseofsecondaryreactionproductsbyrecyclingAEcalculationisverysimpleandusefulasalowatomeconomyatthedesignstageofareactionpriortoenteringthelaboratorycandriveacleanersyntheticstrategytobeformulatedTherangeofAEis01or0%100%,foratheoreticalmaximumY=1orY(%)=100%achievableforisomerizationreactions,rearrangement, additive reactions including DielsAlder and similar cyclo-additions iftheseproceedwithoutmoreisomerformationInthesereactiontypes,onlyoneproductisformedOntheotherhand,intheWittigreactionorMitsunobureaction,averypoorAEisobtainedbecauseheavytriphenylphosphineoxideisformedOtherexamplesofpoorAEmaybethenucleophilicsubstitutionreactionsofhalogensonsaturatedcarbonatomunderSN2reactionconditionsAlkyliodidesareveryreactiveatthesealkylatingreactions

    6Carbonefficiency(CE)isanothermetricderivedfromAE,butisusedonlyfortheeffi-ciencyofcarbonatomsinvolvedinthesyntheticprocessThemathematicalrepresentationisaccordingtoAE,butinlieuofmassofallatomsthemassofcarbonatomsisconsideredThismetricisagoodsimplificationforuseinthepharmaceuticalindustry(andinsus-tainablepetrochemistrytoo)asittakesintoaccountthestoichiometryofreactantsandproductsFurthermore, thismetric is of interest to thepharmaceutical industrywherethedevelopmentofcarbonskeletonsisimportantfortheworkThegoalistoconserveallcarbonatomsinthematrixofthecompoundAvalueofCElessthan1isconnectedwithcrackinganddecarboxylationreactionsBulkydecarboxylationreactionsobservedinpetrochemistrymightbethesourceofmassivevolumesofgreenhousecarbondioxideHence,thisindexshowsthatthepotentialtransformationofplantoilsintohighalkanesor alkenesas renewableproductswillnotbebasedonhydrolysis anddecarboxylationreactions,butonreductionthroughthecatalytichydrogenationoffunctionalizedcarboxylgroupsinplantoils

    7ReactionmassefficiencyisalsoanothermetricderivedfromAE,butinthecalculation,themassofproductandeductsisusedinlieuofmolecularweightThedifferencebetweenAEandreactionmassefficiencyvaluesmayariseifeductsreactnotinarealreactionbutonastoichiometricbasis(excessofnon-keyreactant)Inthiscase,avalueforreactionmassefficiencylessthantheatomeconomyisobtained

    8TheEcoScale(VanAkenetal,2006)isarecentlydevelopedmetrictoolfortheevaluationoftheeffectivenessofasyntheticreactionIt ischaracterizedbysimplicityandgeneral

  • 12 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    applicabilityLiketheyield-basedscale,theEcoScalegivesascorefrom0to100,butalsotakesintoaccountcost,safety, technicalsetup,energy,source,andpurificationaspectsItisobtainedbyassigningavalueof100toanidealreactionTheproposedapproachisbasedonassigningarangeofpenaltypointstotheseparameters:

    EcoScale = 100 sum of individual penalties

    This semiquantitative analysis can easily be modified by other synthetic chemists whomayfeelthatdifferentrelativepenaltypointsshouldbeassignedtosomeparametersItisapowerful tool tocompareseveralpreparationsof thesameproductbasedonsafety,economical,source,andenvironmentalfeatures

    SUSTAINABLE DEVELOPMENT: STARTING POINT AND PREVENTION OF AN ULTERIOR BEING OF HUMAN CIVILIZATION

    Since the late1960sandearly1970s somepeople fromacademia, civil society,diplomacy,andindustryhavebeguntobeawarethatthecurrentlifestyleanddevelopmentofhumankindisnotfur-thersustainableAmassivepollutionoftheenvironmentinconsequenceofindustrialactivitiesandmanufacturing,andoverexploitationofnaturalrawmaterialandenergysourceshavetakenplace

