IAEA - Radiation Protection for LINACs

  • Upload
    suhey07

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    1/342

    T E C H N I C A L R E P O R T S S E R I E S N o .

    188

    Radiological Safety Aspects

    of the O peration of

    Electron Linear Accelerators

    i

    1

    1

    I N T E R N A T I O N A L A T O M I C E N E R G Y A G E N C Y , V I E N N A , 1 9 7 9

    j y

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    2/342

    RADIOLOGICAL S AFETY AS PECTS

    OF TH E OPERATION OF

    ELECTRON LINEAR ACCELERATORS

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    3/342

    The fo l lowing Sta tes a re Members of the In te rna t iona l Atomic Energy Agency:

    A F G H A N I S T A N

    A L B A N I A

    A L G E R I A

    A R G E N T I N A

    A U S T R A L I A

    A U S T R I A

    B A N G L A D E S H

    B ELG IU M

    B O LIV IA

    B R A Z I L

    B U L G A R I A

    B U R M A

    B Y E L O R U S S I A N S O V I E T

    SO C IA LIST R EPU B LIC

    C A N A D A

    C H I L E

    C O L O M B I A

    C O STA R IC A

    CUBA

    C Y P R U S

    C Z E C H O S L O V A K I A

    D E M O C R A T I C K A M P U C H E A

    D E M O C R A T I C P E O P L E ' S

    R E P U B L I C O F K O R E A

    D E N M A R K

    D O MIN IC A N R EPU B LIC

    E C U A D O R

    E G Y P T

    E L S A L V A D O R

    E T H I O P I A

    F I N L A N D

    F R A N C E

    G A B O N

    G E R M A N D E M O C R A T I C R E P U B L I C

    G E R M A N Y , F E D E R A L R E P U B L I C O F

    G H A N A

    G R E E C E

    G U A T E M A L A

    HAITI

    H O LY SEE

    H U N G A R Y

    I C E L A N D

    IN D IA

    I N D O N E S I A

    IR A N

    I R A Q

    I R E L A N D

    I S R A E L

    I T A L Y

    I V O R Y C O A S T

    J A M A I C A

    J A P A N

    J O R D A N

    K E N Y A

    K O R E A , R E P U B L I C O F

    K U W A IT

    L E B A N O N

    L I B E R I A

    L I B Y A N A R A B J A M A H I R I Y A

    L I E C H T E N S T E I N

    L U X E M B O U R G

    M A D A G A S C A R

    M A L A Y S I A

    MALI

    M A U R I T I U S

    MEX IC O

    M O N A C O

    M O N G O L I A

    M O R O C C O

    N E T H E R L A N D S

    N E W Z E A L A N D

    N I C A R A G U A

    N I G E R

    N I G E R I A

    N O R W A Y

    P A K I S T A N

    P A N A M A

    P A R A G U A Y

    P E R U

    P H I L I P P I N E S

    P O L A N D

    P O R T U G A L

    Q A T A R

    R O M A N I A

    SA U D I A R A B IA

    S E N E G A L

    S I E R R A L E O N E

    S I N G A P O R E

    S O U T H A F R I C A

    SPAIN

    SR I LA N K A

    S U D A N

    SW ED EN

    S W I T Z E R L A N D

    S Y R I A N A R A B R E P U B L I C

    T H A I L A N D

    T U N I S I A

    T U R K E Y

    U G A N D A

    U K R A I N I A N S O V I E T S O C I A L I S T

    R EPU B LIC

    U N I O N O F S O V I E T S O C I A L I S T

    R E P U B L I C S

    U N I T E D A R A B E M I R A T E S

    U N I T E D K I N G D O M O F G R E A T

    B R I T A I N A N D N O R T H E R N

    I R E L A N D

    U N I T E D R E P U B L I C O F

    C A M E R O O N

    U N I T E D R E P U B L I C O F

    T A N Z A N I A

    U N I T E D S T A T E S O F A M E R I C A

    U R U G U A Y

    V E N E Z U E L A

    V IET N A M

    Y U G O S L A V I A

    Z A I R E

    ZA MB IA

    The Agenc y 's Sta tu te was appro ved on 23 Oc tobe r 1956 by the Con feren ce on the Sta t u te of the IAEA

    held a t Uni ted Na t ions Head quar te rs , New Yor k; i t en te r ed in to forc e on 29 July 1957. Th e Hea dqu arte rs of

    the Agency a re s i tua te d in Vienna . I t s pr inc ipa l objec t ive is " to acce le ra te and enla rge the con tr ib ut io n of

    a tomic energy to peace , hea l th and prosper i ty throughout the world" .

    IA EA , 1979

    Permission to reprod uce o r t ransla te the info rm at io n con ta ine d in th is publ ica t ion may be obta ined by

    wri t ing to the In te rna t i ona l At om ic Energy A gency, KSr ntner Ring 11, P .O. Box 590, A-10 11 Vienna , Austr ia .

    Pr in ted by the IAEA in Austr ia

    Fe b rua ry 1979

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    4/342

    TECHN ICAL REPOR TS S ERIES No . 1 8 8

    RADIOLOGICAL SAFETY ASPECTS

    OF THE OPERATION OF

    ELECTRON LINEAR ACCELERATORS

    A manual w r i t ten by

    William P. SWANSON

    Stanford Linear Accelerator Center

    Stanford University

    United States of America

    Wo rk supported in part by the

    United States Departm ent of Energy

    INTERNATIONAL ATOMIC ENERGY AGENCY

    VIENNA, 1979

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    5/342

    RADIOLOGICAL SAFETY ASPECTS

    O F TH E O PERA TIO N O F

    ELECTRO N LIN EA R A CCELERA TO RS

    IAEA, VIENNA, 1979

    STI /D O C/ lO /188

    I S B N 9 2 - 0 - 1 2 5 1 7 9 - 3

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    6/342

    F O R E W O R D

    Electron l inear accelerators are being used throughout the world in

    increasing num bers in a var iety of im por tan t applicat ions. Fo rem ost am ong

    these is their role in the treatment of cancer with both photon and electron

    rad iatio ns in the energy range 440 MeV. To a greater ex ten t linear accelera-

    tors are replacing

    6 0

    Co sources and betat ron s in medical applicat ions. Com-

    mercial uses include non-destructive test ing by radiography, foo d preservation,

    product sterilization and radiation processing of materials such as plastics and

    adhesives. Scie ntific app licatio ns include investigations in radia tion biology ,

    radiat ion chemistry, nuclear and elementary-part icle physics and radiat ion

    research.

    This manual is conceived as a source book providing authori tat ive

    guidance in radiat ion protect ion from an important category of radiat ion

    sources. I t thus supp leme nts othe r ma nuals of the Agency related to the

    planning and imp lem entat io n of radiat ion prote ct ion programm es. The

    author , W.P. Swanson of Stanford Linear Accelerator Center , USA, was

    engaged as a consultant by the Agency to compile and write the manual,

    and the Agency wishes to express its gratitude to him.

    A dr af t was sent to a num ber of experts in var ious countr ies. The

    Agency gratefully acknowledges the helpful comments, which have been

    taken into account in the f inal text , f rom J. Rassow, K. Tesch (Federal

    Republic of Germany), M. Ladu (I taly) , T. Nakamura (Japan) , G.R. Higson

    (United Kingdom), F.H. Att ix , R.C. McCall and C.S. Nunan (United States

    of America) . The Agency 's off icer responsible for this proje ct was F.N . Flakus

    of the Radiological Safe ty Sectio n, Division of Nu clear Safe ty and Environ-

    menta l Pro tec t ion .

