21
Copyright 2016, Nagoya University Sato Laboratory c Nagoya University Confidential HPSR/iPOP 2016 June 15, 2016 How Can Optical Technologies Compensate the Imminent Demise of Moore's Law? Ken-ichi Sato Nagoya University Copyright 2016, Nagoya University Sato Laboratory c Nagoya University Confidential OUTLINE Advances in Video Technologies Advances in CMOS Technologies Optical Networking Technologies - Wide Area Networks - Intra-Dataceter Networks Summary

How Can Optical Technologies Compensate the Imminent ...hpsr2016.ieee-hpsr.org/docs/Keynote_Sato_HPSR-iPOP2016.pdf · 2006_11$ 10 9 10 9 2 10 Average values of top ten ranking in

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

HPSR/iPOP 2016 June 15, 2016

How Can Optical Technologies Compensate the Imminent Demise of Moore's Law?

Ken-ichi Sato Nagoya University

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

OUTLINE�

Advances in Video Technologies

Advances in CMOS Technologies

Optical Networking Technologies

- Wide Area Networks - Intra-Dataceter Networks�

Summary�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!The$Ministry$of$Internal$Affairs$and$Communica8ons,$White$Paper,$2016$

Broadband Internet Traffic in Japan

CY

Total Broaband Download Trffic (5.4 Tbps)

Total Broadband Upload Traffic (1.1 Tbps)

Total Mobile Broadband Download Traffic (1.1 Tbps)

Total Mobile Broadband Upload Traffic (0.16 Tbps)

53.5 % increase

Broadband Internet Traffic in Japan

24.8 % increase

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!The$Ministry$of$Internal$Affairs$and$Communica8ons,$White$Paper,$2016$

Broadband Internet Traffic per Subscriber

Total Number of Broadband Internet Subscribers

Temporal Decrease

Download Trffic per Subscriber

Upload Trffic per Subscriber

(thousand) (kbps/subscriber)

Download Trffic per Subscriber

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Global&Consumer&Internet&Traffic&

Internet video

File sharing

Web, email, and data

Consumer Internet traffic

Year�

Peta%Bytes%per%M

onth%

CISCO White Paper, 2015!

The sum of all forms of IP video is in the range of 80-90% of total IP traffic. �

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

0$

500$

1000$

1500$

2000$

2500$

3000$

0 10 20 30 40 50 60

Italy�

China�

Spain�France�

U.K.�Canada�

U.S.�Germany�

Russia�

Japan�

Increase in Experienced Speeds (Kbps) Increases Internet Video Viewership Minutes)�

Indonesia�India�

Argentina�Mexico�

Brazil�

Chile�

Australia�New Zealand�

Source:$Cisco�

Vide

o M

inut

es p

er V

iew

er

Fixed Broadband Speeds (Mbps)

Strong correlation between experienced speeds and video minutes viewed per viewer. �

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

��

����

�����

�����

�����

�����

�����

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 2007 ! 2008! 2009! 2010! 2011!

LCD!Plasma Panel!

%32"%

%40"%

%47"%

42"%

$ !

year !

50"%

2003! 2004! 2005! 2006!

Price Trend of LCD and Plasma Panel for High Definition TV (in Japan) !

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Average$television$size$growth$hit$a$huge$inflec8on$point$with$the$flat$panel$revolu8on,$with$the$average$television$purchased$for$a$US$living$room.�

1950� 1955� 1960�1965� 1970�1975� 1980�1985� 1990�1995� 2000� 2005�2010�2015E�

Year�

Screen

$Size$(Inche

s)�

10�

20�

30�

40�

50�

Average&Living&Room&Television&Size&by&Year&(USA)&

Source:$CEA,$NPD,$Nielsen,$BTIG$Research$Es8mates�

Flat%Panel%Revolu;on�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

0

50

100

150

200

250

300

350

400

2014 2015 2016 2017 2018 2019

Increasing Video Definition: By 2019, More Than 30 Percent of Connected Flat-Panel TV Sets Will Be 4K�

