hydostatic bearing systems

Embed Size (px)

Citation preview

  • 8/10/2019 hydostatic bearing systems

    1/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Hydrostatic

    BearingSystems

    Figure 13.1 Formation of fluid inhydrostatic bearing system. (a) Pumpoff; (b) pressure build up; (c) pressure

    times recess area equals normalapplied load; (d) bearing operating; (e)increased load; (f) decreased load.[From Rippel (1963)].

    WzBearing runner

    Bearing pad

    Recess pressure,pr= 0 Flow,

    q= 0Supply pressure,ps= 0

    Bearingrecess

    Manifold

    Restrictor

    (a)

    Wz

    pr0

    ps0

    (b)

    p=pl

    p=pl

    Wz

    q= 0

    (c)

    Wz

    p=pr

    ho

    q

    p=ps

    (d)

    Wz + Wz

    p=pr + pr

    ho ho

    q

    p=ps

    (e)

    Wz Wz

    p=pr pr

    ho + ho

    q

    p=ps

    (f)

  • 8/10/2019 hydostatic bearing systems

    2/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Circular Step Pad & Pressure

    wz

    ro

    ri

    h0

    p = 0pr

    q

    wz

    dr

    pr

    r

    p = 0

    Figure 13.2 Radial-flow hydrostaticthrust bearing with circular step pad.

    Figure 13.3 Pressure distribution inradial-flow hydrostatic thrust bearing.

  • 8/10/2019 hydostatic bearing systems

    3/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pad CoefficientsSill

    Recess

    ri

    ro

    7

    6

    5

    4

    3

    2

    1

    Flowc

    oefficient,qb;pow

    ercoefficient,Hb

    0 .2 .4 .6 .8 1.0

    Ratio of recess radius to bearing radius, ri/ro

    0

    .2

    .4

    .6

    .8

    1.0

    Loadcoefficient,ab

    Hb

    ab

    qb

    Figure 13.4 Chart for determiningbearing pad coefficients for circular step

    thrust bearing. [From Rippel (1963)].

    ab=1

    (ri/ro)2

    2ln(ro/ri)

    qb= !

    3[1

    (ri/ro)2

    ]

    Hb= 2! ln(ro/ri)

    3 [1 (ri/ro)2]2

    Load coefficient:

    Flow coefficient:

    Power coefficient:

  • 8/10/2019 hydostatic bearing systems

    4/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Annularrust Pad Bearing

    Flow Flow

    r1

    r2

    r3

    r4

    Sills

    Recess

    Figure 13.5 Configurations of annular thrust pad bearing.[From Rippel (1963)].

  • 8/10/2019 hydostatic bearing systems

    5/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pad Coefficients40

    32

    24

    16

    8

    0

    Flowc

    oefficient,qb;powerc

    oefficient,Hb

    Loadcoefficient,ab

    1.2

    .8

    .4

    .2 .4 .6 .8 1.0

    (r3- r2)/(r4- r1)

    qbHbab

    r1

    r4

    3/4

    1/2

    1/4

    Figure 13.6 Chart for determining bearing padcoefficients for annular thrust pad bearings. [FromRippel (1963)].

    ab= 1

    2r2

    4 r

    2

    1

    r

    2

    4 r

    2

    3

    ln(r4/r3)

    r2

    2 r

    2

    1

    ln(r2/r1)

    qb= !

    6ab

    1

    ln(r4/r3)+

    1

    ln(r2/r1)

    Hb =qb

    ab

    Load coefficient:

    Flow coefficient:

    Power coefficient:

  • 8/10/2019 hydostatic bearing systems

    6/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Rectangular Hydrostatic PadB

    L b

    l

    pr

    = 0

    Figure 13.7 Rectangular hydrostatic pad.

  • 8/10/2019 hydostatic bearing systems

    7/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pad Coefficients

    b

    B8

    7

    6

    5

    4

    3

    2

    1

    Flowc

    oefficient,qb;powercoefficient,Hb

    1.4

    1.2

    1.0

    .8

    .6

    .4

    .2

    0

    Loadcoefficient,ab

    .2 .4 .6 .8 1.0

    (a)

    2b/B

    ab(numerical)

    ab(eq. (14.20))

    Hb

    qb

    0 .2 .4 .6 .8 1.02b/B

    B

    bL

    Hb

    qb

    Hb

    ab

    B/L = 2

    B/L = 4

    (b)

    b

    Figure 13.8 Pad coefficients. (a) Squarepad; (b) rectangular pad with B= 2Land b=l.

    Hb =qb

    ab

    Load coefficient:

    Flow coefficient:

    Power coefficient:

    ab =1

    2

    1+

    Ar

    As

    = 1

    b

    B

    L+2b

    BL

    qb =1

    6ab

    Bb

    +

    L

    b

  • 8/10/2019 hydostatic bearing systems

    8/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Compensated Hydrostatic Bearingswz

    Runner

    Bearingpad

    Capillarycompensatingelement

    Supplymanifold

    From pump

    dc

    qcpr

    lc

    ps

    h0

    Figure 13.9 Capillary-compensatedhydrostatic bearing. [From Rippel(1963)].

    wzRunner

    Orifice

    Supplymanifold

    From pump

    Bearingpad

    dppr

    ps

    h0

    do

    ~

    Figure 13.10 Orifice-compensatedhydrostatic bearing. [From Rippel(1963)].

  • 8/10/2019 hydostatic bearing systems

    9/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Flow-Valve Compensation

    To bearing recess

    Variable orifice forcontrolling flowset point

    From

    pump

    pr

    ps

    Figure 13.10 Constant-flow-valve

    compensation in hydrostatic bearing.[From Rippel (1963)].

  • 8/10/2019 hydostatic bearing systems

    10/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Compensating Element

    Ranking

  • 8/10/2019 hydostatic bearing systems

    11/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Speed vs. Load

    Solution

    Asymptotic

    Complete High-speed asymptote

    Infinitelength

    Incompressible low-speed asymptote

    Finite length

    Loadcomponentalong

    lineofcenters,wz

    Relative surface velocity, ub

    Figure 14.1 Effect of speed on load for self-acting, gas-lubricatedbearings. [From Ausman (1961).]

  • 8/10/2019 hydostatic bearing systems

    12/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Rectangular-Steprust Bearing

    Feedgroove

    Step

    Ridge

    b

    xy

    hs

    hr

    ls

    lr

    lg

    ub

    Figure 14.2 Rectangular-step thrustbearing. [From Hamrock (1972).]

    b

    N0(ls+ lr+ lg)

    ro ri

    Figure 14.3 Transformation ofrectangular slider bearing into circularsector bearing.

