21
High Pressure Single Pulse Shock Tube (HPST) Experiments Kenneth Brezinsky Mechanical Engineering University of Illinois, Chicago 2007 AFOSR MURI Kick-Off Meeting Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels Holiday Inn, Princeton 100 Independence Way Princeton, NJ 08540 September 17, 2007

High Pressure Single Pulse Shock Tube (HPST) Experimentscombust/MURI/papers/Brezinsky... · 2007. 9. 24. · High Pressure Single Pulse Shock Tube (HPST) Experiments. Kenneth Brezinsky

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • High Pressure Single Pulse Shock Tube (HPST) Experiments

    Kenneth BrezinskyMechanical Engineering

    University of Illinois, Chicago

    2007 AFOSR MURI Kick-Off MeetingGeneration of Comprehensive Surrogate Kinetic Models andValidation Databases for Simulating Large Molecular Weight

    Hydrocarbon Fuels

    Holiday Inn, Princeton100 Independence Way

    Princeton, NJ 08540

    September 17, 2007

  • Background

  • Single Pulse Shock TubeDriver DrivenDiaphragm

    Dump Tank

    Shock tube sections heated to 100o C preventing loss of large condensable species

    Eight pressure transducer ports lie along the sidewall to determine shock velocity

    One on the end port to determine ignition delay

  • Heating the Shock Tube

    Water present100 +/- 2 °C over last 30 inches of tubeOmega Controllers

    2 controllers for tube

    700 720 740 7601200

    1300

    1400

    1500 Ideal Calibrated

    100 atm Calibration

    T5 (K

    )

    Extrapolated Shock Velocity (m/s)

    0 5 10 15 20 25 30 35

    80

    90

    100

    110

    120

    Temperature Distribution

    Tem

    pera

    ture

    (C)

    Distance from end wall (in)

  • GC and GC/MS

    Two Hewlett-Packard 6890 series Gas Chromatographs and a Hewlett-Packard 5973 series Mass Spectrometer

    Detectors - PDD, TCD, FID

    Mass Spectrometer

  • Chemical Thermometers

    Treal = (-E/R)/ln{[-ln(1-x)]/At}

    x = {[CF3 CH3 ]0 - [CF3 CH3 ]f }/ [CF3 CH3 ]0

    From loss of parent molecule:

    CF3 CH3 → CF2 CH2 + HFC6 H10 → C4 H6 + C2 H4

    Two ‘thermometers’

    1150 K - 1350 K1050 K - 1150 KEa/R = 33.4 K Ea/R = 39.0 K

    Note: Calibration performed for every pressure range

  • Reaction Time

    0.0000 0.0006 0.0012 0.0018 0.0024

    0

    2000

    4000

    6000

    8000

    10000t=1.43 ms

    Pmax

    80% of Pmax

    P5=600 barT5-avg.=1300 Kτ=1.43 msP

    ress

    ure

    /psi

    Time /s

  • Toluene Oxidation Species Profiles

    Stable species

    Radicalspecies

    Quenchingperiod

    Reactingperiod

    0.0000 0.0005 0.0010 0.0015 0.0020 0.00250

    5

    10

    15

    20

    25

    (a) C6H5CH3

    T5-avg.=1300 K

    Symbols: Constant T5, P5Lines: With T5, P5 correction

    Time /sM

    ole

    frac

    tion

    /ppm

    τ=1.43 ms

    0.0000 0.0005 0.0010 0.0015 0.0020 0.00250.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    Time /s

    Mol

    e fr

    actio

    n /p

    pm

    OH(c)

    Symbols: Constant T5, P5Lines: With T5, P5 correction

    T5-avg.=1300 Kτ=1.43 ms

  • Well Characterized Shock Tube for Chemical Kinetic Studies under Non-ideal Conditions

    From W. Tang, K. Brezinsky, Int. J. Chem. Kin., 38, 2006, 75-97

    Constant T and P approximations:Acceptable with a

  • A. Lifshitz, "Ignition Delay Times", in Handbook of Shock Waves,

    Volume 3, Pages 212-256, Eds. Gabi Ben-Dor, Ozer Igra and Tov Elperin, Academic Press, 2001.

