37
1 Hit finding and pad response function for the LCTPC using resistive Micromegas A. Bellerive – ECFA LC April 27, 2013 On behalf of the LCTPC collaboration A. Bellerive, M. Dixit, and P. Hayman D. Attie, P. Colas, and W. Wang

Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

1

Hit finding and pad response function for the LCTPC using

resistive Micromegas

A. Bellerive – ECFA LC April 27, 2013

On behalf of the LCTPC collaboration

A. Bellerive, M. Dixit, and P. Hayman

D. Attie, P. Colas, and W. Wang

Page 2: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

2

Outline • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse

– Electronic response – Definition of amplitude and time (Ai,ti) for a pad – Conceptual Pad Response Function (PRF)

• Determination of PRF parameters (calibration) – Parameterization of the PRF

• Results – Field distortions – Transverse resolution

• Summary

Page 3: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

TPC is the central tracker for International Linear Detector

– Large number of 3D points continuous tracking

– Good track separation and pattern recognition

• Low material budget inside the calorimeters (c.f. PFA)

– Barrel: ~5% X0 – Endplates: ~25% X0

• Two options for endplate readout: – GEM: 1.2×5.8 mm² pads – Resistive Micromegas: 3×7 mm² pads • Alternative: pixel readout with pixel size ~55×55 μm²

3 ILD

TPC Requirements : • Momentum resolution: δ(1/pT) < 9×10-5 GeV-1

• Single hit resolution 3.5T: σ(rφ) < 100 µm σ(z) < 500 µm • Tracking eff. for pT>1 GeV:

97% • dE/dx resolution ~5%

4.3m

3.6m

Cathode membrane Endplate MPGD Large Prototype

TPC

Time Projection Chamber (TPC) for ILD

Page 4: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

4

50-100 µm

40 kV/cm ~1000 µm

1 kV/cm

GEM

~100 µm

80 kV/cm

Micromegas (MM)

Technology choice for TPC readout: Micro Pattern Gas Detector • more robust than wires

• no E×B effect

• better ageing properties

• easier to manufacture

Avalanche

• fast signal & high gain

• low ion backdrift

• Gas Electron Multiplier (F. Sauli, 1997)

• 2 copper foils separated by kapton

• multiplication takes place in holes

• use of 2 or 3 stages

• MICROMEsh GAseous Structure

• metallic micromesh (typical pitch 50μm)

• supported by 50 μm pillars, multiplication between anode and mesh, high gain

• Gas Electron Multiplier

• 2 copper foils separated by kapton

• multiplication takes place in holes, with 2-3 layers needed

Micro Pattern Gas Detector (MPGD)

Page 5: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

5 1T PCMagnet Large Prototype TPC Endplate + 7 Micromegas modules

Readout Pad Size Electronics Groups

MPGDs

Double GEMs (Laser-etched) (~ 1 × 6 mm2

Pad)

ALTRO Asia

Triple GEMs (wet-etched) DESY

Micromegas (Resistive anode)

(~ 3 × 7 mm2

Pad) AFTER Saclay-Carleton

MPGD readout modules under studied

Page 6: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Charge Dispersion

Resistive Anode

Resistive foil Isolated layer

Pads

PCB

Micromegas mesh

left middle right

Page 7: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

7

Charge dispersion

Micromegas + resistive anode

mesh

avalanche

electron

resistive foil glue

anode pads

- A high resistivity film bonded to a readout plane with an insulating spacer

- 2D continuous RC network defined by material properties and geometry.

- point charge at r = 0 & t = 0 disperses with time.

∂∂

+∂∂

=∂∂

rrrRCtρρρ 11

2

2

tRCr

et

RCtr 4

2

2),(

=⇒ ρ

1 2

3

Q

ρ(r,t) integral over pads

ns

M.S. Dixit et.al., NIM A518, 721 (2004) M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

Page 8: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

8

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttH exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

track

mesh

pads

T(x)

x

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Resistive foil + glue

Page 9: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

9

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttH exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

track

mesh

pads

L(t)

t

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Resistive foil + glue

Page 10: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

10

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttA exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

track

mesh

pads

R(t)

t Trise

1

0

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Resistive foil + glue

Page 11: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

11

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

H(t)

t Trise

1

0

Transverse diffusion

Longitudinal diffusion

Induction gap

−=

rf tt

tttH exp1exp)(Preamplifier Response

Resistive foil + glue

Your function

Page 12: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Qi = ∫ ρi(r) dr

12

M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttH exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

Qi

ρ(r,t) integral over pads

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Stand alone simulation

Page 13: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Raw Charge Shape versus Shaped Pulse