    Comments f rom readers for possible inclusion in a later edit ion of the

    ma nua l wou ld be we lcom e; they should be addressed to the D irector, Division

    of Nuclear Safety and Environmental Protect ion, International Atomic

    Energy Agency, Karntner Ring 11, P.O. Box 590, A-1011 Vienna, Austria.

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    7/342

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    8/342

    CONTENTS

    INTRODUCTION 1

    Pu rpose and scope of th e M anual 2

    Terminology and units 5

    Acknowledgements 5

    1. USES AN D CHA RACT ERISTICS OF ELECTRO N LINEA R

    A C C E L E R A T O R S 7

    1.1. Fields of app lication 7

    1.2. Typ es of electro n linear accelerato r installatio ns 8

    1.3. Para me ters of electron linear accelerato rs 11

    2 . RADIATIONS AT ELECTRON LINEAR ACCELER ATOR

    INSTALLATIONS 27

    2.1. R adiat ions anticipated and their quali ty facto rs 27

    2.1.1. Ty pes of radia tions and their sources 27

    2.1.2. Quali ty facto rs 29

    2.2. Ph oto n diffe ren tial track length and estim ation of yields . .. . 34

    2.3. Electron beam s 43

    2.4. Ph oton s 50

    2.4.1. Extern al brems strahlung 50

    2.4.2. Scattered ph oto ns 57

    2.5. Ne utrons 61

    2.5.1. Ne utron quali ty facto r and dose equivalent 61

    2.5.2. Prod uctio n mechan isms 65

    2.5.3. Ne utron yields fro m electron beam s 79

    2.5.3.1. The giant-resonance region (E

    0

    < 35 MeV ) . 82

    2 .5.3 .2 . Neu t ron p roduc t ion fo r 3 4 < E

    0

    < 150M eV. 88

    2.5.3.3. N eutro n prod uction for E

    0

    > 150 MeV .... 91

    2.6. Radioactivi ty induced in com pon ents 97

    2.6.1. Installa tions with E

    0

    < 3 5 MeV 101

    2.6.2. Activity induc ed by high-energy beam s 101

    2.7. Activity induc ed in air and wate r 126

    2.7.1. Airborne radioactivi ty 126

    2.7.1.1 . Air activa tion 126

    2.7.1 .2. Dust 131

    2.7.2. Activity induc ed in wa ter 136

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    9/342

    2.8. M uons 142

    2.9. Cha rged-p article secondary beam s 147

    2.10. Pr od uct ion of tox ic gases 149

    2.10.1. Co ncen trat ion buildup and removal 151

    2.10.2. Produ ction rates 152

    2.11. X-rays generated by microwave system s 156

    2.11 .1. Oscillators and am plifiers 156

    2.11.2 . Microwave cavities 158

    3 . RAD IATION SHIELDING 160

    3.1. Ty pes of areas and shielding criteria 160

    3.1.1. Acce lerator scheduling and workload facto r

    W

    160

    3.1.2. Prim ary and second ary barriers and the

    orienta t ion (use) fac tor U 162

    3.1.3. Occu pancy facto r T 164

    3.2. Shielding ma terials 165

    3.3. Physical cons ideratio ns 168

    3.4. Shielding against ph ot on s 175

    3.4.1. Primary barriers (E

    0

    < 100 MeV ) 175

    3.4.2. Secondary barr iers ( E

    0

    < 100 MeV ) 177

    3.4.3. Ac celerato rs opera ting above 100 MeV 186

    3.5. Shielding against ne utr on s 189

    3.5.1. Energies below the pho topio n threshold

    (E

    0

    < 140 MeV) 190

    3.5.2. High-energy installations ( E

    0

    > 140 MeV ) 197

    3.6. Laby rinths, doors, voids and pen etrat io ns 199

    4 . TYPICAL INSTAL LATION S 205

    4.1. Medical installa tions 205

    4.2. Industr ial radiographic instal lations 207

    4.3. Rese arch and special-purpose installation s 21 4

    5 . RADIATION MON ITORING AND INTERPRE TATION OF

    MEASUREMENTS 226

    5.1. Character ist ics and choice of mo nitor ing equip m ent 22 6

    5.2. Du ty fact or effe cts on radiat ion me asurem ents 236

    5.2.1. Dead-t ime effec ts in pulse coun ters 237

    5.2.2. Rec om bination in ionizat ion cham bers 238

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    10/342

    5.3 . Neu tron mon i tor ing techniques 242

    5 .3 .1 . Fluence measurem ents 243

    5.3.2. Spectral me asurem ents 252

    5.4. Rad iat ion surveys 255

    5.5. Instr um ent cal ibrat ion and ma intenan ce 260

    6 . R E Q U I R E M E N T S F O R A N E F F E C T I V E S A F E T Y P R O G R A M M E . . 2 6 3

    6.1. Safety organizat ion 26 3

    6 .2 . Safe ty program me 263

    6.3. Rad iat ion safety 265

    6.4. Acc elerator safety 268

    6.5. Linear accelerators used in radiat ion therapy 270

    6.5.1. General radiat ion safety 271

    6.5.2. Reliabili ty of dosim etry 272

    6.5.3. Co ntrol of dose distr ibution 273

    6.5.4. Safe del ivery of the prescr ibed trea tm en t 27 4

    6.5.5. Provisions to facilita te acc urate pat ien t pos itionin g . .. . 27 6

    6.5.6. Co ntrol of unw ante d dose to pat ien t 277

    6.5.7. Pro tect io n against othe r r isks 279

    6.6. Sa fety at indu strial and research installatio ns 28 2

    7 . GEN ERA L BIBLIOGRAPH Y 286

    APPENDIXES 293

    Ap pend ix A. Physical and num erical cons tants 294

    Ap pend ix B. Rad iat ion param eters of mater ials 297

    Ap pend ix C. Rules of th um b 318

    Ap pendix D. Addresses of organizat ions 322

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    11/342

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    12/342

    INTRODUCTION

    More than a decade of experience has been gained since the publication of

    a manual devoted exclusively to radiological protection at high-energy electron

    acc elerato rs. Because of the rapidly increasing use of elec tron linear accele rators,

    i t was felt th at i t would be usefu l to prepare such a ha nd bo ok that wou ld

    encompass the large body of methods and data which have s ince been developed.

    Since the publication of NBS Handbook No.97, s ignif icant developments related

    to radiation protection at electron l inear accelerators have occurred along the

    following lines:

    (a) Elec tron l inear accelerators for medical and radiographic pu rpose s

    operating in the range 440 MeV are now widely accep ted. Th e growing nu m be r

    of such machines operating above 10 MeV poses addit ional problems of undesirable

    neutron radia t ions and concomitant component act ivat ion.

    (b) The re has been a trend toward s tan dardiz ation of radiatio n-pr otec tion

    pract ices , and development of nat ional and in ternat ional radia t ion-protec t ion

    guidelines for medical accelerators.

    (c) The introduction of high-energy, high-power electron machines has

    brou ght new typ es of prob lem s and magnified old ones. Th e higher energy has

    necessitated provisions for high-energy neutron dosimetry and shielding, muon

    dos imetry and shie lding, and t reatm ent of the neu tron skyshine problem . Th e

    higher power has aggravated such problems as radioactive air and water and the

    possibil i ty of burn-through of shielding by raw electron beams.