    Hence,inApril1968,TheClubofRome(KingandSchneider,1993)wasfoundedasaglobalthinktankthatwoulddealwithavarietyofinternationalpoliticalissuesIthasraisedconsiderablepublicattentionin1972withitsreportbookThe Limits to Growth(Donellaetal,1972),whichusedtheWorld3model tosimulate theconsequencesof interactionsbetweentheEarthssystemsandhumansystemsTheclubstatedthatitsmissionistoactasaglobalcatalystforchangethroughtheidentificationandanalysisofthecrucialproblemsfacinghumanityandthecommunicationofsuchproblemstothemostimportantpublicandprivatedecisionmakersaswellastothegeneralpublic

    OnJuly9,1970,citingrisingconcernsoverenvironmentalprotectionandconservation,USpresi-dentRichardNixontransmittedReorganizationPlanNo3totheUnitedStatesCongressbyexecutiveorder,creatingtheEPAasasingle,independentagencyfromanumberofsmallerarmsofdifferentfederalagenciesPriortotheestablishmentoftheEPA,thefederalUSgovernmentwasnotstructuredtocomprehensivelyregulateenvironmentalpollutantsTheUnitedNations(UN)ConferenceontheHumanEnvironment(alsoknownastheStockholmConference)wasaninternationalconferencecon-venedundertheUNauspicesheldinStockholm,Sweden,fromJune5to16,1972

    ItwastheUNsfirstmajorconferenceoninternationalenvironmentalissues,andmarkedaturningpointinthedevelopmentofinternationalenvironmentalpoliticsThemeetingagreeduponadeclara-tioncontaining26principlesconcerningtheenvironmentanddevelopment,anActionPlanwith109recommendations,andaResolutionIn1973theEuropeanUnion(EU)createdtheEnvironmentalandConsumerProtectionDirectorate,andcomposedthefirstEnvironmentalActionProgram

    In1987,OurCommonFuture(OurCommonFuture(1987),Oxford:OxfordUniversityPress),also known as the Brundtland Report, from the UN World Commission on Environment andDevelopment(WCED)waspublishedThepublicationofOurCommonFutureandtheworkoftheWCEDlaidthegroundworkfortheconveningofthe1992EarthSummitandtheadoptionofAgenda21,theRioDeclaration,andtheestablishmentoftheCommissiononSustainableDevelopment

    Anoft-quoteddefinitionofsustainabledevelopment(SD)isdefinedinthereport:Developmentthatmeetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeettheirownneeds

    Inaddition,keycontributionsofOurCommonFuturetotheconceptofSDincludetherec-ognitionthatthemanycrisesfacingtheplanetareinterlockingcrisesthatareelementsofasinglecrisisofthewholeandofthevitalneedfortheactiveparticipationofallsectorsofsocietyincon-sultationanddecisionsrelatingtoSD

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 13

    Agenda21(http://wwwunorg/esa/dsd/agenda21/)isaprogramrunbytheUNrelatedtoSDandwas theplanetsfirstsummit todiscussglobalwarmingrelated issuesAgenda21clearly identi-fiedinformation,integration,andparticipationaskeybuildingblockstohelpcountriestoachievedevelopmentthatrecognizestheseinterdependentpillarsItemphasizesthatinSDeveryoneisauserandproviderofinformationItstressestheneedtochangefromoldsector-centeredwaysofdoingbusinesstonewapproachesthatinvolvecross-sectoralcoordinationandtheintegrationofenviron-mentalandsocialconcernsintoalldevelopmentprocessesFurthermore,Agenda21emphasizesthatbroadpublicparticipationindecisionmakingisafundamentalprerequisiteforachievingSDItisacomprehensiveblueprintofactiontobetakenglobally,nationally,andlocallybyorganizationsoftheUN,governments,andmajorgroupsineveryareainwhichhumansdirectlyaffecttheenvironment

    Such increased interestand researchcollaborationarguablypaved theway for furtherunder-standingofglobalwarming,whichhas led to suchagreementsas theKyotoProtocolThis isaprotocoltotheUnitedNationsFrameworkConventiononClimateChange(UNFCCCorFCCC),aimedatfightingglobalwarmingTheUNFCCCisaninternationalenvironmentaltreatywiththegoalofachievingstabilizationofgreenhousegasconcentrationsintheatmosphereatalevelthatwouldpreventdangerousanthropogenicinterferencewiththeclimatesystemTheProtocolwasinitiallyadoptedonDecember11,1997inKyoto,Japan,andentered intoforceonFebruary16,2005AsofNovember2009,187stateshavesignedandratifiedtheprotocol,butwithouttheUnitedStatesandothercountries