Source:$Cisco$VNI$Global$IP$Traffic$Forecast,$2014–2019�

Con

nect

ed 4

K T

V Se

ts (M

)�By$2019,$31$%$of$the$installed$flat^panel$TV$sets$will$be$UHD,$up$from$2.7$%$in$2014.�

Year

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Resolution Comparison

HDTV-1080p91920 x 1080 pixels

4K-SHD93840 x 2160 pixels

720 x 483

Standard TV

8k-SHD (EHRI-3)97680 x 4320 pixels

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Video Bit Rate; Source and Compressed�

1M

10M

100M

1G

10G

Standard TV HDTV

Bit

Rat

e (b

it/s)

MPEG-2

Original

MPEG-4 (H.264)

Original

MPEG-2

MPEG-4 (H.264)

4k Super Hi-Vision 33.2 M 8.3 M 2.1 M

8k Super Hi-Vision

0.35 M Spatial Resolution

(pixel/frame)

100G

Original (60p)

Original (60p)

Integral 3D TV

320 G VGA Class (640x480, 60P) 80 G QVGA Class (320x240, 60P)

MPEG-4 (H.264)

Original (120p)

H265 (HEVC)

H265 (HEVC)

MPEG-2 MPEG-4 (H.264) H265 (HEVC)

MPEG-2

� �

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Roadmap&of&4k&and&8k&UHD&TV&in&Japan�

2014%•  4k%Experimental%broadcas;ng;%124/128%degree%CS%

2015%•  4k%Commercial%Broadcas;ng;%124/128%degree%CS%

2016%(Rio%de%Janeiro%Olympic)%•  8k%1ch/4k%3ch%Experimental%Broadcas;ng;%BS%

2018%•  4k,%8k%BS%Commercial%Broadcas;ng�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

OUTLINE�

Advances in Video Technologies

Advances in CMOS Technologies

Optical Networking Technologies

- Wide Area Networks - Intra-Dataceter Networks�

Summary�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

100 P�

10 P�

1 P�

100 T�

10 T�

1 T�

100 G�

10 G�

1 G�

100 M�

Per

form

ance

[Flo

ps]�

33.86 PF�

165.14 TF�

# 1�

# 500�

Year�

1.9 times/year�

saturation�

Performance Improvement in Supercomputers�

Source:$hap://www.top500.org�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Rank

Num

ber o

f Cor

es�

Top500�Number of Processors

Nov, 2005 - Nov, 2014

10$

100$

1000$

10000$

100000$

1000000$

10000000$

�� ��� ���� ���� ��� ��� ����

2014_11$

2012_11$

2010_11$

2008_11$

2006_11$

Source:$hap://www.top500.org�

3.12$million�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Number of Cores�

Pow

er C

onsu

mpt

ion

(kW

)�

Top500� Number of Cores vs. Power consumption �

Source:$hap://www.top500.org�

10$

100$

1000$

10000$

���� ����� ������ ������� ��������

2014_11$

2012_11$

2010_11$

2008_11$

2006_11$

10�9�

10�9�

2�

10�

Average values of top ten ranking in the year 2006-2014 Number: Available data

Annual Average of Top 10�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Aver

age

Pow

er C

onsu

mpt

ion

(kW

)�

Year�

Top500��Power Consumption�

100%

1000%

10000%

2005% 2006% 2007% 2008% 2009% 2010% 2011% 2012% 2013% 2014% 2015% 2016%

TOP100$

No.1$

Source:$hap://www.top500.org�

#2% #3%#2% #2% #4%

27�

26�50�

55� 58� 66� 62�

57�56� 62 78 76

75 77 70 73 66

(average)�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Aver

age

GFL

OPS

/KW

Year�

Top500� Average GFLOPS/KW�

Source:$hap://www.top500.org�

100%

1000%

2005% 2006% 2007% 2008% 2009% 2010% 2011% 2012% 2013% 2014% 2015% 2016%

TOP100$

TOP10$

No.1$

(average)�

(average)�

#2% #3%#2% #2% #4%

26�27� 50�

55� 58� 66� 62�57�

56�

62

78

76 75

77 70 73 66�

17�9�6� 6�4� 2�

3�

2�5�

6�10�

9�9�

7� 6�

10�10� 10�

10�9�

10�10� 9� 10� 10�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

OUTLINE�

Advances in Video Technologies

Advances in CMOS Technologies

Optical Networking Technologies

- Wide Area Networks - Intra-Dataceter Networks�

Summary�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Advances in Optical Link Technologies