  • 8/10/2019 hydostatic bearing systems

    13/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Optimum Step

    Parameters

    .6

    .5

    .4

    .3

    .2

    .1

    0

    g

    Ha

    6

    5

    4

    3

    2

    1

    0

    .6

    .5

    .4

    .3

    .2

    .1

    0

    6

    5

    4

    3

    2

    1

    0

    10-1 100 101 102 103

    g

    Ha

    Steplocationp

    arameter,g

    Filmt

    hicknessratio,Ha;

    length-to-widthratio,

    Dimensionless bearing number,a=60ubb

    pahr2

    (a)

    (b)

    Figure 14.4 Effect of dimensionless

    bearing number on optimum stepparameters. (a) For maximum

    dimensionless load-carrying capacity;(b) for maximum dimensionless

    stiffness. [From Hamrock (1972).]

  • 8/10/2019 hydostatic bearing systems

    14/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Load-Carrying

    Capacity &Stiffness

    4

    100

    10-1

    10-2

    10-3

    Length-to-widthratio,

    Step locationparameter,

    g

    Filmthickness

    ratio,Ha

    Optimal

    0.918

    .915

    Optimal Optimal

    0.555

    .577

    1.693

    1.470

    W Kg

    (a)

    4

    100

    10-1

    10-2

    10-3

    10310210110010-1

    (b)

    W

    Kg

    Dimensionlessload-carryingcapacity,

    W;dimensionlessstiffness,Kg

    Figure 14.5 Effect of dimensionlessbearing number on dimensionless load-

    carrying capacity and dimensionlessstiffness. (a) For maximumdimensionless load-carrying capacity;

    (b) for maximum dimensionlessstiffness. [From Hamrock (1972).]

  • 8/10/2019 hydostatic bearing systems

    15/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Spiral-Grooverust Bearing

    hs

    ri

    hr

    ro

    p = pa

    p = pa

    rm

    r

    ri

    a

    r

    g

    Figure 14.6 Spiral-groove thrust bearing. [FromMalanoski and Pan (1965).]

  • 8/10/2019 hydostatic bearing systems

    16/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Spiral-Grooverust BearingCharacteristics

    1.3

    1.2

    1.1

    0

    Groovefactor,Gf

    .02 .04 .06 .08

    Inverse of number of grooves, 1/N0

    (a)

    Radiusratio,

    r

    0.7

    .6

    .5

    .4

    All

    1.0

    .8

    .6

    .4

    .2

    0 10 20 30 40 50

    (b)

    Dimensionless bearing number, s

    Dimensionlessload,W

    !

    0 10 20 30 40 50

    1.0

    .8

    .6Dimensionless

    torque,Tq

    s

    (d)

    1.5

    1.0

    .5

    0 10 20 30 40 50s

    (c)Dimensionlessstiffness

    coefficient,K

    !

    4

    3

    2

    1

    (e)Dimen

    sionlessflow,Qm

    0 10 20 30 40 50s

    5

    4

    3

    2

    20

    18

    16

    1.8

    1.71.6

    1.50 10 20 30 40 50

    s

    (f)

    Filmt

    hickness

    ratio,Ha

    Groove

    angle,

    a,

    deg

    Groovew

    idth

    ratio,a

    0 10 20 30 40 50s

    (g)

    Groovelength

    fraction,Rg

    .8

    .6

    .4

    .2

    Unstable

    Stable

    Figure 14.7 Charts for determiningcharacteristics of spiral-groove thrust

    bearings. (a) Groove factor; (b) load; (c)stiffness; (d) torque; (e) flow; (f) optimal

    groove geometry; (g) groove lengthfactor. [From Reiger (1967).]

  • 8/10/2019 hydostatic bearing systems

    17/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pressure Perturbation Solution

    100

    80

    60

    40

    20

    0

    Altitudeangle,

    ,

    deg

    .1 .3 .5 .7 1 1.5 2 3 5 10 !

    1.0

    .8

    .6

    .4

    .2

    0

    Dimensionless bearing number,j

    Loadparameter,

    wz

    /(pa

    rb)

    .5

    1.0

    2.0

    3.0

    5.0

    !

    0.5

    1.0

    2.0

    3.05.0!

    Attitude angleLoad

    Width-to-diameter

    ratio,j

    Figure 15.1 Design chart for radially loaded, self-acting, gas-lubricated journal bearings (isothermal first-order perturbationsolution.) [From Ausman (1959).]

  • 8/10/2019 hydostatic bearing systems

    18/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    LinearizedphSolution1.4

    1.2

    1.0

    .8

    .6

    .4

    .2

    0 1.0.8.6.4.2

    Dimensionlessload,wr/

    pa

    b2r

    Eccentricity ratio,

    Linearized ph

    First-order perturbation

    Experimental data (from Sternlicht and Elwell, 1958)

    Computer solutions}

    Effect of dimensionless load on eccen-

    tricity ratio for finite-length, self-acting,

    gas-lubricated journal bearing. Dimen-sionless bearing number Lj, 1.3; width-

    to-diameter ratio lj, 1.5. [From Ausman

    (1961)]

  • 8/10/2019 hydostatic bearing systems

    19/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pivoted-Pad Bearings

    Pivot

    Bearing

    ShaftO'

    O

    e

    r + c

    r

    hi

    hp

    h0

    wc

    p

    p

    p

    Figure 15.3 Geometry of individualpivoted-pad bearing. [From Gunter et al.(1964)]

    Pivot circle

    Pivot

    Shaft

    hp,3

    e'

    r + c'

    yx

    r

    hp,1

    hp,2

    '

    ppwt

    Pivoted partialjournal bearing

    Figure 15.4 Geometry of pivoted-padjournal bearing with three pads. [FromGunter et al. (1964)]

  • 8/10/2019 hydostatic bearing systems

    20/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pivoted-Pad Perfor-

    mance Parameters

    .9

    .8

    .7

    .6

    .5

    .4

    .3

    .2

    .1

    0

    Dimensionlesslo

    ad,

    Wr=wr/par

    b

    (a)

    Angle betweenline of centers

    and padleading edge,

    p,deg

    Converging-divergingfluid film Converging

    fluid film

    Eccentricityratio,

    0.65

    .60

    .55

    .50

    .45

    Optimumpivotlocation

    = 0.70

    = 0.90

    = 0.80

    100 90 85.580

    70

    60

    50

    40

    30

    20

    100

    1.5

    1.4

    1.3

    1.2

    1.1

    1.0

    .9

    .8

    .7

    .6

    .5

    .4

    .3

    .2(b)

    .58 .60 .62 .64 .66 .68 .70 .72 .74 .76

    Dimensionlesspivotfilmt

    hickness,

    Hp=hp

    /c

    Dimensionless pivot location, p/p

    p,deg

    0

    0.60.70.80.90

    0.65.55.50.45

    10

    20

    30

    40

    50

    60

    7080

    85.590100

    .58 .60 .62 .64 .66 .68 .70 .72 .74 .76

    Dimensionless pivot location, p/p

    .9

    .8

    .7

    .6

    .5

    .4

    .2

    .3Dimensionlessoutletfilm

    thickness,

    H0=h0

    /c

    .58 .60 .62 .64 .66 .68 .70 .72 .74 .76

    Dimensionless pivot location, p/p

    0.60 .70.80

    0.45

    .50

    .55

    .65

    .90

    (c)

    p,deg10

    20

    30

    4050607080

    85.590

    Figure 15.5 Charts for determining load

    coefficient, pivot film thickness, andtrailing-edge film thickness. Bearing

    radius-to-length ratio r/b, 0.6061; angu-

    lar extent of pad ap, 95.5; dimension-

    less bearing number Lj, 3.5. (a) Dimen-

    sionless load; (b) dimensionless pivot

    film thickness. [From Gunter et al.