    OnSeptember8,2000,followinga3-dayMillenniumSummitofworldleadersattheheadquar-tersoftheUnitedNations,theGeneralAssemblyadoptedtheMillenniumDeclarationAfollow-upoutcomeoftheresolutionpassedtheGeneralAssemblyonDecember14,2000toguideitsimple-mentationProgressonimplementationoftheDeclarationwasreviewedatthe2005WorldSummitofleaders

    TheWorldSummitonSustainableDevelopment(WSSD)orEarthSummit2002tookplaceinJohannesburg,SouthAfrica,fromAugust26toSeptember4,2002ItwasconvenedtodiscussSDbytheUNWSSDgatheredanumberofleadersfrombusinessandnongovernmentalorgani-zations,10yearsafterthefirstEarthSummitinRiodeJaneiro(ItwasthereforealsoinformallynicknamedRio+10)

    The2009UNClimateChangeConference,commonlyknownastheCopenhagenSummit,washeldinCopenhagen,Denmark,betweenDecember7and18

    Theconferenceincludedthe15thConferenceoftheParties(COP15)intheUNFCCCandthe5thMeetingoftheParties(COP/MOP5)intheKyotoProtocolAccordingtotheBaliRoadMap,aframeworkforclimatechangemitigationbeyond2012wastobeagreedthereTheconferencewasprecededby theClimateChange:GlobalRisks,Challenges, andDecisions scientific conference,whichtookplaceinMarch2009andwasalsoheldattheBellaCentreThenegotiationsbegantotakeanewformatwheninMay2009UNSecretaryGeneralBanKi-moonattendedtheWorldBusinessSummitonClimateChangeinCopenhagen,organizedbytheCopenhagenClimateCouncil(COC),whereherequestedCOCcouncilorstoattendNewYorksClimateWeekattheSummitonClimateChangeonSeptember22andengagewithheadsofgovernmentonthetopicoftheclimateproblem

    WhatresultsfromSDmightbeastartingpoint,solution,andpreventionofanulteriorbeingof human civilization It might optimize close relations between production, economy, humansociety, the biosphere, and the environment Hence, SD is built on three pillars: environment,economy,andsociety

    SDisanoptimal intersectionofsetsofallentities in theenvironment,economy(includingproduction), andhumansocietySDcouldbeviable (forproduction, economy,and theenviron-ment),sociallyandeconomicallyequitable,andsociallyandenvironmentallybearableinallandfor all Most countries have no problem in accepting these environmental pillars However, theacceptanceoftheseeconomicalandsocialpillarsmaygeneratescrupleorevenasilentoppositioninpoorerdevelopingcountriesorleast-developedcountriesontheonehand,butalsoindevelopedcountriesontheother,namely,thosewithaneoliberalgovernmentonprincipleasaThirdWay

  • 14 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    SDalsohassomeshortfallsatitsstartTheproportionbetweenthesizeofthepopulationandnonrenewableresourcesisincommensurableandthistrendwillgrowevenfurther(Cohen,1995)Theproportionbetweenthestandardoflifeofthepeopleindevelopedcountriesandthatinleast-developedcountries is incommensurableandthisdifferencewillnotceaseduringthe lifetimeofonehumangenerationEveryoneofthreerichestmenintheworldisinpossessionofmorepropertythanthewealthof48mostneedycountriesintheworld,whiletherichestwomaninFrancehasanannualincomethatequalsthatof15,700ofherfellowcitizenswhodrawminimalwages(Keller,2010)