1980 1990 2000 2010 2020 Year�

2030

< Research (without SDM) 8�

<%Commercial%system%in%NTT%

8�< Research (with SDM)

8�8�

8�8�

8�

Electrical TDM �

8�

8�

WDM�

8�8�

8�

100 M

1 G

10 G

100 G

1T

10 T

100 T

1 P

=>A>?@BC�

[bit/

s]

10 P

10 M

Physical%Limitof%%SMF:%Fiber-Launched Power Limit Nonlinear Shannon Limit�

8�

8�8�8�

Digital Coherent�

8�8�R&D

Commercial

Yutaka Miyamoto and Masahito Tomizawa, “High-capacity scalable optical communication for future optical transport network,” Tech. Digest of ISSCC2014, Solicited Paper 6.2, Feb. 2014.�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Transmission Capacity Increase Processing Performance Advance

Search Engine

Software e-commerce� SNS

Video

Hardware Based

New Value Creation Moving toward this direction�

ICT Technology Advances and New Value Creation�

Creating New Architecture and Software

$�$�

$�$�$�$�$�

$�

$�$�

$�$�

$�

$�

$�$�

$�

$�

$� $�

$�

$�

$�

$�

$�$�

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

10$

100$

1000$

10000$

100000$

1990$ 1995$ 2000$ 2005$ 2010$ 2015$

SONET/SDH&XC�

Core&Router�

Router throughput is counted as WAN count. �

ODU&XC�

Throughput Increase in Optical Networking Systems�

Throughp

ut%(G

bps)�

Year�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Fine&Granular&Transport&Possible&with&ElasSc&OpScal&Path�

Fine&(ODU0)&Granular&Paths&Possible&with&ODUflex�

Flexible&RouSng&Granularity&will&be&Available�

0.1�

1�

Rou;ng%Granularity�

Power%Efficien

cy%(W

;Gb

/s)� High_End%Router%(Layer%3)�

LSR/Flow%Router�

ODU%XC�

OP/WB%XC�

Cut_through%on%L2%Path�

Cut_through%on%TDM%Path�

Routing Granularity and Power Consumption

Middle%Range%Router%(Layer%3)�

Cut_through%on%Op;cal%Path�

100%M� 1%G� 10%G� 100%G�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

North%America�Global�

Metro^only$traffic$(traffic$that$traverses$only$the$metro$and$bypasses$long^haul$traffic$links)$will$surpass$long^haul$traffic$in$2014.$Metro^only$traffic$will$grow$nearly$twice$as$fast$as$long^haul$traffic$from$2012$to$2017.$$

Video$caching$and$DCs$are$deployed$within$the$metro$network$more$and$more.$$$

CAGR=23%� CAGR=20%�

25%�

CISCO White Paper, May 27, 2015!!

Metro&and&LongXHaul&IP&Traffic&2014X2019&

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Glenn$Welbrock,$OFC/NFOEC$2013�

Application of ROADMs/OXCs to Metro�

North American metro network consisting of 104 nodes and 202 bidirectional fiber links, and a mean of 3.9 degrees/node.�

R. Younce, et al., JOCN 2013, Vol. 5, Issue 10 (2013) �

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

ROADMs/OXCs Based on WSS

3%4%

N%

2%1%

3%4%

N%

2%1%

3%4%

N%

2%1%

3%4%

N%

2%1%

Present Architecture, �

Broadcast%&%Select� Route%&%Combine�

If%N=64,%then%Coupler%Loss%>%18%dB%Crosstalk%exceeds%acceptable%level�

If%N=8,%10%years%later%N%will%be%64%(traffic%increase%rate%is%23%%per%year)�

SC� WSS�

LCOS&

3D&MEMS&

N ≤ 8

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

3 4

N

2 1

3 4

N

2 1

Future Architecture, �

Broadcast%&%Select� Route%&%Select�

SC� WSS�

N > 8

ROADMs/OXCs Based on WSS

.%

.%

.%

.%

.%

.%

.%

.%

.%�

.%

.%

.%

.%

.%

.%

.%

.%

.%�

3 4

N

2 1

3 4

N

2 1

WSS� WSS�

.%

.%

.%

.%

.%

.%

.%

.%

.%�

.%

.%

.%

.%

.%

.%

.%

.%

.%�

��

2�

m

1

m

1 ��

m

1

m

1

m

1

m

1

m

1

m

1

Subsysetem%Modular%Architecture�

3 4

m

2 1

3 4

m

2 1

Broadcast%&%Select�

Increased&Closstalk&Increased&Coupler&Loss�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Comparison of OXC Architectures

3 4

N

2 1

3 4

N

2 1

.%

.%

.%

.%

.%

.%

.%

.%

.%�

.%

.%

.%

.%

.%

.%

.%

.%

.%�

��

2�

m 1

m 1

��

m 1

m 1

m 1

m 1

m 1

m 1

3 4

m

2 1

3 4

m

2 1

Broadcast & Select

m ≤ 9

Route%&%Select� Subsystem%Modular%Architecture�

Concatenated configuaration may be needed

Architecture� Route & Select� Broadcast & Select�

Needed # of WSS (N=64)� 512 (1x20 WSS) or 256 (1x40 WSS) +128 OC (1x2)� 81 (1x9 WSS)�

Minimum # of WSS Traversed per Node� 2� 1�

# of Interconnect Fibers (N=64)� 4,096 (�N2)� 729 (�81 x s)�

Modular Growth Capability� WSS by WSS (Complicated Operation)� Subsystem (Simple Operation)�

Scalability� Poor (limited by the initial WSS degree)�

Large (1x 20, 40 or more)�Needed WSS Port Count� Small (1x9 )�

Excellent�

��

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

OUTLINE�

Advances in Video Technologies

Advances in CMOS Technologies

Optical Networking Technologies

- Wide Area Networks - Intra-Dataceter Networks�

Summary�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

0

1000

2000

3000

4000

5000

6000

7000

2013$ 2014$ 2015$ 2016$ 2017$ 2018$ 2019$

EB9pe

r$$year�

Within$data$center$CAGR:22%$�

Global$IP$Traffic$CAGR:23%$�

Global IP Traffic and Intra-Datacenter Traffic��.31$��$3$&(.3(1�#1$))+&�+2��/41�#+-(2�/)��,/%$,�� �#1$))+&��3�+2�(60(&3('�3/�1($&*��������6$��+3(�+.� ��������!�� ���

Source: Cisco�

Year�

x$4�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Global Data Center Traffic, 2013-2018�

Soruce: Cisco Global Cloud Index, 2013–2018�

0$

1000$

2000$

3000$

4000$

5000$

6000$

7000$

8000$

9000$

10000$

2013$ 2014$ 2015$ 2016$ 2017$ 2018$

EB%per%year�

Year

Within data center CAGR:22% �

Total CAGR:23% �

Data center to user CAGR:23% �Data center to data center CAGR:22% �

� �

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Aggregate Traffic Generated by Servers in the Google Datacenters from 2008 through 2014�

hap://www.theplagorm.net/2015/06/19/inside^a^decade^of^google^homegrown^datacenter^networks/�

85%%/year�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Optical Flow Switch Ethernet Switch Ethernet Switch

Separation of Flows According to the Size�

delay^sensitve� throughput^sensitve�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Requirements for Optical Circuit Switch in DC Applications (Google)�

Low cost Lots of opportunities to insert OCS into data center, but $500/port is simply not compelling

Large scale

100-300 ports is typically inadequate for data center application

Lower insertion loss

3-5dB precludes many deployment scenarios Faster switching times

Hardware and software, 20 ms is a starting point but 10-100 µs would be transformative�

Amin Vahdat, OFC/NFOEC 2012, OTu1B.1.�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

1!