    (1964)]

  • 8/10/2019 hydostatic bearing systems

    21/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Herringbone-Groove Journal

    Bearing

    R

    b1/2

    a

    b

    hr h

    s

    lr

    ls

    Figure 15.6 Configuration of concentric herringbone-groovejournal bearing.

  • 8/10/2019 hydostatic bearing systems

    22/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Parameters for Herringbone

    Bearing1.0

    .8

    .6

    .4

    .2

    Width-to-diameter

    ratio,j

    1/41/2

    1

    2

    28

    26

    24

    22

    20

    18

    34

    32

    30

    28

    26

    24

    22

    20

    18

    Grooveangle,

    a,

    deg

    (d)

    0 40 80 120 1600 40 80 120 160

    1.0

    .8

    .6

    .4

    .2

    Groovelengthratio,g

    (c)

    Dimensionless bearing number, j

    Figure 15.7 Charts for determiningoptimal herringbone-journal-bearinggroove parameters for maximum radialload. Top plots are for grooved memberrotating; bottom plots are for smooth

    member rotating. (a) Optimal filmthickness ratio; (b) optimal groove widthratio. [From Hamrock and Fleming(1971)]

  • 8/10/2019 hydostatic bearing systems

    23/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Parameters for Herringbone

    Bearing (cont.)

    2.8

    2.6

    2.4

    2.2

    2.0

    Width-to-diameter ratio,

    j

    1/41/2

    12

    .6

    .5

    .4

    .3

    .2

    (b)

    0 40 80 120 160

    .6

    .5

    .4

    .3

    .2

    Groovewidthratio,b

    Dimensionless bearing number, j

    2.8

    2.6

    2.4

    2.2

    2.0

    3.0

    1.80 40 80 120 160

    (a)

    Filmt

    hicknessratio,

    Ha

    Figure 15.7 Concluded. (c) Optimalgroove length ratio; (d) optimal groove

    angle.

  • 8/10/2019 hydostatic bearing systems

    24/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Load-Carrying Capacity

    16

    12

    8

    4

    0(a)

    Width-to-diameter

    ratio,j

    1/41/212

    16

    12

    8

    4

    0

    (b)

    40 80 120 160

    Dimensionless bearing number, j

    Appliednormalload,wz,

    N

    Figure 15.8 Chart for determiningmaximum normal load-carrying capacity.

    (a) grooved member rotating; (b)smooth member rotating. [From

    Hamrock and Fleming (1971)]

  • 8/10/2019 hydostatic bearing systems

    25/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Stability of Herringbone-

    Groove Bearings2010

    8

    6

    4

    2

    1

    .8

    .6

    .4

    .2

    .1

    .08

    .06

    .04

    .02

    Dimensionlessstabilityparameter,M

    1 2 4 6 8 10 20 40 60 80

    Dimensionless bearing number, j

    Width-to-diameter

    ratio,j

    1/41/2

    12

    Stable

    Smooth member rotating

    UnstableGroovedmemberrotating

    Figure 15.9 Chart for determiningmaximum stability of herringbone-

    groove bearings. [From Fleming andHamrock (1974).]

  • 8/10/2019 hydostatic bearing systems

    26/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Foil Bearing

    pTT

    (a) (b)

    z

    x

    hmin

    T

    T

    Inletregion

    Centralregion

    Exitregion

    h0

    u0

    O

    r

    Figure 15.10 (a) Schematic illustration of a foil bearing; (b) free-bodydiagram of a section of foil.

  • 8/10/2019 hydostatic bearing systems

    27/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pressure in Foil Bearing

    Dimensionless position,

    6 4 64 206 4 64 20

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    -0.2 Dimension

    lesspressure,p/(T/r)

    1

    2

    3

    4

    5

    0

    7

    6

    Dimension

    lessfilmt

    hickness,

    h/h0

    Film thickness

    Pressure

    Inletregion

    Exitregion

    Figure 15.11 Pressure distribution and film thickness in a foilbearing. [From Bhushan (2002).]

  • 8/10/2019 hydostatic bearing systems

    28/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Lubrication of Rigid Cylinderz

    h

    ub

    r

    h0

    Circular

    Parabolic

    (a)

    ua

    z

    wza

    wa

    fa

    fb

    wxa

    wz= w

    zb

    (b)

    Figure 16.1 Lubrication of a rigid cylinder near a plane. (a) Coordinatesand surface velocities; (b) forces.

  • 8/10/2019 hydostatic bearing systems

    29/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Cavitation Fingersuh

    m

    2

    Air

    Air

    Air

    Figure 16.2 Cavitation fingers.

  • 8/10/2019 hydostatic bearing systems

    30/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Effect of Leakage

    1.0

    .8

    .6

    .4

    .2

    0

    Normalloadratio

    ,(wz

    )infinite

    (wz

    )finite

    1.0.8.6.4.2

    Width-to-diameter ratio, j= b/2r

    Ratio of radius

    to centralfilm thickness,

    h

    106

    105

    104

    103

    102

    Figure 16.4 Effect of leakage ontangential load component.

    0

    Tangentialload

    ra

    tio,(wx

    )infinite

    (wx

    )finite

    1.0.8.6.4.2

    Width-to-diameter ratio, j= b/2r

    Ratio of radius

    to central

    film thickness,h

    106

    105

    104

    103

    102

    1.0

    .8

    .6

    .4

    .2

    Figure 16.3 Side-leakage effect onnormal load component.

  • 8/10/2019 hydostatic bearing systems

    31/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Contact

    GeometrySolid a

    Solid b

    u h0

    rax

    rbx

    ua

    ub

    x

    x

    Sax

    Sbx

    (a-1)

    Solid a

    Solid b

    ray

    rby

    Say

    Sby

    h0

    y

    y

    (a-2)

    x

    (b-1)

    x

    u

    Rx

    Sx

    h0

    Syy

    y

    h0

    Ry

    (b-2)

    Figure 16.5 Contact geometry. (a) Tworigid solids separated by a lubricant film:

    (a-1) y=0 plane; (a-2)x=0 plane. (b)

    Equivalent system of a rigid solid near aplane separated by a lubricant film: (b-1)

    y=0 plane; (b-2)x=0 plane. [FromBrewe et al. (1979)].

  • 8/10/2019 hydostatic bearing systems

    32/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Boundary Conditions & Nodal

    Structure(a)

    (b)

    (c)

    Pressure

    Dimensionless coordinate, X = x/Rx

    Figure 16.6 Effect of boundary conditions. (a)Solution using full Sommerfeld boundaryconditions; (b) solution using half Sommerfeldboundary condition; (c) solution using Reynoldsboundary conditions. [From Brewe et al.(1970)].