    TheseproportionsshowthattheinequalitybetweensomepeopleandsomecountriesproducesadifferencethatwillprobablyrisefurtherMoreover,iftheeconomyindevelopedcountriesdoesnotshowcharacteristicsofgrowthinhumanconsumption,theglobaleconomywillsufferproblemsAlbertBartlett, inhiscontributionTheLawsofSustainabilityintheanthologyThe Future of Sustainability(Keiner,2006),isveryskepticalaboutthewordsustainabilityinconnectionwiththe term development and in the context of an exponentially growing human population Heassertsinhisfirstof21LawsofSustainabilitythatthetermSustainableGrowthisanoxymo-ronInthenextlaws,hedeclaresthatOnecannotsustainaworldinwhichsomeregionshavehighstandardsoflivingwhileothershavelowstandardsofliving(5thLaw),Thebenefitsofpopula-tiongrowthandofgrowthintheratesofconsumptionofresourcesaccruetoafew;thecostsofpopulationgrowthandgrowthintheratesofconsumptionofresourcesarebornebyallofsociety(9thLaw),Humanswillalwaysbedependentonagriculture(16thLaw),If,forwhateverreason,humansfailtostoppopulationgrowthandgrowthintheratesofconsumptionofresources,Naturewillstopthesegrowths(18thLaw),Starvingpeopledontcareaboutsustainability(19thLaw),Theadditionof thewordsustainable toourvocabulary, toourreports,programs,andpapers,tothenamesofouracademicinstitutesandresearchprograms,andtoourcommunityinitiatives,isnotsufficienttoensurethatoursocietybecomessustainable(20thLaw),andhefinisheswithExtinctionisforever

    AlltheserealitiesdonotleaveusfeelingoptimisticaboutthefurtherSDofhumankindHence,the activities of current political and economic elites, establishments, scientists, engineers, andtechnologistsarefocusedontheenvironmentalandeconomicalpillarsofSDasitsprofitablepartsOntheotherhand,amutualrelationshipbetweentheenvironment,economy,andproductionactivi-tiesisevident

    Consequently,theconceptofsustainabledevelopmentmaybeunderstoodasasetofsustain-ableendeavorsaimingatthebettermentandsurvivalofhumankindfollowingtherationaldevelop-mentandresponsivegrowththatthisconceptentails

    SUSTAINABLE DEVELOPMENT, CHEMISTRY, ANDITSENGINEERING AND TECHNOLOGICAL APPLICATION

    Chemical production and its engineering and technological application are economically andsociallyverybeneficialtohumanitybutareverydisadvantageousfornaturalsourcesandfortherestoftheenvironmentWiththegoalofharmonizingthisdisproportionatebalance,thefollowingremedialsolutionshavecomeintodemand

    In1990,thePollutionPreventionActpassedintheUnitedStatesThisacthelpedtocreateamodusoperandifordealingwithpollutioninanoriginalandinnovativewayItaimedatavoidingproblemsbeforetheyactuallyhappenedShortlyafterthepassageofthePollutionPreventionActof1990,theEPAsOfficeofPollutionPreventionandToxics(OPPT)begantoexploretheideaofdevelopingneworimprovingexistingchemicalproductsandprocessestomakethemlesshazard-oustohumanhealthandtheenvironment

    In1991,theOPPTlaunchedthemodelresearchgrantsprogramAlternativeSyntheticPathwaysforPollutionPreventionThisprogramprovided,forthefirsttime,grantsforresearchprojectsthatincludedpollutionpreventioninthesynthesisofchemicalsSincethattimetheGreenChemistry

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 15

    ProgramhasbuiltcollaborationswithmanypartnerstopromotepollutionpreventionthroughgreenchemistryPartneringorganizationsrepresentacademia,industry,othergovernmentagencies,andnongovernmentalorganizations

    Inthenameofgreenchemistry,correspondingactivitieshavestartedforthefirsttimeinallcoun-triesexceptContinentalEuropeIntheEUanalogousactivitiesmaybepresentundertheindicesofsustainablechemistry

    TheEuropeanEnvironmentAgency(EEA),anagencydevotedtoestablishinganetworkforthemonitoringoftheEuropeanenvironment,wasfoundedbytheEURegulation(EuropeanEconomicCommittee(EEC)Regulation)1210/1990,asamendedbyEECRegulation933/1999Workstartedin earnest in 1994 The regulation also established the European environment information andobservationnetwork(Eionet)

    Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) is an EURegulationofDecember2006REACHaddressestheproductionanduseofchemicalsubstancesandtheirpotentialimpactsonbothhumanhealthandtheenvironment

    REACHhasbeendescribedasthemostcomplexlegislationintheEUshistoryandthemostimportantin20yearsItisthestrictestlawtodateregulatingchemicalsubstancesandwillaffectindustriesthroughouttheworldREACHenteredintoforceinJune2007,withaphasedimplemen-tationoverthenextdecadeWhenREACHisfullyenforced,itwillrequireallcompaniesmanu-facturingorimportingchemicalsubstancesintotheEUinquantitiesof1tonormoreperyeartoregisterthesesubstanceswithanewEuropeanChemicalsAgency(ECHA)inHelsinki,FinlandBecauseREACHappliestosomesubstancesthatarecontainedinobjects(articlesinREACHterminology),anycompanyimportinggoodsintoEuropecouldbeaffected