    (d) Ope rating f lexibil i ty such as mu ltibeam capabili ty has placed new

    demands on personnel protect ion sys tems.

    (e) Ref in eme nt of measurements of photo nuclea r react ions has made m ore

    reliable predictions of neutron production and component activation possible.

    These developments include improved consis tency among cross-section measure-

    ments with monochromatic photons in the giant-resonance region, as well as new

    data on less frequent types of reactions at all energies.

    (f) The de velop men t of Monte-Carlo techniq ues to a high degree has made

    it possible to undertake otherwise practically intractable calculational problems.

    Very useful calculations are now available on electromagnetic cascade develop-

    ment , on neutron product ion and t ranspor t , and on muon product ion and

    transpor t .

    (g) The development of radiation protection practices at other types of

    accelerators has also provided a source of inform atio n usefu l at electron acceler-

    ators . Co nferen ces on accelerator dosime try and experienc e held in 1965, 1969

    and 1971 presented occasions at which world-wide operating experience at

    accelerators of all kinds was shared.

    (h) Th e growing sensit ivity on the part of the general public to environ-

    mental concerns has required a greater degree of attention to radioactive releases.

    1

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    13/342

    While these have never been a serious problem at electron accelerators, it still is

    desirable to be able to make posit ive s tatements about the amounts produced and

    about their disposal.

    Since much of this great body of information is scattered widely throughout the

    literature, it is the goal of this manual to gather it together in an organized usable

    form.

    It is s ignif icant that no fatali t ies to p ersonn el have ever resulted f ro m acute

    radiation in jury at an electron l inear accelerator . The few serious accidents at

    research installat ions that have occurred were by electrocution and ordinary

    mechanical in jury. A man ual devoted t o radiological safety is nevertheless usefu l,

    because radiation is a 'special ' safety hazard connected with these accelerators and

    its management requires more specialized knowledge and instrumentation than do

    the programm es of convent ional safe ty .

    PURPOSE AND SCOPE OF THE MANUAL

    This manual is intended as a guide for the planning and implementation of

    radiation p rote ctio n program mes fo r all type s of electron l inear accelerators . I t is

    hoped that i t will prove useful to accelerator manufacturers , accelerator users ,

    management of insti tutional and industr ial installat ions, and especially to radiation

    safety officers and ot her pe rsons responsible for radiation safety. Material is pro-

    vided for guidance in the planning and installation stages, as well as for the

    implementat ion of radia t ion protect ion for cont inuing operat ions .

    Because of their rapidly growing imp ortan ce, the problem s of installation

    and radiation safety of standard medical and industrial accelerators are discussed

    in separa te section s. Fo r higher-energy research installation s, the basic rad iatio n

    protection objectives are the same, but more types of potentially harmful radiation

    mu st be considered a nd shielded against. Fo r such facilities, each maj or ty pe of

    prob lem is briefly summ arized and references are given to direct the user to mo re

    com plete inform at ion in the l i tera ture .

    Special discussions are devoted to the radiation protection problems unique

    to electron accelerators: thick-target brem sstrahlung, the electromagn etic cascade,

    the estimation of secondary-radiation yields from thick targets , and that annoying

    opera tional problem , instrum enta l corrections for accelerator duty fac tor . In

    addition, an extensive review of neutron production is given which includes new

    calculations of ne utro n pro du ctio n in various materials. A recalculation of

    activation in a variety of materials has been done for this manual, and specif ic

    gamma-ray constants have been recalculated for a number of nuclides to take into

    account the contribution of K X-rays. The subjects of air and water activation, as

    well as tox ic gas pr od uc tio n in air have bee n specially reviewed. In the se ction on

    radiation shielding, published data on bremsstrahlung attenuation have been

    2

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    14/342

    reviewed to estimate a consis tent set of at tenuation parameters over a broad range

    of pr imary energies . Fur th erm ore, the t reatm ent of mo noch roma t ic ph oto n

    reflection of Chilton and Huddleston has been adapted for use with bremsstrahlung

    spectra. The discussion of ne utro n shielding uti l izes neu tron tra nsp ort calculations

    f rom Oak Ridge which proper ly account for the contr ibut ion of neutron-capture

    gamm a rays to the dose equivalent. These data are presented in a for m believed

    most convenient for direct use by the radiation protection specialis t .

    The present manual does not s tr ive to provide results of great accuracy; this

    is very diff icu lt unless all aspec ts of a given situatio n are taken in to ac co un t. Th e

    intention is rather to present a balanced treatment of the major kinds of radiation

    and provide means to estimate them with s imple algebraic manipulations based on

    physically well-grounded interpola tions. Fo r the sake of com pleteness and to

    provide addit ional perspective for the user , order-of-magnitude estimates are given

    for some radiations of lesser importance.

    Betatrons and electron microtrons operating at the same energy produce

    essentially the same kind of secondary radiation as electron linacs and the material

    given in this manu al is directly ap plicable to them . Ac celera tors which deliver

    primary beams of other types of particles , part icularly protons, deuterons or

    heavier ions, give r ise to secondary radiation of a somewhat different nature,

    owing to the mass and hadronic interactions of the primary particles; the amount

    of bremsstrahlung is negligible compared with the intense neutron f luences released

    by these particles. The se acc elera tors are no t discussed in this ma nua l.

    During the preparation of this manual, an ongoing dialogue was conducted

    with accelerator manufacturers and radiation protection specialis ts at several

    laboratories (see Ack now ledgem ents) . A num ber of visi ts were ma de to clinics

    and research installat ions to gather f irs t-hand impressions of safety practices th at

    are actually in use.

    The material presented here is of course based on earl ier work by many

    persons and organizations. A reasonable attem pt is mad e to acknow ledge, by

    citation, the work of individuals where appropriate, but as the f ield of radiation

    protection extends over many decades, completeness in this regard is impossible.

    Radiation protection manuals which are heavily drawn upon are l is ted in the

    General Bibliography (Section 7) . I t is reco mm end ed t hat persons responsible for

    radiation protection have a selection of these references available, for addit ional

    perspective on the problems and their solutions.

    Recommendations for clinical calibrations of beams used in therapy are not

    given in this manual, but the reader is referred to reports of international

    organizations such as the IAEA and IC RU and othe r authoritat iv e bodies which

    deal with this important subject (see Section 7) .

    I t should be borne in mind that there may be addit ional regional and local

    requirements for radia t ion protec t ion that must be met . Governmen tal author i t ies

    and qualif ied experts are best consulted to ensure that each installat ion is operated

    in compliance with all legal requirements .

    3

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    15/342

    TABLE I . FREQUENTLY USED SYMBOLS AND UNITS

    Na me Sy mbo l

    Uni ts

    Na me Sy mbo l

    SI Special Conve rsion facto rs

    Abso rbed do se

    D

    gray (Gy)

    rad (rad) 1 rad = 10 mG y = 10 mJ kg "

    1

    Abso rbed do se ra te

    D

    G y s"

    1

    rad s "

    1

    1 rad- s"

    1=

    1 0 mG y s "

    1

    Ex po sure

    X

    co ulo mb per k i lo g ra m (C k g '

    1

    )

    ro ntg en (R)

    1 R = 2 5 8 /^C k g"

    1

    Exposure rate

    X

    C ' k g - ' - s "

    1

    R s '

    1

    1 R s"

    1

    = 258 fiCk g"

    1

    s

    _1

    Dose equivalent H

    (d imens io ns o f J

    -

    k g"

    1

    )

    rem

    Dose equivalen t rate H

    -

    re m s"

    1

    Activ i ty

    A

    becquere l (Bq) cur ie (Ci ) 1 Ci = 3 7 G B q= 3 .7 Xl O ^ s"

    1

    Quality factor

    Q

    -

    -

    Electro n k inet i c energ y

    E

    MeV

    -

    1 MeV= 1 .6 0 2 X 1 0 "

    13

    J

    Incident or initia l

    kinetic energy

    E

    0

    MeV

    Pho to n energ y

    k

    MeV

    Useful conversions

    1 Bq = 1 radioactive dis integr ation per seco nd = 1 s"

    1

    = 2 7 .0 2 7 pCi

    1 G y = 1 J kg "'= 1 0 0 ra d

    1 eV = 1 .6 0 2 X 1 0 ~'

    19

    J , a pprox.

