41
Magnetic Nanofluids for Chemical and Biological Processing Andre Ditsch, Bernat Olle, Harpreet Singh, Lino Gonzalez, Marco Lattuada, Lev Bromberg, Daniel I.C. Wang, Kenneth A. Smith & T. Alan Hatton Department of Chemical Engineering Massachusetts institute of Technology Cambridge MA 02139

hgms high gradient magnetic separation

Embed Size (px)

Citation preview

Page 1: hgms high gradient magnetic separation

Magnetic Nanofluids for Chemical and Biological Processing

Andre Ditsch, Bernat Olle, Harpreet Singh,Lino Gonzalez, Marco Lattuada, Lev Bromberg,

Daniel I.C. Wang, Kenneth A. Smith & T. Alan Hatton

Department of Chemical EngineeringMassachusetts institute of Technology

Cambridge MA 02139

Page 2: hgms high gradient magnetic separation

Magnetic Nanoparticles

Magnetic CoreSuperparamagneticApplications

Magnetic storage mediaMagnetic drug targetingProtein/Cells separationRNA/DNA purificationMagnetic resonance ImagingCatalystsMR FluidsMass and heat transfer enhancement

8 nm

15-20 nm

Polymer ShellColloidal stability

Functionality

Page 3: hgms high gradient magnetic separation

Functionalised Magnetic Nanoparticles

Coating Material FunctionMagneticparticle Perfluorocarbons O2Transfer Enrichment

10 nm15-20 nm

Chiral Moieties Optical Resolutionof Racemic Mixtures

PhospholipidsLigands

Protein Purification

Block Copolymers Removal of OrganicContaminants

Non-volatile, colloidal solventsVery high interfacial areasLow surface activityReadily recovered by magnetic filtration

Page 4: hgms high gradient magnetic separation

Protein Purification

Proteins increasingly used in place of small molecules in industry and medicine.

Proteins are much more specific and potent than small organic molecules.

Separations of proteins typically the major processing cost.Up to 80% of processing costs come from purification.

Therapeutics High purity High cost Low volumes

Industrial Enzymes Low purity Low cost Large volumes

Purif

icat

ion

Cos

ts(%

of t

otal

Pro

duct

ion

Cos

ts)

100

0

New methods needed for economical protein

production

Page 5: hgms high gradient magnetic separation

Protein Adsorption Systems

High ∆PPore diffusion

limitations

Expanded BedShort Contact TimesLimited Flow Range

Can Handle CellsLow Capacity

Low flux

Stirred SystemControlled Contact Times

Fouling of Membranes

Packed BedPlugging

Low VelocitiesDispersionNo cells!

Page 6: hgms high gradient magnetic separation

Colloidal Adsorbents

Stable dispersion of adsorbents as colloidal entities

High surface areas

106

107

108

0 10 20 30 40 50 60Are

a pe

r Vol

ume

, m2 /m

3

Colloid Diameter d, nm

0.010.02

0.050.10

A/V = 6φ/d φ, ColloidVolumeFraction

No diffusionalResistances

τ =r2/Dφ2/3 ~ 0.1- 10 ms~ 5 - 50 nm

colloidal entities

Page 7: hgms high gradient magnetic separation

Process Overview

N S

Page 8: hgms high gradient magnetic separation

Process Overview

N S

Page 9: hgms high gradient magnetic separation

Process Overview

N S

Adsorptive Capacity?Particle Stability?Particle Capture?

Cells & Protein

Cells,Protein& MF

RecoveredCells Recovered

Protein

MF RecoveredMF

Page 10: hgms high gradient magnetic separation

Cells & Protein

Cells,Protein& MF

RecoveredCells

RecoveredProtein

RecoveredMF

Page 11: hgms high gradient magnetic separation

High Gradient Magnetic Separation (HGMS)

Stainlesssteel wire

(50µm)

Magnetic force on particle:

HMVF corecoreomag ∇= µ

Fmag

Fdiff

Fdrag

Page 12: hgms high gradient magnetic separation

Clusters Needed for Effective Nanoparticle Capture by HGMS

Small particles - diffusion controlledaffected by bulk concentration

Large clusters - convection controlledno concentration effect18 nm

140 nm

Page 13: hgms high gradient magnetic separation

Commercial HGMS Units

Page 14: hgms high gradient magnetic separation

Polymer Synthesis

Common, readily available monomers – scalable process

High charge density at all relevant pH (SO3

-)

Variable hydrophobicity for additional specificity(Aromatic ring)

Strong attachment to Fe3O4(COO-)