    About143,000chemicalsubstancesmarketedintheEUwerepreregisteredbytheDecember1,2008deadlineAlthoughpreregisteringisnotmandatory,itallowspotentialregistrantsmuchmoretimebeforetheyhavetofullyregister

    SupplyofsubstancestotheEuropeanmarketwhichhavenotbeenpreregisteredorregisteredisillegal(knowninREACHasnodata,nomarket)REACHlegislationcanthereforehelptopre-ventariskconnectedwiththeuseofhazardouschemicals

    IncontrasttotheEPA,theEEAdoesnotorganizeprogramssuchastheEPAGreenChemistryProgramTheEuropeanTechnologyPlatformforSustainableChemistry(SusChem)isaEuropeanTechnologyPlatform(ETP)initiativetoimprovethecompetitivepositionoftheEUinthefieldofchemistryinthreedomains:industrialbiotechnology,materialstechnology,andreactionandpro-cessdesign

    Theprogramisajointinitiative(publicprivatepartnership)oftheEuropeanCommission,rep-resenting theEuropean communities and the industryThemainobjectiveof theprogram is toproduceandimplementaStrategicResearchAgenda(SRA)

    Sustainablechemistry,itsengineeringandtechnologicalapplicationsarealsofocusedoncleanerchemicalprocessesandtheirdesigningusingthebestavailable technologies(BAT)ThetermbestavailabletechnologyisappliedunderregulationsonlimitingpollutantdischargeswithregardtotheabatementstrategySimilartermsarebestavailabletechniques,bestpracticablemeans,and best practicable environmental option The term constitutes moving targets on practices,sincedevelopingsocietalvaluesandadvancingtechniquesmaychangewhatiscurrentlyregardedasreasonablyachievable,bestpracticable,andbestavailable

    Aliteralunderstandingwillconnectitwithasparenoexpensedoctrinewhichprescribestheacquisitionof thebeststate-of-the-art technologyavailable,without regardfor traditionalcostbenefitanalysisInpracticalusage,thecostaspectisalsotakenintoaccount

    In principle, sustainable chemistry and technology platforms for sustainable chemistry (allEuropeanandnational)andgreenchemistryincludegreenengineering,technology,andproduc-tion,andallhavethesamegoalsandprinciplesanduseanalogousmethodologiesandmethods

    FundamentalconnectionsbetweenSDandsustainableandgreenchemistryareexplainedanddescribedbyEissenetal(2002),Metzger(2004),andinthecontextofindustriesbyPoliakoffand

  • 16 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    License(2007)Twoexclusive journals,Green Chemistry (RSC)since1999andChemSusChem(WileyInterscience)since2008,publish themostup-to-dateresultsandsolutionsofsustainableandgreenchemistry

    PRINCIPLES AND GOALS OF GREEN CHEMISTRY

    Thegoalsofgreenchemistryarefocusedonfourofthecurrentdemandsofhumankindwhicharemini-mizingwasteandpollution,efficientexploitationofmaterialandenergysources,minimizinghazard,andminimizingcostsasaresultofthepreviousthreeThekeytermforthesetofgreenchemistrygoalsisminimizingbutinthecontextoftermslikeefficiently,rationally,really,andpreferablyThisisbecausethedeclaredgoalsmaynotbeachievedpromptlyandabsolutelyForexample,itisgenerallyknownthatfreons(CFCs)usedaspropellantsforspraycanswerereplacedbyn-butane(hazardousbutlessthanCFCs)Similarly,environmentallyhazardouschlorinatedhydrocarbonsastetrachloromethane,trichloroethylene,andtheotherchlorohydrocarbonswerealternatedbysupercriticalcarbondioxideaswashingmediaPrinciplesfortheachievementofthesetgoalsmaybegroupedinthefollowingway:

