14
Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student ree Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection based on Ultrasound Measurements

Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Embed Size (px)

Citation preview

Page 1: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Hopp til første side

3D Flow SimulationBy Sigve Hovda, Ph.D student

Three Dimentional Computational Fluid Dynamic Model of the Human Heart

During Ejection based on Ultrasound Measurements

Page 2: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection
Page 3: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Hopp til første side

Spline Representation Spline representation of the first and last volume Interpolation in time between these volumes Animation of the mesh

Page 4: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection
Page 5: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Hopp til første side

The mesh Adaptable The volume is divided into 6 major blocks 210 000 elements which decrease in size as they

get closer to the wall

Page 6: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection
Page 7: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Hopp til første side

The CFD simulation Using a parallel computer, Cray 3E, with 64

processors Solving the Navier Stokes Equations assuming

blood is a Newtonian fluid Reynolds number of 2500

Page 8: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Hopp til første side

Results Pressure Velocity (absolute value)

Page 9: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection
Page 10: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection
Page 11: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Hopp til første side

Compare with Ultrasound

Ultrasound colorflow image- Velocity component in the beam direction- Color codes these components- Spatial and temporal filtering

Simulation- Calculates these velocity components- Same colorcodes

Speed 5% of realtime

Page 12: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection
Page 13: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection
Page 14: Hopp til første side 3D Flow Simulation By Sigve Hovda, Ph.D student Three Dimentional Computational Fluid Dynamic Model of the Human Heart During Ejection

Hopp til første side

Future Investigation Better wall describtion Better initial conditions Combining ultrasound colorflow data with the CFD

model Using Inverse Boundary Methods