    (0,0)

    Y

    X

    (-XE, YE)

    (-XE, 0)

    (-XE, -YE)

    Figure 16.7 Variable nodal structureused for numerical calculations. [FromBrewe et al. (1979)].

  • 8/10/2019 hydostatic bearing systems

    33/71

    Fundamentals of Fluid Film Lubrication

    Hamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Hydrodynamic Li

    2.0

    1.50 5 10 15 20 25 30 35 40

    Radius ratio, r= Ry/Rx

    L() = /2

    Redu

    cedhydrodynamic

    lift,

    L

    Parabolic approximationFull circular filmKapitza's analysis (1955)

    Figure 16.8 Effect of radius ratio on reduced hydrodynamic lift.

    [From Brewe et al. (1979)].

  • 8/10/2019 hydostatic bearing systems

    34/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pressure for Two

    Radius Ratios

    Rolling

    direction

    Inlet

    Outlet

    Cavitation

    boundary

    X

    Y

    P

    (a)

    Rolling

    direction

    Cavitation

    boundary

    Inlet

    Outlet

    X

    Y

    P

    (b)

    Figure 16.9 Three-dimensional repre-

    sentation of pressure distribution as

    viewed from outlet region for two radiusratios ar. (a) ar= 1.00; (b) ar= 36.54.

    [From Brewe et al. (1979)].

  • 8/10/2019 hydostatic bearing systems

    35/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pressure Contours

    (a) (b) (c)

    Pressure contours for three radius ratios ar. (a) ar= 25.29; (b) ar = 8.30; (c)

    ar= 1.00. [From Brewe et al. (1979)].

  • 8/10/2019 hydostatic bearing systems

    36/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Comparison of Fully Flooded

    and Starved Contact P

    Cavitation

    boundary

    Rolling

    direction

    Inlet

    Outlet

    XY

    P

    Cavitationboundary

    Inlet

    boundary

    X

    Y

    Inlet Outlet

    Hin= 1.00

    Hmin

    = 1 x 10-4

    X

    Rx

    (a)

    Inlet Outlet

    Hin= 0.001

    Hmin

    = 1 x 10-4

    X

    Rx

    (b)

    Figure 16.11 Three-dimensional representationof pressure distributions for

    dimensionless minimum film

    thickness Hminof 1.0 x 10

    -4

    .(a) Fully flooded condition;(b) starved condition. [From

    Brewe and Hamrock.(1982)].

  • 8/10/2019 hydostatic bearing systems

    37/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Comparison of Fully Flooded

    and Starved Contact

    Inlet Outlet

    Hin

    = 1.00

    Hmin

    = 1 x 10-3

    X

    Rx

    (a)

    Inlet Outlet

    Hin

    = 0.002 Hmin

    = 1 x 10-3

    X

    Rx

    (b)

    Cavitation

    boundary

    Rolling

    direction

    Inlet

    OutletX

    Y

    P

    Cavitationboundary

    Inletboundary

    P

    X

    Y

    Figure 16.11 Three-dimensional representation of

    pressure distributions fordimensionless minimum film

    thickness Hminof 1.0 x 10-3

    . (a)Fully flooded condition; (b)

    starved condition. [From Breweand Hamrock. (1982)].

  • 8/10/2019 hydostatic bearing systems

    38/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pressure Contours - Starved

    Cavitation

    boundary

    Cavitation

    boundaryCavitationboundary

    Inletmeniscus

    boundary

    Inlet

    meniscus

    boundary

    (a) (b) (c)

    Figure 16.13 Isobaric contour plots for three fluid inlet levels for dimensionless

    minimum film thickness Hminof 1.0 x 10

    -4

    . (a) Fully flooded condition: dimensionlessfluid inlet level Hin, 1.00; dimensionless pressure, where dP/dX=0, Pm, 1.20 x 106;dimensionless load-speed ratio W/U, 1153.6. (b) Starved condition; Hin, 0.004; Pm=1.19 x 106; W/U= 862.6. (c) Starved condition: Hin =0.001; Pm= 1.13 x 106; W/U=567.8. [From Brewe and Hamrock. (1982)].

  • 8/10/2019 hydostatic bearing systems

    39/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Inlet Level Effect

    1.0

    .9

    .8

    .7

    .6

    .5

    .40 .2 .4 .6 .8 1.0

    Filmt

    hicknessreductionfactor,

    s

    Dimensionless fluid inlet level, Hin

    Dimensionless

    minimum

    film thickness,

    HminCritically

    starved region

    5 x 10-5

    5 x 10-410-3

    10-4

    Figure 16.14 Effect of fluid inlet level on film thickness reduction factor inflooded conjunctions. [From Brewe and Hamrock (1982)].

  • 8/10/2019 hydostatic bearing systems

    40/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Lubricant Flow

    ua

    r

    Inlet Hin

    Pressure

    Hmin

    Cavitated

    region

    Dimensionless coordinate, X = x/Rx

    wa

    Figure 16.15 Lubricant flow for arolling-sliding contact and correspondingpressure buildup. [From Ghosh et al.(1985)].

  • 8/10/2019 hydostatic bearing systems

    41/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Effect of Velocity3

    2

    1

    0

    Dynamicloadra

    tio,

    f

    10-2 10-1 100

    Dmensionless normal velocity parameter, |w|

    Normalapproach

    Normalseparation

    Effect of dimensionless normal velocity

    parameter on dynamic load ratio. Di-

    mensionless central film thickness Hmin,1.0 x 10-4; radius ratio ar, 1.0; dimen-

    sionless fluid inlet level Hin, 0.035.

    [From Ghosh et al. (1985)].

    Rolling

  • 8/10/2019 hydostatic bearing systems

    42/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pressure

    Distributions

    Rolling

    direction

    X

    Y

    Cavitation

    boundary

    XY

    XY X Y

    X

    Y

    (a) (b)

    (c) (d)

    (e)

    Figure 13.2 Radial-flow hydrostaticthrust bearing with circular step pad.

    Pressure distribution in contact for vari-

    ous values of dimensionless normal ve-

    locity parameter bw. (a) bw= -1.0; (b) bw= -0.5; (c) bw; (d) bw= 0.25; (e) bw=

    0.75. Dimensionless central film thick-

    ness, Hmin, 1.0 x 10-4; radius ratio ar,

    1.0; dimensionless fluid inlet level Hin,

    0.0006. [From Ghosh et al. (1985)].

  • 8/10/2019 hydostatic bearing systems

    43/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Performance Parameters

    3

    2

    1

    010-2 10-1 100

    Dmensionless normal velocity parameter, |w|

    4

    Dynam

    icpeakpressure,

    s

    Normalapproach(

    w= -1.0)

    Normalseparation(

    w= 0.75)

    Effect of dimensionless normal velocity

    parameter on dynamic peak pressureratio. Dimensionless central film thick-

    ness Hmin, 1.0 x 10-4; radius ratio ar,

    1.0; dimensionless fluid inlet level Hin,

    0.035. [From Ghosh et al. (1985)].