    Ignition Delay

  • Examples

    Benzene PyrolysisPressure range from 30 - 50 barsTemperature range of 1200 - 1800 KReaction times from 1.2 - 1.5 ms.Two reagent mixtures, 84 and 800 ppm

    Toluene Pyrolysis and OxidationPressure range from 25 - 610 barsTemperature range from 1200 - 1500 KMixtures with 8 - 85 ppm of Toluene

  • Benzene PyrolysisC6H6 - 25 atm, 65ppm

    010203040506070

    1200 1400 1600 1800 2000

    Temperature/T5 K

    PPM

    Experimental

    Final

    Laskin-Lifshitz

    Wang

    Proc.2004+BenzUpdate

  • 1200 1400 1600 18000

    1

    20

    102030

    Mol

    e Fr

    actio

    n/ p

    pm

    T/ K

    050

    100150

    Toluene Pyrolysis -

    ExperimentalP ~ 27 and 45 bars, T ~ 1100-1900 K

    [C6

    H5

    CH3

    ]i

    ~ (1-5)x10-8

    mol/cc

    [●] –

    C6

    H5

    CH3

    , [▲] –

    C2

    H2

    , [□] -

    C6

    H6

    , [◊] –

    CH4

    , [X] –

    C4

    H2

    , [+] –

    C8

    H10

    , [ο] –

    C8

    H6

    , [Δ] –

    C9

    H8

    27 bars

    1200 1400 1600 18000

    1

    20

    102030

    Mol

    e Fr

    actio

    n/ p

    pm

    T/ K

    050

    100150

    45 bars

  • Toluene Oxidation : 600 bar, Φ=1Mixture 1

    [C6

    H5

    CH3

    ]o = 8ppm

    1240 1280 1320 1360 1400

    0

    2

    4

    6

    8

    10

    12

    14

    16

    Con

    cent

    ratio

    n /p

    pm

    Temperature /KC6

    H5

    CH3 C6

    H6 CO CO2Species Observed in Trace Amounts : 1,3-C4

    H6

    and C2

    H4

  • Experimental KBG

    KBG Model Comparison to High Pressure Data

    (a) : Klotz, S.D., Brezinsky, K., Glassman, I., Proc. Symp. Int.

    Comb., 27, 1998, 337.

    Ф=1, 610 bar, [C6

    H5

    CH3

    ]o

    =12 ppm

    1250 1300 1350 1400 1450 15002

    4

    6

    8

    10

    12

    14

    [C6H

    5CH

    3] /p

    pm

    T5 /K

    Ф=5, 610 bar, [C6

    H5

    CH3

    ]o

    =14 ppm

    KBG Model a

    : 98 species, 529 reactions.Model validated : P=1atm and T

  • Sensitivity Analysis

    Normalized Sensitivity Coefficient

    Φ=1 Φ=5

    Sensitivity Spectrum [C6

    H5

    CH3

    ]P=600 bar, T=1350 K, t=1.4 ms

    -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

    1

    Rxn # Reactions in KBG Model

    2. O+OH=H+H2

    0

    4. H+O2 (+M)=HO2

    (+M)