Figure: N. Shiell

Page 14: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Raw Charge Shape versus Shaped Pulse

from Eric Delagnes etal at Saclay

Page 15: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Stand-Alone Calculation

CRUCIAL TO CHARACTERIZE DETECTOR PARAMETERS

Page 16: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

NEED INPUT OF DESIGN ENGINEER AND ELECTONIC EXPERT

Stand-Alone Calculation

Page 17: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Shaped Pulse (for different shaping time)

Page 18: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude

Page 19: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude 1) Use the maximum as the amplitude Single Point Maximum(SPM) Ai = max pulse height P(i)

Q

ρ(r,t) integral over pads

ns

time

time

time

Pul

se h

eigh

t P

ulse

hei

ght

Pul

se h

eigh

t

method used here

Page 20: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude 2) Maximum of Parabola Quadratic Fit Method (QFM) Ai = max of parabola P(i)

Qi

ρ(r,t) integral over pads

ns

time

time

time

Pul

se h

eigh

t P

ulse

hei

ght

Pul

se h

eigh

t

Method use pre-2011

Page 21: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude 3) Integrate above threshold Re-integration method (RM) Ai = Sum P(i)

Qi

ρ(r,t) integral over pads

ns

time

time

time

Pul

se h

eigh

t P

ulse

hei

ght

Pul

se h

eigh

t

Method use in 2011

Page 22: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

22

(mm) Xtrack

PRF

Pad Response Function (PRF)

For a given Xtrack (known position) the PRF is defined to be unity

1.0

Ai k

Page 23: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

• Only two parameters (simpler model) • Easier to work with • Better fits to data

(mm)

Pad Response Function (model)

new (used here)

Page 24: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

MPGD CERN Sept 10-11, 2007

Alain Bellerive 24

PRF versus Z

anode pads

mesh

Direct signal

avalanche

electron

Micromegas

z / cm x

rela

tive

ampl

itude

15.7 cm

6 < z < 7cm 8 < z < 9cm

10< z < 11cm 12 < z < 13cm 14 < z < 15cm

4 < z < 5cm 2 < z < 3cm 0 < z < 1cm

xpad-xtrack / mm

TPC PRF

Width PRF

Page 25: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

25

Single Module LCTPC (MM)

Period: 2008-2011 2011 data Single module

Page 26: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

26

Transverse Resolution MM

2011 data Single module

Source: Nicholi Shiell M.Sc. Thesis Carleton University

Page 27: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

7-module LCTPC (MM)

Period 2012-2013 2013 data 7-module

Page 28: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

28

Pads PCB +

Micromegas

Cooling system

Front-End Mezzanine

Front-End Card (FEC)

Resistive MM: Module Design

Page 29: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pads PCB +

Micromegas

Cooling system

Front-End Mezzanine

Front-End Card (FEC)

29

Fully integrated Module

Resistive Micromegas Detector

FEC

FEM

Resistive MM: Module Design

Page 30: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

30

Analysis Framework: MarlinTPC • MarlinTPC (LCIO) is the global effort to develop a single analysis code package for all the different prototype TPCs being developed. • It is far from complete, but it has a solid foundation • Furthermore, not sustainable to rely on stand alone code with hardcoded geometry, stand alone track-fit algorithm, calibration constants, etc… • MarlinTPC processors: calibration for PRF determination, bias corrections and resolution determination (transverse and longitudinal)

Page 31: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

31

Event Display: MarlinTPC

2D or 3D display software available

Online monitor

Offline monitor

Page 32: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

32

Multi-track Pattern Recognition Kalman Filter within MarlinTPC – LCIO geometry

Acknowledment: Bo Li Keisuke Fujii Martin Killenberg

Page 33: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

33

Single-track events for calibration PRF calculation – bias – resolution study

Page 34: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

34

Field Distortions (E x B effect)

B=0T

After alignment

B=1T

B=0T

Page 35: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

35

Transverse Resolution MM 2013 data 7 module

eff

d

NzC ⋅

+=2

20σσ

B=1 T Cd = 94.2 µm/√cm (Magboltz) Per row

Page 36: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

36

Transverse Resolution Micromegas (MM) versus GEM

100 μm

Page 37: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

37

Summary

A. Bellerive – ECFA LC May 29, 2013

• A lot of experience has been gained in building and operating Micromegas TPC panels.

• The characteristics of the Micromegas modules, such as the uniformity, spatial resolution, stability have been studied in detail.

• 7 modules have been successfully tested with full integration of the electronics at the same time. The modules have been manufactured and characterized in a quasi-industrial process.

• Thanks to the resistive technology, the measured resolution is about 60 microns at zero drift distance with 3 mm wide pads. This meets ILC requirements of 100 μm single hit resolution in rφ (over 2 m drift).