    3.0

    2.8

    2.6

    Dynamic

    loadratio,

    t

    Normal

    approach

    (= -1.0)

    Normalseparation

    (= 0.75)

    Radius ratio, r

    10-1 100 101 102

    .46

    .42

    .38

    Dynamicloadratio,

    t

    Figure 16.19 Effect of radius ratio on

    dynamic load ratio. Dimensionlesscentral film thickness Hmin, 1.0 x 10-4;dimensionless fluid inlet level Hin, 0.035.[From Ghosh et al. (1985)].

  • 8/10/2019 hydostatic bearing systems

    44/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Peak Pressure vs. Radius Ratio

    4.2

    3.8

    3.4

    .22

    .20

    .18

    Normalapproach

    (= -1.0)

    Normal

    separation(= 0.75)

    Radius ratio, r

    10-1 100 101 102Dimension

    lesspeakpressure

    ratio,

    s

    Dimension

    lesspeakpressure

    ratio,

    s

    Figure 16.20 Effect of radius ratio on dynamic peak pressure ratio.Dimensionless central film thickness Hmin, 1.0 x 10-4; dimensionless fluid inletlevel Hin, 0.035. [From Ghosh et al. (1985)].

  • 8/10/2019 hydostatic bearing systems

    45/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Contact Geometry

    wz

    y

    x

    y

    x

    Solid a

    Solid b

    rby

    ray

    rbx

    rax

    wz

    Figure 17.1 Geometry of contactingelastic solids. [From Hamrock andDowson (1981).]

  • 8/10/2019 hydostatic bearing systems

    46/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Radii of Curvature

    (a)

    (b)

    (c)

    rax= r

    raxr

    ray= r ray ray ray

    raxrax raxBarrel shapeSphere Cylinder Conic frustum Concave shape

    ray

    rbx

    rbx

    rbyRi

    Thrust Radial inner Radial outer

    rbyrby

    rbx

    Rirby

    Thrust Cylindrical inner Cylindrical outer

    rbx

    rbxrbx

    rbyrby

    Figure 17.2 Sign designations for radii of curvature of various machineelements. (a) Rolling elements; (b) ball bearing races; (c) rolling bearingraces.

  • 8/10/2019 hydostatic bearing systems

    47/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Pressure Distribution

    Dx2

    pm

    x

    y

    p

    Dy2

    Figure 17.3 Pressure distribution inellipsoidal contact.

    p= pm

    1

    2x

    Dx

    2

    2y

    Dy

    21/2

    pm =6wz

    !DxDy

    Pressure:

    Maximum pressure:

  • 8/10/2019 hydostatic bearing systems

    48/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Ellipticity Parameter andElliptic Integrals

    0 4 8 12 16

    Radius ratio, r

    20 24 3228

    Ellipticintegrals,

    and

    Elliptic integral

    Elliptic integralEllipticity parameter k

    e

    Ellipticityparameter,k

    e

    1

    2

    3

    4

    5

    2

    4

    6

    8

    10

    Figure 17.4 Variation of ellipticity parameter and elliptic integrals of first andsecond kinds as function of radius ratio. [From Hamrock and Brewe (1983).]

  • 8/10/2019 hydostatic bearing systems

    49/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Hertz Contact Summary

    Dy = 2

    6k2EwzR

    !E

    1/3

    Dx= 2

    6EwzR

    !kE

    1/3

    !m = F

    9

    2ER

    wz

    "kE

    21/3

    E =

    2

    (1!2a)/Ea+(1!2

    b)/Eb

    Contact dimensions:

    Maximum elastic deformation:

    Effective elastic modulus:

  • 8/10/2019 hydostatic bearing systems

    50/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Elliptic Integrals

  • 8/10/2019 hydostatic bearing systems

    51/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Effect of Radius Ratio onSubsurface Stress

  • 8/10/2019 hydostatic bearing systems

    52/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

    Simplified Equations for EllipticIntegrals

    Dy

    2

    Dx

    2

    x

    y

    Dy2

    Dx2

    x

    y

  • 8/10/2019 hydostatic bearing systems

    53/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Conformity

    a

    b

    (a) (b)

    (c)

    Figure 17.5 Three degrees ofconformity. (a) Wheel on rail; (b) ball onplane; (c) ball-outer-race contact. [FromHamrock and Brewe (1983).]

    l l l

  • 8/10/2019 hydostatic bearing systems

    54/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Calculation of ElasticDeformation

    Table 18.1: Three ways of calculating elastic deformations. [From Houpert and Hamrock (1986); OK denoted Okamura(1982); HJ denotes Hamrock and Jacobson (1984); HH denotes Houpert and Hamrock (1986).]

    Nmax Xmin Xendm/H 1

    Hm/Hm

    OK HJ HH OK HJ HH

    51 -1.0 1.0 1.9 103 2.7 103 8.6 107 9.4 103 5.5 103 2.7 103

    51 -3.6 1.4 4.9 103 1.1 102 1.0 105 3.4 102 1.6 102 8.6 103151 -1.0 1.0 6.3 104 5.1 104 5.1 108 4.0 103 1.4 103 6.4 104

    151 -3.6 1.4 1.6 103 2.0 103 5.4 107 1.2 102 4.4 103 2.1 103

    301 -1.0 1.0 3.1 104 1.8 104 8.1 109 2.2 103 5.6 104 2.5 104

    301 -3.6 1.4 7.8 104 7.1 104 9.0 108 6.0 103 1.8 103 8.6 104

    661 -3.6 1.4 2.2 106 2.7 103 2.6 104 51 a -1.0 a1.0 6.5 107 2.7 104aNonumiform

  • 8/10/2019 hydostatic bearing systems

    55/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Load Components

    HrHr,end= mHr,m

    Xr,end Xr,maxr,min 0

    1 2 3... N Nmaxl

    Xr

    Figure 18.1 Sketch to illustrate

    calculations ofXr,endand N. [FromHoupert and Hamrock (1986).]

    -dh

    z

    x

    dx u

    a

    wbx'

    wbz'

    wb'

    fb'

    fa'

    wb'

    wa'

    waz'

    h

    Figure 18.2 Load components and

    shear forces. [From Hamrock andJacobson (1984).]

    fil l

  • 8/10/2019 hydostatic bearing systems

    56/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Profiles at EarlyIterations

    1.50

    1.25

    1.00

    .75

    .50

    .25

    0

    Iteration

    0

    1

    14

    h/2hm Pr

    1.50

    1.25

    1.00

    .75

    .50

    .25

    0

    h/2hm

    Pr

    Dimensionlesspressure,

    Pr;d

    imensionlessfilms

    hape,

    h/2

    hm

    Dimensionlessxcoordinate,

    Xr= 2x/D

    x

    -3 -2 -1 0 1 2

    Figure 18.3 Pressure profiles and filmshapes at iterations 0, 1, and 14 with

    dimensionless speed, load, and materialparameters fixed at U= 1.0 x 10-11, W=

    2.045 x 10-5, and G=5007. [FromHoupert and Hamrock (1986).]