    1 MeV = 1 .602 X 10"

    13

    J= 1.602 X 10"

    13

    kg G y = 1 .6 0 2 X 1 0 "

    8

    g - ra d= 1 .6 0 2 X 1 0 "

    6

    erg

    1 W =

    1

    J - s " ' = 1 V A

    Abso rbed do se co rrespo nding to a n ex po sure X o f 1 C k g"

    1

    : to air: D = 33. 7 Gy

    t o t i ss u e : D = 3 6 . 4 G y ( C o - 6 0 )

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    16/342

    TERMINOLOGY AND UNITS

    Where possible, the terminology and units correspond to those defined in

    ICRU Re por t 19 (see Bibliography, Section 7) . Tab le I gives freq ue ntly used

    symbols and units . (See Ap pen dix A fo r addit ion al useful physical and num erical

    constants .)

    Note

    The qu est ion o f an Si-cohere nt unit with a special name for dose equivalent H is under-

    going review. The s ievert (Sv) , whic h is the absorbed d ose D ( in G y) mu lt ip l ied b y

    dimensionless modifying factors ( in part icular the qual i ty factor Q) has been proposed

    to the C onfer enc e Ge'n&ale des Poids et M esures (CGPM) by the Internat ional

    C ommis s ion on R ad ia t ion U n i t s an d Meas u remen ts ( I C R U ) an d th e I n tern at ion a l C ommis -

    s ion on R adiological Pro tect ion (ICRP ). The s ievert wo uld s tand in the same relat ionship

    to the gray as the rem do es to the rad. S ince a f inal resolut ion o f th is matter has not bee n

    made at the t ime of publicat ion, values of dose equivalent H are g iven in rem in th is manual .

    In all other instances radiation quantities are given in

    both

    the S l-coh eren t units and

    the exis t ing special units . Also no te that no special S i-cohe rent unit has been propo sed to

    the CGPM for exposure X; the S i-derived unit C

    kg"

    1

    is used fo r expo sure.

    ACKNOWLEDGEMENTS

    The author gratefully acknowledges the kind hospitali ty and support of the

    International Atomic Energy Agency and the Stanford Linear Accelerator Center

    in the preparation of this manuscript , and particularly thanks F.N. Flakus and

    R.C. McCall for their personal help and enco urage men t.

    The au thorisdeeply i nd eb ted to F.H . A ttix , G.R. Higson, M. Lad u, T.G. M artin III,

    R.C. McCall, T. Nakamura, C.S. Nunan, J. Rassow and K. Tesch for valuable

    comments on a preliminary draft , and to my colleagues D.D. Busick, T.M. Jenkins,

    K.R. Kase, W.R. Nelson and G.J . Warren of the Stanford Linear Accelerator

    Cen ter , and R.H. Th om as of the Law rence Berkeley Labo rator y, for generously

    sharing their knowledge and experience.

    Many oth er individuals, representing a large nu mb er of organizations, were

    extrem ely coope rative and helpf ul in supplying usefu l info rm atio n. These include :

    R. Alvarez, L. Arm stron g, A. Asam i, M.L. Berger, B. Berm an, J. Bly, J. Bro berg,

    A. Burrill, R. Byers, A.B. Ch ilton, T .R . Ch ippe nda le, J.B. Czirr, J. Fen ger,

    H. Fu ji ta, E.G. Fuller , G. Gilbert , T.F . Godlove, T.W. Gru new alt , D. Hankins,

    P. Harda ker, T.G. Hob bs, J . Jasberg, R. Jean , R. Joh nso n, J . Kaehler ,

    M.J. Ka raffa, C.J . Karzm ark, N.N. Kaushal, N.L. Kay, J .G. Kelliher, E,A. Knap p,

    J.D. Koen ig, S. Ku rihara , M. Lara, J. Leb acqz , J.E . Leiss, G . Loe w, P. Ma schka,

    5

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    17/342

    T.P. M cR eyn olds, B. M ecklenb urg, B. Me yer, V. Mo re, R.B. Neal, P. Ogren,

    S. Pen ner, F. Peregoy , E. Petersilka, V. Price, D. Reid, J.C. R itte r, R. Ro rd en ,

    R. Ry an, A. Sm ith, W. Sm ith, V. Stieber, I .A. Ta ub, G. Toch ilin, G. Trim ble,

    W. Tu rchin etz, Yu.P. Vak hrushin, R. Van de Vyver, N. Van Hoo yd on k,

    D. Walz, K. W hitham , D. Willis, U. Yelin, and man y other s wh o provided

    information about specif ic accelerator installat ions or discussed certain portions

    of the material.

    The author acknowledges with deep appreciation the considerable help in

    the preparation of this manuscript by V. Smoyers and personnel of the SLAC

    Dra fting De part me nt unde r the leadership of T. Hu nter . D. Dup en, W. Field

    and A. Schwa rtz provided very helpful advice at cr i tical mo me nts .

    6

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    18/342

    1. USES AN D CHARACTERISTICS OF

    ELECTRON LINEAR ACCELERATORS

    1.1. Fields of app licatio n

    Several decades of technological development have culminated in the modern

    microwave electron l inear accelerator , or electron l inac, an instrument useful in

    medicine, industry and science [1,2, 3] . The technologies combined in this

    simple and powerful tool are high-power pulsed microwave generation, high-

    vacuum tec hno logy , electronics , and metal forming and assembly. Originally

    developed as a research instrument to s tudy the basic s tructure of matter , i t has

    become useful in several other important ways.

    (a) Medical applications

    In radiation therapy, second- and third-generation electron l inacs are widely

    em ploye d in the treatm en t of cancer. They o ffe r the advantages of s implicity

    and reliabil i ty, higher output, larger treatment f ields, and the choice of both

    electron and p ho to n irradiations. Th e higher energies are usefu l because of the

    greater penetration of the radiation to treat deep-lying tumours and afford a

    greater degree of pr ot ec tio n to the skin. A small foca l spot allows precise beam

    defin it ion. Space requ irem ents for the accelerators are mo dest and they are readily

    ada ptab le to rota tion al ther apy . Both because of i ts societal imp ortan ce and in

    terms of numbers of accelerators in operation (over 800), cancer therapy is the

    leading application of the electron l inear accelerator [4, 5,6] .

    (b) Industrial applications

    High-intensity radiography is now an accepted, s tandard application of the

    electron linac, such as in the X-ray inspection of large welds, castings, complex

    assemblies and solid pro pe llan ts [7], Ra diat ion processing app lication s [8] includ e

    curing of pain t and adhesives, poly me rization of plastics , foo d preservation [9]

    and steri l ization of heat-sensit ive medical products [10].