Molecular weight from 2kDa to 300kDa with Na2S2O5

Page 15: hgms high gradient magnetic separation

Particle Synthesis

Page 16: hgms high gradient magnetic separation

Magnetic Nanoparticles

10 nm

Single crystal magnetic coreReversible recovery

Poly electrolyte coatingTunable adsorption

Easy flow around cellsNo diffusional limitationsColloidally stable

Page 17: hgms high gradient magnetic separation

Purification of Drosomycin

Drosomycin least hydrophobic of bound proteins

Elution of nearly pure (90%) drosomycinwith pH=7, 0.5M NaCl

Complete elution of all proteins at pH=10, 0.5M NaCl

Allows re-use of particles

Page 18: hgms high gradient magnetic separation

Comparison with other methods

(Capacity) x (speed) 30x better than best found in literature, 100x standardOnly 0.1% of particles lost with short (10.5) cm column

1 Voute et al. Bioseparations 8: 115-120, 19992 Ganetsos and Barker Preparative and Production Scale Chromatography Marcel Dekker 1993

Page 19: hgms high gradient magnetic separation

Oxygen Transfer in Fermentation

Xmax= X0e µt

NA = Xmaxµ/YC/O ~ 425 mmole O2/L hr

= kLa(C* - CL)~ 105 mmole O2/L hr

(DO2/δ)Bubble

Size

Depends on Henry’s Law

Constant

Should not focus on bubble and hydrodynamics!Need to enhance effective Henry’s Law Constant

Page 20: hgms high gradient magnetic separation

Mass Transfer Enhancement

2

3

4

5

0 10 20 30 40 50 60

ln (

C*-

Cbu

lk )

Time (min)

φ = 0.005φ = 0

φ = 0.01φ = 0.02

φ = 0.04

0

20

40

60

80

100

0 20 40 60 80 100 120

% O

xyge

n S

atur

atio

n

Time (min)

φ = 0.005φ = 0

φ = 0.01

φ = 0.02

φ = 0.04

DO Probe

N2-Purged suspension exposed

to air at time t=0

Page 21: hgms high gradient magnetic separation

Mass Transfer Enhancement

0.8

1

1.2

1.4

1.6

1.8

0 0.01 0.02 0.03 0.04 0.05

Enh

ance

men

t

φ (particle fraction)

1

2

3

4

5

6

0 20 40 60 80 100

Enh

ance

men

t

Temperature (oC)

20 nm, oleic acid coated NP φ = 0.0025

80 nm, PPO-PEO coated NP φ = 0.0025

Page 22: hgms high gradient magnetic separation

KLa MeasurementsSulfite Reaction Method

100

1000

10 100

k La (m

mol

/(atm

*L*h

r))

Superficial Velocity ,Vs (cm/min)

φ = 0.01

φ = 0.005

φ = 0.0025

φ = 0 (control)

100

1000

1 10 100

k La (m

mol

/(atm

L h

r))

Power Input per Unit Volume, PG/V

L (HP/1000L)

φ = 0.01

φ = 0.005

φ = 0.0025

φ = 0 (control)

Dtank = 22cm

HL =

14.

5cm

Di = 10cm

VTOTAL = 20L

VWORKING = 5.5L

air to mass spec

42232

2

21 SONaOSONa Cu⎯⎯ →⎯+

+

[SO32-] = 0.67M

[Cu2+] = 1x10-3 M

Page 23: hgms high gradient magnetic separation

Catalytic Nanoparticles DesignMagnetite nanoparticles:

• Modified with moieties containing highly nucleophilic groups• Selectively attack electrophilic groups such as P-O bonds

found in toxic organophosphates• Contain charged group on the surface: colloidally stable in

water

Fe3O4

Stabilizing polymers

Oxime

α-nucleophile: a heteroatom with an unshared electron pair adjacent to the nucleophilic center

α-nucelophiles: oximates, phenolates, etc.

C=N-OHH

Page 24: hgms high gradient magnetic separation

Nucleophiles Thus Far Tested

PAM: 2-pyridinealdoxime(common antidotal drug)

p(VPOx-AA): Copolymer of oximatedpoly(4-vinylpyridine) and polyacrylic acid(novel polymeric nucleophile)

N

CH3

HC N OH

CH2

HC C

H2

HC

N

COOH

CH2

C N OH

Page 25: hgms high gradient magnetic separation

Decomposition of Organophosphates

O

P(H3C)2HCO

OCH(CH3)2

F

O

PH3C

OCH(CH3)2

F

DFPSarin

O

PH3C F

Soman

OCH(CH3)CH2(CH3)3

Diisopropyl fluorophosphate: model nerve gas

OP+ Nanoparticle gives water-soluble phosphoric acid + fluoride ionNanoparticles are recyclable by HGMS

Method of analysis: continuous detection of F-

Page 26: hgms high gradient magnetic separation

Kinetics of Hydrolysis

0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10

k obsx1

03 (s-1

)

Concentration (mg/mL)