  • 8/10/2019 hydostatic bearing systems

    57/71

  • 8/10/2019 hydostatic bearing systems

    58/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Detail of Spike Location

    Dimensionlessxcoordinate,

    Xr= 2x/D

    x

    (a)

    .8

    .6

    .4

    .2

    0

    Dimensionless

    pressure,Pr=p/pH

    5.50 10-2

    5.25

    5.00

    4.75

    4.50(b)

    .90 .92 .94 .96 .98 1.00

    Dimensionlessfilm

    thickness,Hr=4hR/Dx2

    100

    0

    -100

    -200

    -300

    -400(a)

    Dimensionlesspressure

    gradient,dP

    r/dX

    r

    .90 .92 .94 .96 .98 1.00

    .3

    0

    -.3

    -.6

    -.9

    -1.2

    Dimensionlessxcoordinate,

    Xr= 2x/D

    x

    Dimensionlessfilm

    thickness,

    Hr-m

    Hr,m

    /

    (b)

    Figure 18.6 Pressure and film thicknessprofiles in region 0.9 !Xr!1.0. (a)Dimensionless pressure; (b) dimensionlessfilm thickness. [From Hamrock et al. (1988).]

    Figure 18.7 Pressure gradient and Hr-

    rmHr,m/rprofiles in region 0.9 !Xr!

    1.0. [From Hamrock et al. (1988).]

  • 8/10/2019 hydostatic bearing systems

    59/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Compressibility Effect2.5

    2.0

    1.5

    1.0

    .5

    0

    Dimensio

    nlesspressure,

    Pr=p/pH

    Dimensionlessxcoordinate,

    Xr= 2x/Dx

    -2 -1 0 1 2

    Figure 18.8 Dimensionless pressure

    and film thickness profiles for anincompressible fluid. Viscous effectswere considered. [From Hamrock et al.(1988).]

    Dimensionlessxcoordinate, Xr= 2x/D

    x

    2.5

    2.0

    1.5

    1.0

    .5

    0-2 -1 0 1 2

    Dimensio

    nlesspressure,

    Pr=p/pH

    Figure 18.9 Dimensionless pressure

    and film thickness profiles for acompressible fluid. Viscous effects wereconsidered. [From Hamrock et al.(1988).]

  • 8/10/2019 hydostatic bearing systems

    60/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Detail of Spike Location6.5 x 10-2

    6.0

    5.5

    5.0

    4.5

    Dimension

    lessfilmt

    hickness,

    Hr;

    dimensionlessvariable,m

    Hr,m

    /

    .90 .92 .94 .96 .98 1.00

    Dimensionlessxcoordinate,

    Xr= 2x/Dx

    Hr,icand (Hr,m)ic

    (Hr,m)ic

    Hr,ic

    Hr,c

    mHr,m

    c

    mHr,m

    c

    Hr,cand

    Figure 18.10 Dimensionless film thickness and rm

    Hr,m

    /rprofiles for

    compressible and incompressible fluids in region 0.9 !Xr!1.0. Viscous

    effects were considered. [From Hamrock et al. (1988).]

  • 8/10/2019 hydostatic bearing systems

    61/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Pressure as a Function of Load

    Dimensionlessxcoordinate, Xe= x / Rx

    Dimensionlesspressure,

    Pe

    =

    p/E'

    1.00 x 10-2

    .75

    .50

    .25

    0-.04 -.02 0 .02 .04

    Dimensionless

    load,

    W'

    2.04

    4

    6

    13

    30

    50 x 10-5

    Figure 18.11 Variation of dimensionless pressure in elastohydrodynamicallylubricated conjunction for six dimensionless loads with dimensionless speedand materials parameters held fixed at U=1.0 x 10-11and G=5007. [From Panand Hamrock (1989).]

  • 8/10/2019 hydostatic bearing systems

    62/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Speed Effects

    Dimensionlessxcoordinate, Xe= x / Rx

    -.04 -.02 0 .02 .04

    .5 x 10-2

    .4

    .3

    .2

    .1

    0

    Dimensionlesspressure,

    Pe=

    p/E'

    Dimensionless

    speed,

    U

    50 x 10-12

    13

    1

    Figure 18.12 Variation ofdimensionless pressure in

    elastohydrodynamically lubricatedconjunction for three dimensionless

    speeds with dimensionless load andmaterials parameters held fixed at W =1.3 x 10-4and G=5007. [From Pan and

    Hamrock (1989).]

  • 8/10/2019 hydostatic bearing systems

    63/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Spike AmplitudeTable 18.2: Effect of dimensionless load, speed, and materials parameters on dimensionless pressure spike amplitude. [FromPan and Hamrock (1989)]

    Dimensionless Dimensionless Dimensionless Dimensionless Curve-fit

    load speed materials pressure spike dimensionless

    parameter, parameter, parameter amplitude pressure spike Error, Results

    amplitude percent,

    W = wz

    ERxU =

    0u

    ERxG = E Pe,s =

    psk

    EPe,s =

    psk

    E

    Pe,s Pe,s

    Pe,s

    100

    0.2045 104 1.0 1011 5007 0.22781 102 0.23218 102 -1.9161 Load

    0.4 104

    1.0 1011

    5007 0.27653 102

    0.26285 102

    4.94730.6 104 1.0 1011 5007 0.30755 102 0.28332 102 7.8771

    1.3 104 1.0 1011 5007 0.33890 102 0.32689 102 3.5431

    3.0 104 1.0 1011 5007 0.36150 102 0.38159 102 -5.5564

    5.0 104 1.0 1011 5007 0.44791 102 0.41941 102 6.3637

    1.3 104 0.1 1011 5007 0.17489 102 0.17354 102 0.7707 Speed

    1.3 104 .25 1011 5007 0.20763 102 0.22327 102 -7.5346

    1.3 104 .5 1011 5007 0.24706 102 0.27016 102 -9.3501

    1.3 104 .75 1011 5007 0.28725 102 0.30203 102 -5.1445

    1.3 104 1.0 1011 5007 0.33890 102 0.32689 102 3.5431

    1.3 104 3.0 1011 5007 0.42776 102 0.44219 102 -3.3744

    1.3 104 5.0 1011 5007 0.49218 102 0.50889 102 -3.3946

    2.6 104 2.0 1011 2504 0.33549 102 0.34291 102 -2.2107 Materials

    1.3 104 1.0 1011 5007 0.33890 102 0.32689 102 3.5431

    0.8667 104 0.6667 1011 7511 0.30760 102 0.31788 102 -3.3421

  • 8/10/2019 hydostatic bearing systems

    64/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Spike LocationTable 18.3: Effect of dimensionless load, speed, and materials parameters on dimensionless pressure spike location. [FromPan and Hamrock (1989)]