    (c) Research applications

    A third m ajo r cate gory of uses is in scien tific research . Resea rch in nuclea r

    physics employs linacs operating in the range 25500 MeV, generally using the

    copiously produ ced ph ot on s to s tudy nuclear s tructures. Facil i ties for studies

    using neutro n t ime-of- fl ight and m onoenerget ic pho ton s have perm it ted mu ch

    greater detail in the experimental results than previously possible [11, 12].

    7

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    19/342

    Laboratories doing research in elementary particle physics use l inacs producing

    electron beam s with energies as high as 22 G eV and pos itron beam s up to

    15 GeV [3] (1 GeV-1000 MeV). The extremely shor t wavelength corresponding

    to the electron or positron momentum (1CT

    1S

    cm at 20 GeV) permits the sub-

    struc ture of the mu ch larger pr oto n and ne utr on (radius 1.2X10"

    13

    cm) to be

    explored.

    Linacs are used as injectors for electron synchrotrons and electron/positron

    storage rings fo r ele me nta ry partic le research . Th e discovery in 197475 of

    massive (compared with the nucleon) elementary particles at the e

    +

    -e"storage

    rings is considered on e of the m ost imp orta nt scientif ic results of recent t imes

    because i t reveals the existence of a previously unknown property of matter , with

    implications concerning nuclear substructure [13].

    Pulse radiolysis is a field of chemistry which uses to advantage the short

    radiation pulses available from electron l inacs to s tudy the dynamics of chemical

    reactions, particularly of free radicals.

    A list of experimental uses under study might include such diverse subjects

    as: th e use of inten se beam s of negative pi me sons (7r~) fo r cancer th era py , pro -

    duction of short- l ived isotopes for prompt use in nuclear medicine, earth tunnell ing

    and free-electron lasing.

    1.2. Ty pes of electron linear accelerator installations

    The electron l inear accelerator i tself is fundamentally a conducting tube,

    usually of copper, accurately shaped to contain an electromagnetic wave of the

    pro pe r cha racteristic s - a kin d of waveguide [14, 15, 16]. Th e beam energy is

    proportional to the length and to the electr ic f ield s trength within the cavity or ,

    equivalently, to the square roo t of the microwave pow er inserted. Typical

    gradients achieved l ie in the range 2 - 4 M eV /ft . Because the electrons achieve

    relativistic velocities quickly, the spacing of cavities within the tube is uniform

    almost thro ug ho ut i ts length. A high-energy accelerator differs fro m a low-energy

    machine mainly in i ts total length.

    Tw o differe nt config uration s are in mo dern use. In the travelling wave

    accelerator (Figs 1, 2), microwave power is supplied to the input of the accelerator

    section and travels to the other end, remaining at all times in phase with the

    moving electron b unche s. The accelerator interior is part i t io ned into accelerating

    cavities dimensioned in such a way that the phase velocity of the microwave field

    equals the electron velocity.

    Ano ther conf igurat ion is the

    standing-wave accelerator

    [17, 18] in which

    additional side cavities provide a 180 phase shift between accelerating cavities

    (Fig.3) . This type has the advantage of being less sensit ive to tem per atu re or

    dimensional v ariations and achieves the same beam energy in a shorter len gth.

    8

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    20/342

    FIG.l. A ten-foot (^3.0 m) travelling-wave accelerator section for SLAC . With a 16-MW

    klystron (peak RFpower), the energy added by such a section is 40 MeV . The uniform

    partitioning into RF cavities by annular disks is easily seen.

    (Reproduced with kind permission of the Stanford Linear Accelerator Center and the Energy

    Research and Development Administration.)

    9

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    21/342

    FIG.2. Accelerator disks and cylinders. These compon ents are assembled to form the 10-ft

    (=3.0 m) sections show n in Fig.l.

    (Reproduced with kind permission of the Stanford Linear Accelerator Center and the Energy

    Research and Developm ent Adm inistration.)

    B E A M

    C H A N N E L

    A C C E L E R A T I N G

    C A V I T Y

    C O U P L I N G

    C A V I T Y

    FIG.3. Structure of a standing-wa ve accelerator. The coupling cavities provide a phase

    change such that the accelerating cavities ma intain a 180 pha se shift with respect to each other.

    (Reprodu ced with kind permission of E.A. Knapp , th e Los Alam os Scientific Labora tory and

    Review of Scientific Instruments.)

    1 0

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    22/342

    Microwave power f or low energies is generally develope d by ma gnetro ns, bu t

    all higher-energy accelerators use klystron s. The nom inal frequ enc y of 300 0 Hz

    (wavelength 10 cm in free space at 299 8 MHz) is usually used. Peak R F pow ers

    generated per uni t are 2 - 5 MW (magnetrons) and 2 0 - 4 0 MW (klys t rons) .

    The following components are common to all types of installat ions:

    (a) Th e injec tor , containing the gun or electron 'so urc e' ;

    (b) The accelerator i tself, com posed of one or mo re sections, fed by

    separate microwave generators;

    (c) Th e microwave generato rs: one or mo re ma gnetro ns or klystro ns,

    driven in phase;

    (d) A m od ula tor to energize each microwave genera tor;

    (e) A target an d/o r beam dum p to provide usefu l seconda ry radiation s

    and stop the electrons.

    In add it ion, most installat ions have at least one beam -transp ort m agn et. Most

    medical accelerators operating above 6 MeV are equipped with a magnet which is

    an integral part of th e apparatu s which deflec ts the beam by 90 or 27 0. Research

    installat ions may also have secondary beam lines, transporting a variety of particle

    types pho tons , e lect rons , pos i t rons and mesons .

    Three categories of installat ions with s imilar radiation protection problems

    are easily ide ntifia ble : (a) med ical, (b) indu strial, and (c) resea rch. Th ese

    categories may differ somewhat in the types of radiations to be protected against ,

    but more so in the physical layout and movements of personnel and members of

    th e general pub lic arou nd th em . Special needs of these type s of installat ions are

    discussed where appropriate, and descriptions of typical installat ions are given.

    I t is hoped that useful information for meeting the requirements of novel or

    unique installat ions will be found in this manual, al though every case cannot be

    foreseen.

    1.3. Parameters of electro n linear accelerators

    A lis t of physical parameters of the two-mile Stanford Linear Accelerator

    (Fig.4) is given in Tab le II. A ltho ug h the exa mp le chosen is at present th e highest-

    energy l inac, most of i ts parameters are quite representative of many other

    travelling-wave a ccelerators if the differe nce s related to i ts great length (mu ltiplici ty

    of sections and there fore of beam energy and pow er) are tak en into acco un t. The

    particularly unique features of the SLAC facil i ty are the interlaced-multiple-beam

    capabili ty, the abil i ty to accelerate also positrons and polarized electrons to high

    energies, and a special facility for extremely short (10 ps) beam pulses.

    Tables III, IV and V provide an overview of three classes of linear accelerator

    installat ions. I t is seen tha t the developm ent in medical accelerators within the

    past decade (Table III) has been towa rd a capabil i ty for isocentr ic the rap y using

    11

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    23/342

    FIG.4. Aerial view of the Stanford Two-M ile Accelerator (SLAC ), a modern high-energy

    facility for elementary-particle research. The Research Area with multiple-beam capability

    is in the foreground. The electron-positron storage ring SPEA R is to the lower right. The

    360 beam pu lses accelerated per second are shared by as many a s six different beam paths,

    each with separately adjustable energy, current and pulse length.