    AMinimizing waste and pollution 1 PreventionofwasteformationispreferredbeforewastedisposalItisbettertohandle

    wasteatsourcethanatendofpipe BEfficient exploitation of material and energy sources 2 Syntheses, syntheticprocesses,mustbedesignedwithhighest atomeconomy, ie,

    withmaximalincorporationofinputsintotheproduct 3 Rational reduction for theuseof solvents andother auxiliaries ispreferredbefore

    theirrecyclingand/orregeneration 4 Preferenceofcatalyticreagents 5 Preferenceof(solid)supportedcatalysts 6 Multistepsynthesesarepreferredtoone-potprocedures,ideallyasmulticomponent

    reactions(MCRs)and/ordominosyntheses 7 Permanent and renewable material and energy sources should be practicable and

    applicableratherthannonrenewablewherevertechnicallyandeconomicallypossible 8 Rationalreductionfortheuseofarawmaterialorfeedstockderivativeforthesakeof

    itsprotection,activation,andothertemporarymodification CMinimizing general hazard 9 Insyntheticprocesses,incomingandoutgoingchemicalsmustbeminimalandgener-

    allynothazardous 10 Lifecycleassessmentofchemicalproducts 11 Developmentanduseofpreciseanalyticaltechniquesandmethodstoallowforreal-

    time,in-processmonitoringandcontrolpriortotheformationofhazardoussubstances DMinimizing costs 12 Thiscanresultfromarationalandefficientuseoftheabove-presentedprinciples

    On theotherhand, it shouldbe remembered thatProfessorPaulAnastasandProfessor JohnCWarner (AnastasandWarner,1998)were thefirst todevelopandformulate the12principlesofgreenchemistryNevertheless, theabove-mentionedprinciples,whicharenewerandmoreinno-vative, reformulate theessenceofgreenchemistryandchemistryforSDemanatingfromnewerunderstandingsofchemistsandengineersThe12principlesofgreenchemistryasformulatedbyAnastasandWarner(1998)aregivenbelowforcomparison:

    1Prevention:Itisbettertopreventwastethantotreatorcleanupwasteafterithasbeencreated 2Atom economy:Syntheticmethodsshouldbedesignedtomaximizetheincorporationof

    allmaterialsusedintheprocessintothefinalproduct

  • EmergingUbiquityofGreenChemistryinEngineeringandTechnology 17

    3Less hazardous chemical syntheses:Whereverpracticable,syntheticmethodsshouldbedesignedtouseandgeneratesubstancesthatpossesslittleornotoxicitytohumanhealthandtheenvironment

    4Designing safer chemicals:Chemicalproductsshouldbedesignedtoaffecttheirdesiredfunctionwhileminimizingtheirtoxicity

    5Safer solvents and auxiliaries:Theuseofauxiliarysubstances(eg,solvents,separationagents,etc)shouldbemadeunnecessarywhereverpossibleandinnocuouswhenused

    6Design for energy efficiency:Energyrequirementsofchemicalprocessesshouldberecog-nizedfortheirenvironmentalandeconomicimpactsandshouldbeminimizedIfpossible,syntheticmethodsshouldbeconductedatambienttemperatureandpressure

    7Use of renewable feedstocks:Arawmaterialorfeedstockshouldberenewableratherthandepletingwhenevertechnicallyandeconomicallypracticable

    8Reduce derivatives:Unnecessaryderivatization(useofblockinggroups,protection/depro-tection,temporarymodificationofphysical/chemicalprocesses)shouldbeminimizedoravoidedifpossible,becausesuchstepsrequireadditionalreagentsandcangeneratewaste

    9Catalysis:Catalyticreagents(asselectiveaspossible)aresuperiortostoichiometricreagents 10Design for degradation:Chemicalproductsshouldbedesignedsothatattheendoftheirfunc-

    tiontheybreakdownintoinnocuousdegradationproductsanddonotpersistintheenvironment 11Real-time analysis for pollution prevention:Analyticalmethodologiesneedtobefurther

    developedtoallowforreal-time,in-processmonitoringandcontrolpriortotheformationofhazardoussubstances

    12 Inherently safer chemistry for accident prevention:Substancesandtheformofasubstanceusedinachemicalprocessshouldbechosentominimizethepotentialforchemicalacci-dents,includingreleases,explosions,andfires