    Dimensionless Dimensionless Dimensionless Dimensionless Curve-fit

    load speed materials pressure spike dimensionless

    parameter, parameter, parameter location pressure spike Error, Results

    location percent,

    W = wz

    ERxU =

    0u

    ERxG =E Xe,s =

    xs

    RxXe,s =

    xs

    Rx

    Xe,s

    Xe,s

    Xe,s

    100

    0.2045 104 1.0 1011 5007 0.48561 102 0.52467 102 -8.0429 Load

    0.4 104 1.0 1011 5007 0.82948 102 0.78778 102 5.0254

    0.6 104

    1.0 1011

    5007 1.08220 102

    1.00722 102

    6.92841.3 104 1.0 1011 5007 1.70980 102 1.60922 102 5.8827

    3.0 104 1.0 1011 5007 2.68600 102 2.67116 102 0.5524

    5.0 104 1.0 1011 5007 3.49820 102 3.64033 102 -4.0630

    1.3 104 0.1 1011 5007 1.76520 102 1.68895 102 4.3201 Speed

    1.3 104 .25 1011 5007 1.74670 102 1.65675 102 5.1495

    1.3 104 .5 1011 5007 1.73000 102 1.63281 102 5.6178

    1.3 104 .75 1011 5007 1.71620 102 1.61896 102 5.6655

    1.3 104 1.0 1011 5007 1.70980 102 1.60922 102 5.8827

    1.3 104 3.0 1011 5007 1.65310 102 1.57251 102 4.8747

    1.3 104 5.0 1011 5007 1.62860 102 1.55574 102 4.4739

    2.6 104 2.0 1011 2504 2.42060 102 2.28843 102 5.4601 Materials

    1.3 104

    1.0 1011

    5007 1.70980 102

    1.60922 102

    5.88270.8667 104 0.6667 1011 7511 1.38400 102 1.30969 102 5.3689

  • 8/10/2019 hydostatic bearing systems

    65/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    FilmicknessTable 18.4: Effect of dimensionless load, speed, and materials parameters on dimensionless film thickness. [From Pan andHamrock (1989)]

    Dimensionless Dimensionless Dimensionless Dimensionless Curve-fit

    load speed materials minimum film dimensionless

    parameter, parameter, parameter, thickness minimum film Error, Results

    thickness, percent,

    W =

    wz

    ERxU =

    0u

    ERxG =E He,min =

    hmin

    RxHe,min=

    hmin

    Rx

    He,min

    He,min

    He,min

    100

    0.2045 104 1.0 1011 5007 0.19894 104 0.20030 104 -0.6840 Load

    0.4 104 1.0 1011 5007 0.18404 104 0.18382 104 0.1189

    0.6 104

    1.0 1011

    5007 0.17558 104

    0.17452 104

    0.60121.3 104 1.0 1011 5007 0.15093 104 0.15808 104 -4.7367

    3.0 104 1.0 1011 5007 0.13185 104 0.14203 104 -7.7228

    5.0 104 1.0 1011 5007 0.14067 104 0.13304 104 5.4221

    1.3 104 0.1 1011 5007 0.03152 104 0.03198 104 -1.4585 Speed

    1.3 104 .25 1011 5007 0.06350 104 0.06040 104 4.8801

    1.3 104 .5 1011 5007 0.10472 104 0.09771 104 6.6896

    1.3 104 .75 1011 5007 0.13791 104 0.12947 104 6.1204

    1.3 104 1.0 1011 5007 0.15093 104 0.15808 104 -4.7367

    1.3 104 3.0 1011 5007 0.34963 104 0.33884 104 3.0857

    1.3 104 5.0 1011 5007 0.48807 104 0.48301 104 1.0359

    2.6 104 2.0 1011 2504 0.16282 104 0.15786 104 3.0462 Materials

    1.3 104 1.0 1011 5007 0.15093 104 0.15808 104 -4.73670.8667 104 0.6667 1011 7511 0.16573 104 0.15821 104 4.5362

  • 8/10/2019 hydostatic bearing systems

    66/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Variation in Film Shape

    .5 x 10-4

    .4

    .3

    .2

    .1

    0

    Dimensionlessfilmt

    hickness,

    He

    /14

    =h/(14Rx

    )

    Dimensionless

    load,

    W'50 x 10

    -5

    30

    2.04

    46

    13

    Dimensionlessxcoordinate, Xe= x / R

    x

    -.04 -.02 0 .02 .04

    Figure 18.13 Variation ofdimensionless film shape in

    elastohydrodynamically lubricatedconjunction for six dimensionless

    loads with dimensionless speedand materials parameters held

    fixed at U=1.0 x 10-11and G=5007.[From Pan and Hamrock (1989).]

  • 8/10/2019 hydostatic bearing systems

    67/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Central FilmicknessTable 18.5: Effect of dimensionless load, speed, and materials parameters on dimensionless central film thickness. [From Panand Hamrock (1989)]

    Dimensionless Dimensionless Dimensionless Dimensionless Curve-fit

    load speed materials central dimensionless

    parameter, parameter, parameter film thickness central Error, Results

    film thickness percent,

    W = w

    z

    ERxU =

    0u

    ERxG =E He,c =

    hc

    RxHe,c =

    hc

    Rx

    He,c

    He,c

    He,c

    100

    0.2045 104 1.0 1011 5007 0.23436 104 0.23490 104 -0.2318 Load

    0.4 104 1.0 1011 5007 0.21242 104 0.21015 104 1.0679

    0.6 104 1.0 1011 5007 0.20003 104 0.19647 104 1.7785

    1.3 104 1.0 1011 5007 0.16607 104 0.17281 104 -4.0564

    3.0 104 1.0 1011 5007 0.13997 104 0.15041 104 -7.4577

    5.0 104 1.0 1011 5007 0.14777 104 0.13818 104 6.4897

    1.3 104 0.1 1011 5007 0.03508 104 0.03512 104 -0.1153 Speed

    1.3 104 .25 1011 5007 0.06796 104 0.06621 104 2.5726

    1.3 104 .5 1011 5007 0.11135 104 0.10697 104 3.9368

    1.3 104 .75 1011 5007 0.14810 104 0.14161 104 4.3803

    1.3 104 1.0 1011 5007 0.16607 104 0.17281 104 -4.0564

    1.3 104 3.0 1011 5007 0.38079 104 0.36960 104 2.9395

    1.3 104 5.0 1011 5007 0.53012 104 0.52632 104 0.7174

    2.6 104 2.0 1011 2504 0.18627 104 0.17965 104 3.5561 Materials

    1.3 104 1.0 1011 5007 0.16607 104 0.17281 104 -4.0564

    0.8667 104 0.6667 1011 7511 0.17767 104 0.16893 104 4.9183

  • 8/10/2019 hydostatic bearing systems

    68/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Film Shape for Different Speeds

    Dimensionlessxcoordinate, Xe= x / R

    x

    -.04 -.02 0 .02 .04

    1 x 10-4

    .8

    .6

    .4

    .2

    0

    50 x 10-12

    D

    imensionlessfilmt

    hicknes

    s,

    He

    /4=h/(4Rx

    ) Dimensionless

    speed,

    U

    13

    1

    Figure 18.14 Variation ofdimensionless film shape for three

    dimensionless speeds withdimensionless load and materials

    parameters fixed at W = 1.3 x 10-4and

    G=5007. [From Pan and Hamrock(1989).]