    (Reproduced with kind permission of the Stanford Linear Accelerator Center and the Energy

    Research and Developm ent Adm inistration.)

    bo th electrons and pho ton s [4] , The maxim um usefu l energy appears to be

    approximately 40 MeV. The radiation characteris t ics at each energy are surpris ingly

    similar amo ng these m ode rn facil it ies , reflecting a general consensus am ong

    manufacturers and users .

    Ac celera tors for indus trial radio grap hy are surveyed in Tab le IV. The very

    high ou tp ut s of these machines may pose a great poten tial hazard to o perating

    personnel in industrial settings.

    Table V contains an abbreviated l is t of physical parameters of representative

    ope ratin g research and special-purpose installa tions. Th ere is great variety in the

    capabili t ies of these installat ions, reflecting the purposes to which they are applied.

    Figure 5 illustrates the general rise in beam power with accelerator energy.

    Text continued on p.24

    1 2

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    24/342

    TABLE I I . PHYSICAL PARAM ETERS OF THE STAN FORD TWO-MILE

    ACCELERATOR (SLAC)

    Accelerator length

    1 0 0 0 0 f t ( 3 0 4 8 m )

    Length between feeds

    1 0

    ft

    ( 3 . 0 4 m )

    Number of acc e lera tor sect io ns

    960

    Number of klystrons

    245

    Peak power per klys tro n 20 - 40 MW

    Beam pulse repet i t ion rate 1 - 360 p u ls e s / s

    RF pu lse length 2 .5 ixs

    Fi l l ing t ime

    0 .83 us

    Electro n en erg y, unloaded

    22. 8 GeV (m ax )

    Electr on en erg y, loaded 21 .5 GeV

    Electron peak beam current

    70 mA (max)

    Electron average beam current

    40

    fj,A

    (max)

    Electron average beam power 800 kW (max)

    Electron beam pulse length

    10 ps - 1. 6 jxs

    Electron beam energy spread (max)

    0.5%

    Posi tron energy

    15 GeV (max)

    cl

    Pos i tron average beam current

    0.5 fxA

    Multiple beam capability

    6 interlaced beams

    with independently ad-

    justable pulse length,

    en er gy , and cur ren t

    Operating frequency

    2856 MHz

    For 140 kW of incident elec tr on beam power at po sitron so ur ce

    located at one-third point a long accelerator length.

    13

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    25/342

    TABLE II I . RADIATION PARAMETERS OF MEDICAL ELECTRON LINEAR ACCELER ATORS INTRO DUCED SINCE 1965

    A p p r o x .

    da t e o f

    i n t r o d u c t i o n

    M a n u f a c t u r e r

    Beam ener g i es

    i n m oda l i t y

    P h o t o n s E l e c t r o n s

    ( M V) ( M eV)

    T y p e o f

    m o u n t o r

    m o t i o n

    T o t a l

    s t r u c t u r e P o w e r

    l e n g t h s o u r c e

    and t ype

    T r a n s p o r t

    m a g n e t ( s )

    M a x i m u m p h o t o n

    M a x i m u m

    _ , field size

    O O ' G y . m ' . m l n - ' )

    ( p h o t o n s )

    ( r a d - m - m m )

    m

    ' a t 1 m )

    ( n a t t e n e d )

    N o m i n a l

    l e a k a g e

    r ad i a t i on**

    ( p h o t o n s )

    (%)

    1 9 6 5

    1 9 6 5

    1 9 6 7

    1 9 6 7

    1 9 6 8

    1 9 6 9

    1 9 6 9

    1 9 7 0

    1 9 7 0

    S L 75 / 10 P h i l i p s

    M E L

    L UE 5

    L UE 25

    M e v a t r o n

    V I

    M e v a t r o n

    XII

    E f r e m o v

    E f r e m o v

    A p p l i e d

    R a d i a t i o n

    A p p l i e d

    R a d i a t i o n

    M L - 1 5 M I I B M i t s u b i s h i

    T her a p i 4 S HM

    N u c l e a r

    7 - 1 0 4 - 1 0

    5

    1 0 , 1 5 1 0 - 2 5

    T h e r a c 4 0 C G R - M e V 1 0 , 2 5 7 - 3 2

    S agg i t a i r e AE CL ( 40 )

    L M R 13 T osh i b a

    Cl i nac 4 Var i an

    8 , 1 0 5 -

    1 2 8 -

    I s o c e n t r i c

    1 0 0 c m S A D

    I s o c e n t r i c

    1 0 0 c m S A D

    S t a t i o n a r y

    0

    -30

    + 4 5

    I soce n t r i c 105

    1 0 5 c m S A D ( 3 7 0

    wi t h p i t )

    I s o c e n t r i c

    1 0 0 c m S A D

    I s o c e n t r i c

    80 cm S AD

    I s o c e n t r i c

    1 0 0 c m S A D

    I s o c e n t r i c

    1 0 0 c m S A D

    I s o c e n t r i c

    1 0 0 c m S A D

    2 1 0

    3 6 0

    3 7 0

    3 7 0

    3 9 0

    3 6 5

    2 . 25 m , T W 2 M W

    M a g n e t r o n

    T W 1 . 8 M W

    M a g n e t r o n

    6 . 5 m , T W 20 M W

    ( t w o K l y s t r o n

    s e c t i o n s )

    6 . 0 m , T W 9 M W

    ( t w o K l y s t r o n

    s e c t i o n s )

    1.6 m, TW

    0. 3 m , S W

    9 5 6 0 0 ( 3 0 0 W e l e c t r o n s 3 0 X 3 0

    ( a p p r o x . ) a t 8 M e V )

    c

    18 X 18

    (2 0 X 2 0 )

    d

    4 . 8 M W

    M a g n e t r o n

    2 MW

    M a g n e t r o n

    1.0 m, SW 2 MW

    M a g n e t r o n

    1 . 3 m , S W 2 M W

    M a g n e t r o n

    1 . 7 m , T W 5 M W

    K l y s t r o n

    0 . 35 m , S W 2 M W

    M a g n e t r o n

    + 37

    - 3 7

    + 37

    - 127

    105

    ( a p p r o x . )

    N o n e :

    s t r a i gh t

    a h e a d b e a m

    2 6 1

    a c h r o m a t i c

    2 6 1

    a c h r o m a t i c

    N o n e :

    s t r a i g h t

    a h e a d b e a m

    4 0 0 ( 1 0 0 0 )

    ( 2 k W e l e c t r o n s )

    0

    3 8 X 38

    3 0 X 3 0

    4 0 X 4 0

    4 0 X 4 0

    4 0 X 4 0

    3 0 X 30

    4 0 X 4 0

    0.1

    0.1

    0.1

    0 . 0 3

    b

    0 . 0 2

    0.1

    G i n a c 3 5 V a r i a n

    8 , 2 5 7 - 2 8

    I s o c e n t r i c 3 6 0

    1 0 0 c m S A D

    2. 25 m , T W 20 M W

    K l y s t r o n

    + 57

    - 9 0

    1000 35 X 35

    ( 5 k W e l e c t r o n s )

    8

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    26/342

    Approx.

    date o f

    int roduct ion

    Manufacturer

    Beam energies

    in m oda l i t y

    3

    Photons Electrons

    ( M V) ( M eV)

    Type of

    m ount or

    motion

    Total

    s t ructure

    length

    an d type

    Power

    Transport

    source

    magnet(s)

    2 MW 266

    Magnetron

    achromatic

    2 MW 262

    Magnetron

    achromatic

    2 MW

    266

    Magnetron

    achromatic

    2 MW

    None:

    Magnetron

    straight

    ahead beam

    4 . 8 M W 105

    Magnetron (approx.)