    METHODOLOGY AND METHODS OF GREEN CHEMISTRY

    Scienceandadvances inengineering, technology,andtechnicalproductionhavegivenasophis-ticated methodology and broad scale of methods to current green chemistry A sophisticatedapproachtosolveenvironmentalproblems,greenchemistry,maybeessentiallycharacterizedasatrivialsolutiontoanontrivialandcomplicatedproblemSophisticatedapproachessuchasthefieldofgreenchemistrymethodologyareoftenveryeffectivewithminimalenergyandtechnologydemandsandcostsThemanufacturingof2,4-dichlorobenzylcyanide,an importantfinechemi-caland intermediateforphytoeffectorproduction, from2,4-dichlorobenzylchlorideandsodiumcyanidewitharelativelylowlevelofE-factorandminimumwasteformation(CzechPatent301063(2009),LucebnzvodyDraslovkaCoKoln)canserveasanexampleofacompletesophisticatedsolutionThisprocesswasindustriallyrealizedwithhighyieldandpurityinmethanolassolventandinthecatalyticpresenceofsodiumiodide(Scheme15)

    Cl Cl

    ClCN

    Cl Cl

    N

    Cl ClN

    Cl

    Cl+

    SCHEME 1.5 Preparationof2,4-dichlorobenzylcyanideor2,3-bis(2,4-dichlorophenyl)propanenitrilefrom2,4-dichlorobenzylchlorideandsodiumcyanide

  • 18 HandbookonApplicationsofUltrasound:SonochemistryforSustainability

    Ontheotherhand,thesamereagentsandcatalystyieldinacetonesolventandinthepresenceofthecatalyticadditionofbenzyl-trimethylammoniumchlorideonly2,3-bis(2,4-dichlorophenyl)propanenitrile in high yield and purity (Pazdera and imbera, 2011) In the latter study, a suit-ableselectionofsolventsassophisticatedresolutionforcleanersynthesiswasdemonstratedforthepreparationofbenzoylcyanideand1,1-dicyanobenzyl-benzoate,whichisformedbydominoreac-tion(Scheme16)

    Further,similarexamplesofsophisticatedapproachessuchasthefieldofgreenchemistrymeth-odologymightbefoundabundantlyintheliteratureHence,severalsyntheticmethods,approaches,andtechniquescanbepresentedasfeasibleandapplicableroutesfortherealizationofthegreenchemistrygoalsand thefulfillmentof itsprinciplesExamplesofsuchsyntheticmethodsareasfollows:

    1Sophisticatedapproachesincludingregio-andstereoselectivesyntheticprocedures(Vgtleetal,2000)

    2One-pot, multicomponent (MCRs), and domino reactions (Zhu and Bienaym, 2005;Tietzeetal,2006;Ishikawaetal,2009)

    3Acidbase catalysis, catalysis by transition metal and their complexes, and enzymaticcatalysis(Sheldonetal,2007;Anastas,2009)

    4 Interphasecatalysis, ie,phasetransfercatalysis(PTC)bothclassicandinverse,andmicellarcatalysis(Goldberg,1992;Starksetal,1994;Khan,2007)

    5Synthetic applicationsof supported catalysts and auxiliariesbecauseof their easy sep-aration, regeneration, and reusability, and solid supported and combinatorial syntheses(SeneciandPierfausto,2000;SherringtonandKybett,2001)

    6Synthesesrealizedundernonclassicconditions: a Synthesesinsupercritical(sc)waterandsc-carbondioxide(bothsc-fluidswitharisk

    factorbecauseoftemperatureandhighpressure,respectively)andinionicliquidsassolvents(LeitnerandJessop,1999;Brunner2004)

    b Microwaves(MW)asalow-energyandefficientalternativetoclassicheating(KappeandStadler,2005)

    c Ultrasound(US)asalow-energyandefficientalternativetoclassicstirring,shaking,andheating(MasonandLorimer,2002)

    7Combinationsoftheabovemethodsandapproaches,whichoftenbearveryeffectiveandsurprisingresultsasaconsequenceoftheirsynergism

    Thevariousapplicationsofultrasoundpowerasasuitableandeffectivegreenmethodinscienceandengineeringresearch,chemicalandbiochemicalprocessing,andappliedscienceandengineer-ingtechnologyarediscussedinthesubsequentchapters

    Cl

    O

    O

    O

    O

    N

    N