    L i f Mi i Fil

  • 8/10/2019 hydostatic bearing systems

    69/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Location of Minimum Filmickness

    Table 18.6: Effect of dimensionless load, speed, and materials parameters on dimensionless location of minimum film thickness.[From Pan and Hamrock (1989)]

    Dimensionless Dimensionless Dimensionless Dimensionless Curve-fit

    load speed materials location of dimensionless

    parameter, parameter, parameter, minimum location of Error, Results

    film thickness percent,

    W = w

    z

    E

    RxU =

    0u

    E

    RxG =E Xe,min =

    xmin

    RxXe,min =

    xmin

    RxXe,min Xe,min

    Xe,min 100

    0.2045 104 1.0 1011 5007 0.60900 102 0.62598 102 2.7883 Load

    0.4 104 1.0 1011 5007 0.92850 102 0.90398 102 -2.6410

    0.6 104 1.0 1011 5007 1.11681 102 1.12884 102 1.0774

    1.3 104 1.0 1011 5007 1.76850 102 1.72427 102 -2.5011

    3.0 104 1.0 1011 5007 2.72800 102 2.72634 102 -0.0609

    5.0 104 1.0 1011 5007 3.53610 102 3.60682 102 2.0000

    1.3 104 0.1 1011 5007 1.79940 102 1.76874 102 -1.7038 Speed

    1.3 104 .25 1011 5007 1.78670 102 1.75091 102 -2.0032

    1.3 104 .5 1011 5007 1.77760 102 1.73754 102 -2.2538

    1.3 104 .75 1011 5007 1.777030 102 1.72976 102 -2.2898

    1.3 104 1.0 1011 5007 1.76850 102 1.72427 102 -2.5011

    1.3 104 3.0 1011 5007 1.73760 102 1.70344 102 -1.9657

    1.3 104 5.0 1011 5007 1.72300 102 1.69385 102 -1.6920

    2.6 104 2.0 1011 2504 2.5139 102 2.45687 102 -2.2686 Materials

    1.3 104 1.0 1011 5007 1.76850 102 1.72427 102 -2.5011

    0.8667 104 0.6667 1011 7511 1.43360 102 1.40172 102 -2.2241

  • 8/10/2019 hydostatic bearing systems

    70/71

    Fundamentals of Fluid Film LubricationHamrock, Schmid & Jacobson

    ISBN No. 0-8247-5371-2

    Center of PressureTable 18.7: Effect of dimensionless load, speed, and materials parameters on dimensionless center of pressure. [From Panand Hamrock (1989)]

    Dim ensionless Dim ensionless Dim ensionless Dim ensionless Curve-fit

    load speed materials center of dimensionless

    parameter, parameter, parameter, pressure center of Error, Results

    pressure percent,

    W = w

    z

    ERxU =

    0u

    ERxG =E Xe,cp =

    xcp

    RxXe,cp =

    xcp

    Rx

    Xe,cp

    Xe,cp

    Xe,cp

    100

    0.2045 104 1.0 1011 5007 1.00670 105 1.02309 105 -1.6284 Load

    0.4 104 1.0 1011 5007 0.57148 105 0.51651 105 9.6191

    0.6 104 1.0 1011 5007 0.33977 105 0.34169 105 -0.5670

    1.3 104 1.0 1011 5007 1.4402 105 0.15541 105 -7.9060

    3.0 104 1.0 1011 5007 0.06233 105 0.06628 105 -6.3391

    5.0 104 1.0 1011 5007 0.04330 105 0.03939 105 9.0425

    1.3 104 0.1 1011 5007 0.03231 105 .003577 105 -10.6959 Speed

    1.3 104 .25 1011 5007 0.05883 105 0.06417 105 -9.0826

    1.3 104 .5 1011 5007 0.09300 105 0.09987 105 -7.3812

    1.3 104 .75 1011 5007 0.12202 105 0.12935 105 -6.0051

    1.3 104 1.0 1011 5007 0.14402 105 0.15540 105 -7.9060

    1.3 104 3.0 1011 5007 0.29264 105 0.31324 105 -7.0380

    1.3 104 5.0 1011 5007 0.38774 105 0.43392 105 -11.9105

    2.6 104 2.0 1011 2504 0.14662 105 0.15295 105 -4.3162 Materials1.3 104 1.0 1011 5007 0.14402 105 0.15541 105 -7.9060

    0.8667 104 0.6667 1011 7511 0.15127 105 0.15686 105 -3.6961

  • 8/10/2019 hydostatic bearing systems

    71/71

    Fundamentals of Fluid Film Lubrication

    Mass Flow Rate

    Table 18.8: Effect of dimensionless load, speed, and materials parameters on dimensionless mass flow rate. [From Pan andHamrock (1989)]

    Dimensionless Dimensionless Dimensionless Dimensionless Curve-fit

    load speed materials mass flow dimensionless

    parameter, parameter, parameter, rate mass flow Error, Results

    rate percent,

    W = w

    z

    ERxU=

    0u

    ERxG =E mHm mHm

    mHm Hm

    mHm

    100

    0.2045 104 1.0 1011 5007 0.26694 104 0.26760 102 -0.2445 Load

    0.4 104 1.0 1011 5007 0.24844 104 0.24508 102 1.3511

    0.6 104 1.0 1011 5007 0.23767 104 0.23241 102 2.2152

    1.3 104 1.0 1011 5007 0.20291 104 0.21002 102 -3.5031

    3.0 104 1.0 1011 5007 0.17557 104 0.18823 102 -7.2087

    5.0 104 1.0 1011 5007 0.18788 104 0.17604 102 6.3004

    1.3 104 0.1 1011 5007 0.04288 104 0.04268 104 -0.4590 Speed

    1.3 104 .25 1011 5007 0.08350 104 0.08047 104 3.1072

    1.3 104 .5 1011 5007 0.13607 104 0.13000 104 4.4608

    1.3 104 .75 1011 5007 0.18096 104 0.17211 104 4.8921

    1.3 104 1.0 1011 5007 0.20291 104 0.21002 104 -3.5031

    1.3 104 3.0 1011 5007 0.46515 104 0.44918 104 3.4323

    1.3 104 5.0 1011 5007 0.64744 104 0.63965 104 1.2028

    2.6 104 2.0 1011 2504 0.22212 104 0.21325 104 3.9954 Materials

    1.3 104

    1.0 1011

    5007 0.20291 104

    0.21002 104

    -3.50310.8667 104 0.6667 1011 7511 0.21995 104 0.20816 104 5.3607