    5 MW 270

    Klystron

    achromatic

    5 M W

    95

    Magnetron (approx.)

    2 MW

    None:

    Magnetron straight

    ahead beam

    2 MW

    None:

    Magnetron

    straight

    ahead beam

    5 MW 270

    Klystron achromatic

    S MW

    266

    Klystron achromatic

    2 MW 270

    Magnetron

    achromatic

    2 M W

    None:

    Magnetron straight

    ahead beam

    Maximum photon

    output

    ( 1 0 "' G y m ' min" ' )

    ( r a d - m

    2

    *m i n

    - 1

    )

    ( f lat tened)

    Maximum

    field size

    (photons)

    (c m

    3

    at 1 m)

    Nominal

    leakage

    radiation*

    5

    (photons)

    (%)

    1 9 7 0

    1971

    1 9 7 2

    1 9 7 2

    1 9 7 2

    1 9 7 3

    1 9 7 3

    1 9 7 3

    1 9 7 4

    1 9 7 4

    1 9 7 4

    1 9 7 5

    Dynaray 4

    Therac 6

    Neptune

    Radiation

    Dynamics

    CGR-MeV

    AECL

    Dynaray 10 Radiation

    Dynamics

    L M R 1 5

    Toshiba

    Therac 2 0 CGR-MeV

    Saturne AECL

    S L 75/ 20 Philips

    M E L

    Clinac 1 8 Varian

    Dynaray 1 8 Radiation

    Dynamics

    Clinac

    12

    Varian

    Clinac 6X Varian

    4

    6

    8 3 - 1 0

    4 -

    1 0 1 0 - 1 6

    1 0 , 1 8 6 - 2 0

    8 , 1 6 5 - 2 0

    6-12 5^18

    8

    ( 6 )

    6 - 1 2

    ( 4 - 9 )

    Isocentric

    1 0 0 c m S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    80 / 100

    c m

    S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    8 0 c m S A D

    Isocentric

    8 0 c m S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    1 0 0 c m S A D

    Isocentric

    8 0 c m S A D

    3 7 0

    370

    370

    420

    420

    370

    360

    380

    3 6 0

    370

    360

    360

    0 . 7 5 m , T W

    1. 1 m , T W

    2. 3 m , T W

    0. 3 m , S W

    1. 7 m , T W

    2. 3 m , T W

    2. 5 m , T W

    0. 3 m , S W

    0 . 2 5 m , S W

    1. 4 m , S W

    2. 3 m , T W

    1. 2 m , S W

    0. 3 m , S W

    3 0 0

    2 5 0

    3 0 0

    2 2 5

    4 0 0 ( 9 0 0 W

    electrons a t

    1 0 - 1 5 MeV)

    c

    2 2 4

    5 0 0

    3 5 0

    3 5 0

    192

    3 0 X 3 0

    4 0 X 4 0

    3 5 X 35

    4 0 X 4 0

    3 0

    X

    30

    4 0

    X

    4 0

    3 0

    X

    3 0

    3 0 X 3 0

    35 X 35

    3 5 X 35

    3 5 X 3 5

    4 0 X 4 0

    0.1

    0.1

    0.1

    0 . 0 5

    0.1

    0.1

    0.1

    Se efootnotes a t end of table.

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    27/342

    TABL E III. (con t.)

    A p p r o x .

    da t e o f

    i n t r o d u c t i o n

    M ode l

    Beam ener g i es

    i n m o d a l i t y

    3

    M a n u f a c t u r e r

    P h o t o n s

    ( M V)

    T ype o f

    1

    m o u n t o r

    E l e c t r o n s m o t i o n

    ( M eV)

    T o t a l

    s t r u c t u r e P o w e r

    l e n g t h s o u r c e

    and t ype

    M a x i m u m p h o t o n

    _ o u t p u t

    T r an s po r t ( 1 0 " G y m ' - m i n " )

    m a g n e t ( s ) (

    r a d

    .

    m

    2

    ( f l a t t e n e d )

    M a x i m u m

    Held size

    ( p h o t o n s )

    ( c m

    2

    at 1 m )

    N o m i n a l

    l eakage

    r ad i a t i on**

    ( p h o t o n s )

    (%)

    1 9 7 5

    S L 7 5 / 5

    Phil ips

    M E L

    4 - 6

    -

    I s o c e n t r i c

    1 0 0 c m S A D

    4 2 0

    1 . 2 5 m , T W

    2 M W

    M a g n e t r o n

    9 5 3 5 0 4 0 X 40 0 . 1

    1976 T her a c 10

    N e p t u n e

    C G R - M e V

    A E C L

    9

    6 - 1 0

    I s o c e n t r i c

    1 0 0 c m S A D

    370 1 . 2 m , S W 2 M W

    M a g n e t r o n

    2 6 2

    a c h r o m a t i c

    300 40 X 10 0 . 1

    1 9 7 6

    D y n a r a y 6 R a d i a t i o n

    D y n a m i c s

    6

    -

    I s o c e n t r i c

    1 0 0 c m S A D

    370 1 . 0 m , T W

    2 M W

    M a g n e t r o n

    2 6 6

    a c h r o m a t i c

    3 0 0

    35 X 35

    0 . 1

    1 9 7 6

    L UE 15M

    E f r e m o v

    15

    1 0 - 2 0

    I s o c e n t r i c

    1 0 0 c m S A D

    120 2 . 6 m , T W

    9 MW

    M a g n e t r o n

    2 7 0

    a c h r o m a t i c

    3 0 0

    ( 1 . 5 k W e l e c t r o n s )

    0

    3 0 X 3 0

    2 0 X 2 0

    d

    0 . 1

    0 . 2

    b

    1 9 7 7

    M e v a t r o n

    X X

    S i e m e n s

    10, 15

    3 - 1 8

    I s o c e n t r i c

    100 cm S AD

    370 1 . 3 m , S W

    7 M W

    K l y s t r o n

    2 7 0

    a c h r o m a t i c

    300 40 X 40

    0 . 1

    1 9 7 7

    Cl i nac

    6 / 1 0 0

    Var i an

    6

    I s o c e n t r i c

    1 0 0 c m S A D

    360 0 . 3 m , S W

    2 MW

    M a g n e t r o n

    N o n e :

    s t r a i gh t

    a h e a d b e a m

    2 0 0 4 0

    X

    4 0

    0.1

    1 9 7 7

    C l i n a c 2 0 V a r i a n 1 5 6 - 2 0

    I s o c e n t r i c

    1 0 0 c m S A D

    3 6 0 1 . 6 m , S W

    5 MW

    K l y s t r o n

    2 7 0

    a c h r o m a t i c

    500

    35 X 35

    0 . 1

    1 9 7 7

    E M I F O U R

    EMI

    T h e r a p y

    4

    I s o c e n t r i c

    1 0 0 c m S A D

    360 0 . 3 m , S W

    2 MW

    M a g n e t r o n

    N o n e :

    s t r a i g h t

    a h e a d b e a m

    2 2 0 4 0 X 4 0

    0 . 1

    1 9 7 7

    E M I S I X

    E M I

    T h e r a p y

    6

    I s o c e n t r i c

    1 0 0 c m S A D

    360 0 . 3 m , S W

    2 MW

    M a g n e t r o n

    N o n e :

    s t r a i gh t

    a h e a d b e a m

    2 2 0

    4 0 X 40 0 . 1

    1 9 7 8

    L UE S M

    E f r e m o v

    4 - 5

    4 - 5

    I s o c e n t r i c

    1 0 0 c m S A D

    120

    0 . 6 m , T W

    3 M W

    M a g n e t r o n

    N o n e :

    s t r a i gh t

    a h e a d b e a m

    2 0 0 3 0 X 3 0

    2 0 X 2 0

    d

    S L 7 5 / 1 4 P h i l ip s 8 , 1 0 4 - 1 4

    M E L

    I s o c e n t r i c 3 6 0

    1 0 0 c m S A D

    2. 25 m , T W 2 MW

    M a g n e t r o n

    D a t a i n p a r e n t h e s e s a r e n o n - s t a n d a r d o p t i o n s o f f e r e d b y m a n u f a c t u r e r .