    458. C6

    H5

    +O2

    =C6

    H5

    O+O

    484. C6

    H5

    CH2

    +H=C6

    H5

    CH3

    486. C6

    H5

    CH3

    +O2

    =C6

    H5

    CH2

    +HO2

    492. C6

    H5

    +C6

    H5

    CH3

    =C6

    H6

    +C6

    H5

    CH2

    495. C6

    H5

    CH2

    +O=C6

    H5

    CHO+H

    C6

    H5

    +CH2

    O+OHC6

    H5

    CHO+H+OHC6

    H5

    CH2

    +HO2498.497.498

    495

    492

    486

    484458

    4

    2

  • Model Modifications

    1. Glarborg et al., Int. J. Chem. Kin., 2000. 2. Just et al., Proc. Symp. Int. Comb., 1994. 3. Colket et al.,Proc. Symp. Int. Comb., 1994. 4. Baulch et al., J. Phys. Chem., 1992. 5. Scherer et al., Proc. Symp. Int.Comb., 2000. 6. Colussi et al., J. Phys. Chem., 1988. 7. Miller et al., Combustion and Flame., 1992.a. Klotz et al., Proc. Symp. Int. Comb., 27, 1998, 337.

    b. Baulch et al., J. Phys. Chem. Ref. Data., 1994.

    3971701.81E+12C6H5CH3+O2=C6H5CH2+HO2486b4140003.00E+14C6H5CH3+O2=C6H5CH2+HO2486a

    81702.87E+14C4H3+C2H3=C6H65366

    14002.92.80E+03C4H3+C2H2=C6H55377

    7100003.00E+15C5H5=C2H2+C3H35383, adj

    00 7.50E+12C3H3+C3H3=C6H6535510743009.00E+15C6H6=C4H4+C2H253447000002.00E+14C6H5CH2=C2H2+C5H55333, adj8360002.00E+14C6H5CH2=C4H4+C3H35323898203.00E+13C6H5+O2=p-C6H4O2+H5312

    008.50E+13C6H5O+O=p-C6H4O2+H5301

    cal (mol K) -1cc (mol s)-

    1

    E bA ReactionReaction Number

    3971701.81E+12C6H5CH3+O2=C6H5CH2+HO2486b4140003.00E+14C6H5CH3+O2=C6H5CH2+HO2486a

    81702.87E+14C4H3+C2H3=C6H65366

    14002.92.80E+03C4H3+C2H2=C6H55377

    7100003.00E+15C5H5=C2H2+C3H35383, adj

    00 7.50E+12C3H3+C3H3=C6H6535510743009.00E+15C6H6=C4H4+C2H253447000002.00E+14C6H5CH2=C2H2+C5H55333, adj8360002.00E+14C6H5CH2=C4H4+C3H35323898203.00E+13C6H5+O2=p-C6H4O2+H5312

    008.50E+13C6H5O+O=p-C6H4O2+H5301

    cal (mol K) -1cc (mol s)-

    1

    E bA ReactionReaction Number

  • Modified ModelComparison to High Pressure DataФ=1,

    610 bar, [C6

    H5

    CH3

    ]o

    =12 ppmФ=5,

    610 bar, [C6

    H5

    CH3

    ]o

    =14 ppm

    Experimental Modified KBG 2 KBG

    1250 1300 1350 1400 1450 15002

    4

    6

    8

    10

    12

    14

    [C6H

    5CH

    3] /p

    pmT5/ K

    1240 1280 1320 1360

    2

    4

    6

    8

    10

    12

    14

    [C6H

    5CH

    3] /p

    pm

    T5/ K

    R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky., Proc. of the Comb. Inst., 30, 2005, 1165–1173

  • Summary

    HPSTDetermine ignition delayExamine pyrolytic and oxidative chemistrySurrogate components, component mixtures of increasing complexity and real fuelsInitial studies: n-propyl benzene, 1,3,5 trimethyl benzene

    Experimental ConditionsHigh pressures (10-40atm)Temperature (800-2500K)Equivalence ratios (0.5-4)Residence times (0.5-3.0msec)

    GC and GC/MS will analyze gas samples

    Slide Number 1�Single Pulse Shock Tube Slide Number 4Heating the Shock TubeGC and GC/MSSlide Number 7Reaction TimeSlide Number 9Well Characterized Shock Tube for Chemical Kinetic Studies under Non-ideal ConditionsIgnition DelayExamplesBenzene PyrolysisSlide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Model ModificationsSlide Number 20Summary