PAM/M

PAM

p(VPOx-AA)/M

M p(VP-AA)/M

Spontaneous Hydrolysis

Rapid hydrolysis in presence of oximated species

Page 27: hgms high gradient magnetic separation

Recycling

0.00

0.10

0.20

0.30

0 1000 2000 3000

-ln(1

-Ct/[D

FP] o)

Time (s)

PAM/M

p(VPOx-AA)/M

1

2

3

1

2

3

Particles can be recovered and recycled with no loss of catalytic effectiveness

Page 28: hgms high gradient magnetic separation

Applications

Catalytic decomposition of organophosphates:Numerous OP pesticides and insecticides Warfare agents such as sarin, soman, and VX

Drainwaters, industrial runoffs and spillsProtective clothingFilters, membranes, gas masks

Page 29: hgms high gradient magnetic separation
Page 30: hgms high gradient magnetic separation

Brownian: rotation of particle in fluid

Neel: rotation of magnetic vector within particle

10-810-710-610-5

0.00010.001

0.010.1

1

6 8 10 12 14 16 18

Rel

axat

ion

Tim

e, s

Particle Size, �

Neel

Brownian

τ B =

3Vη0

KT

τ N =

1f0

exp KVkT

⎛⎝⎜

⎞⎠⎟

Relaxation Processes

Magnetic Response of Nanoparticles

λ =µ0 M 2V14kT

≈µ0 χ 2 H0

2V14kT

? 1

20 nm

+ Fe3+ + Fe3+

χshell ≈ 1.3χdist

Page 31: hgms high gradient magnetic separation

Magnetite NanoparticlePreparations

Aqueous RouteNucleation of magnetite nanocrystals from a solution of FeCl3 & FeCl2, NH4OH, 80°C. Various stabilizersPros: Cheap, fast, variety of stabilizersCons: broad nanoparticledistribution, irregular shape, average crystallite size fixed

Organic RouteIron-triacetylacetonate reduction by 1-2 hexadecanediol, at 300°C in benzylether,oleic acid+oleyl aminePros: narrow crystallites distribution, regular (controlled) shape, tunable sizeCons: expensive, works only with some organic stabilizers, chemistry poorly understood

20 nm

+ Fe3+ + Fe3+

Page 32: hgms high gradient magnetic separation
Page 33: hgms high gradient magnetic separation
Page 34: hgms high gradient magnetic separation

Magnetophoretic Separation of Nanoparticles in Microfluidic Systems

Decreasing H

Fmag + Fdrag = −µ0Vp M f ∇H − 6πηRU p = 0

Fmag = µ0Vp ( M p − M f )∇H

= −µ0Vp M f ∇H

Fdrag = −6πηRU p

U p = −

µ0Vp M f ∇H6πηR

Magnetic Fluid

Page 35: hgms high gradient magnetic separation

Flow Magnetophoresis for Nanoparticle Separations

Page 36: hgms high gradient magnetic separation

Nanoparticle Separation and Focusing

Particle Resolution is affected byConvective dispersion (non-uniform velocity profiles)Non-uniform lateral field distributions

Page 37: hgms high gradient magnetic separation

Magnetic Shells

Use layer-by-layer technique to coat polystyrene beads with polyelectrolytes and then adsorb magnetic nanoparticles.

Polymer core can be dissolved out using solvent.

Page 38: hgms high gradient magnetic separation

Applications of Magnetic Chains and Rods

Fundamental studies on behavior under fixed and rotating magnetic field

Magneto-rheological effectsMagnetic actuators and valves Micromixers, pumps, etc. under a rotating magnetic fieldMagnetic nanowires (Bibette &Vivoy) Magnetic pillars can be used for separations (currently used in

separation of DNA (Doyle's research))Functionalized chains can be used for separations

Molecular movement of a molecule through the maze of chains onlygoverned by size and interactions with chains...

Separation of paramagnetic species

Page 39: hgms high gradient magnetic separation

Bead Alignment and Coupling

Beads can be aligned in microchannel under magnetic field and joined together either using sol-gel chemistry or

chemical coupling with appropriate linker.

Page 40: hgms high gradient magnetic separation

Rigid Magnetic Chains

Sol Gel kinetics (Titanium isopropoxide as precursor)

Extremely fast hydrolysis reactionLinking requires preferential nucleation on the bead surface

Magnetite beads coated with PDAMAC and resuspended in anhydrous ethanol; Kpw = 60

Water of hydration in the PDAMAC shell ensures reaction on the bead surface onlyPositively charged bead captures negatively charged nucleated titania efficiently

Page 41: hgms high gradient magnetic separation

Tethered Flexible Magnetic Chains

25 µm

50 m No

(c) (d)

50 m

50 m

(a) (b)

50 mNo

25