10!

100!

1,000!

10,000!

100,000!

1,000,000!

10,000,000!

10! 100! 1,000!

Three-Stage Clos�Crossbar�

"5+3&*� /13��/4.3�������6����

�4-%(1�/)��,(-(.3�"5+3&*(2��-(31+&���6 �25+3&*:�

Effectiveness of Wavelength Routing Switches in Creating Large-Scale Optical Switches�

7�� !

7��� !

7��! Wavelength Routing Switch (introducing another dimention)

Matrix$Switch$Type$(Strictly$Non$Blocking)�

the&larger&the&switch&scale,&the&larger&the&effecSveness�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

KMN x KMN switch architecture (K=3) and fabricated 90 x 90 AWG subsystem�

%9x9%%%%%%� %5%arrayed%10x10%cyclic%AWG�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!���

370$mm�

230$mm�

120$mm�

Subsystem$bridging$part�

90$3x3$DC^switches�

Proposed$wavelength$rou8ng$subsystems�

x3�

30$9x9$cyclic$AWGs$27$10x10$cyclic$AWGs�

Outlook of Fabricated 270x270 Switch�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

M EDFAsinter-leaver

25/50GHz

λ2N

inter-leaver

M pairs of 1xN/2 AWGs

M Nx1couplers

WR switchAggregation & Amplification

MN MN

N MxM DCswitches

Odd

Even

DC switch

498 µs 498 µs 498 µs

λ1→λ2λ2→λ1

λ1→λ91λ91→λ1

λ1→λ180λ180→λ1

FEC threshold

log 1

0(B

ER

) in

104

bits

Time (100µs/div)

0

-1

-2

-3

-4

(a) (b) (c)

Koh Ueda et al., “Demonstration of 1,440x1,440 Fast Optical Circuit Switch for Datacenter Networking,” to be presented at OECC/PS 2016, WF1.

1,440x1,440 Fast Optical Circuit Switch for Datacenter Networking�

Port number of WR switch

log 1

0(B

ER

)

Odd channelsEven channels

FEC threshold

0 20 40 60 80 100120140160180-5

-4

-3

-2

-1

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Optical Services

Optical Transmission

Dynamic Operation (Agility)

Application of Optical Technologies

λ-leased line �

100 Gbps �

Static �

Application of ROADMs/OXCs

Services�Transmission�Networking�

Grooming

Core/Metro Core �

Intra-Datacenter Networking

Point-to-point �

Mostly Electrical�

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Optical Services

Optical Transmission

Dynamic Operation (Agility)

Application of Optical Technologies

λ-leased line �

100 Gbps �

Static �

Access�

Application of ROADMs/OXCs

Services�Transmission�Networking�

Grooming

Core/Metro Core �

Intra-Datacenter Networking

Point-to-point �

Mostly Electrical�

1 Tbps � Metro�

Mostly Optical�

λ_switched Service �

Electrical/Optical�λ-flow sercice� Protection/Restoration�

First Circuit Switching �

���

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Summary�

Optical switching technology will play a key role in creating bandwidth abundant and energy efficient future wide area and datacenter networks. Cost effective and large port count optical switches are crucial.

- In the wide area networks, the key enabler will be cost-effective large scale OXCs/ROADMs. The subsystem modular architecture will provide the solution. - In data center networks, electrical packet and optical circuit hybrid switching will be the most effective way to go. Wavelength routing switch is promising so that it can create large port count switches cost-effectively.

� �

Copyright 2016, Nagoya University Sato Laboratory!c! Nagoya University Confidential!Copyright 2015, Nagoya University Sato Laboratory!c! Nagoya University Confidential!

Part of the work is supported by by NICT, and KAKENHI (26220905 )