    A v e r a g e d o v e r 1 0 0 c m

    3

    a t 1 m . W her e t wo va l ues a r e g i ven , t he f i r s t r e f e r s t o pa t i en t p l an e , t he seco nd app l i e s t o r oom sh i e l d i ng .

    V e r t i c a l , r o t a t i o n a l a d j u s t m e n t .

    W h e r e t w o f i e l d s i z e s a r e g i v en , t h e f i r s t r e f e r s t o p h o t o n b e a m t h e r a p y , t h e s e c o n d t o e l e c t r o n t h e r a p y .

    P r i m a r y e l e c t r o n b e a m e x t r a c t e d i n r e s e a r c h m o d e .

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    28/342

    TABLE IV. RADIATION CHARAC TERISTICS OF ELECTRON LINEAR ACCELE RATOR S FOR INDU STRIAL

    R A D IO G R A P H Y

    Ma nufa cturer Mo del

    No mina l bea m

    energy

    ( M e V )

    RF po wer so urce

    (ma g netro n

    o r k ly s tro n)

    Ma x imum X-ra y o utput

    ( u n f l a t t e n e d )

    ( G y m

    2

    - s"

    1

    ) ( r a d - m

    2

    - m i n ' )

    M a x i m u m

    field s ize

    (at 1 m)

    ( c m )

    N o m i n a l p h o t o n

    leakage radiation

    (per cent o f usefu l

    bea m a t 1 m)

    CG R MeV Nep tune 6 6

    M

    0 .1 3

    7 5 0 5 0 (d ia . )

    0 .1

    C G R M e V N e p t u n e 1 0

    10

    M

    0 .3 3

    2 00 0 50 (dia .) 0 .1

    E f r e m o v LUE-15-1.5 15 M 1.7 10 000 3 0 (dia.) 1.0

    Efremo v

    L U E - 1 0 - 1 D

    10

    M

    0 .3 0

    1 8 0 0

    2 2 (d ia . )

    1 .0

    E f r e m o v

    L U E - 1 0 - 2 D

    10

    M

    0 .8 3

    5 0 0 0 2 5 (d ia . )

    1 .0

    E f r e m o v L U E - 1 5 - 1 5 0 0 0 D 1 5

    M

    2.5

    1 5 0 0 0

    4 0 (d ia . )

    1 .0

    Efremo v

    L U E - 5 - 5 0 0 D

    5

    M

    0 .0 8

    5 0 0

    3 5 (d ia . )

    0 .2

    EMI Thera py

    Radiograf 4

    4

    M

    0 .0 8

    5 0 0

    26 X 35

    0.5

    Mitsubishi

    ML-1 Rl l

    0 .9 5

    M

    0 . 0 0 3

    2 0 3 0 (d ia . )

    0 .1

    Mitsubishi

    ML-1 RIII

    0 .4 5

    M

    0 .0 0 0 2 5 1 .5 3 0 (d ia . ) 0 .1

    0 . 9 5 0 . 0 0 2 5

    15

    0.1

    Mitsubishi

    ML-3 R

    1.5

    M

    0 .0 1

    5 0 3 0 (d ia . )

    0 .3

    Mitsubish i ML-5 R 3

    M

    0 .0 5

    3 0 0 3 0 (d ia . )

    0 .3

    Mitsubish i ML-5 RII

    4

    M

    0 . 0 6

    3 5 0 3 0 (d ia . ) 0 .3

    Mitsubish i ML-1 OR 8 M 0 .3 3 2 0 0 0 30 (dia .) 0 .2

    Mitsubishi

    ML-1 5 RII

    12

    K

    1.2

    7 0 0 0

    30 (dia .) 0 .1

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    29/342

    TABLE IV (cont . )

    . , , Ma x imu m X-ra y o utpu t Ma x imum No mina l pho to n

    Nom inal beam RF pow er source , . . . , . . , .

    , , , (un flat ten ed) field s ize leakage radiation

    Manu facturer Mode l energy (ma gnet ron , ^ , . . ^ ,

    . . . . | , \ (at 1 m) (per cen t of usef ul

    ( M e V ) o r k l y s t ro n ) 2 - 1 , , j 2 -k / . ,

    ( G y m s ) ( r a d - m m i n ) ( c m ) b e a m a t 1 m )

    Ra dia t io n Super X 6 0 0 4 M

    D y n a m i c s

    Ra dia t io n Super X 2 0 0 0 8 M

    D y n a m i c s

    Ra dia t io n Super XX 1 2 K

    D y n a m i c s

    Varian Linatron 20 0 2 M

    Va ria n L ina tro n 4 0 0 4 M

    Va ria n L ina tro n 2 0 0 0 8 M

    Varian Linatron 60 00 15 K

    0 .1 6 0 0 3 0 (d ia . ) 0 .1

    0 .3 3 2 0 0 0 3 0 (d ia . ) 0 .1

    1.0 6 00 0 30 (dia .) 0 .1

    0 .0 3 1 7 5 7 7 X 7 7 0 .0 2

    0 . 0 7 4 0 0 3 9 X 3 9 0 . 1

    0.33 2 00 0 55 (dia .) 0 .1

    1.0 6 00 0 27 (dia .) 0 .1

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    30/342

    TABLE V. RADIAT ION PARAMETERS OF RESEARCH AND SPECIAL-PURPOSE ELECTRO N LINEAR ACCELER ATORS

    T y p i c a l h i g h - p o w e r o p e r a t i o n ( a p p r o x . )

    I n s t a l l a t i o n

    l o c a t i o n

    N o m i n a l

    p e a k

    e n e r g y

    ( M e V )

    M a c h i n e u s e

    S p e c i a l c a p a b i l i t i e s

    N u m b e r a n d

    t ype o f

    s e c t i o n s '

    3

    R F

    s o u r c e

    c

    P e a k

    c u r r e n t

    ( m A )

    E n e r g y

    ( M e V )

    T

    P

    C

    MS)

    P u l se

    r a t e

    ( H z )

    D u t y

    f a c t o r

    (%)

    E l e c t r o n

    p o w e r

    ( k W )

    1 A m s t e r d a m I K O 5 0 0

    N u c l e a r p h y s i c s

    N u c l e a r c h e m i s t r y

    n ( 0 - S 0 0 M e V )

    L a r g e d u t y f a c t o r

    25 T W ( S ) 12 K ( 14) 10 25 0 50 25 00

    1 0 . 2 0 0

    1

    2 A r g o n n e 2 2 N u c l e a r p h y s i c s

    N u c l e a r c h e m i s t r y

    n ( 2 2 0 M e V )

    35- ps pu l ses

    2 T W ( L )

    2 K ( 20 )

    2 5 0 0 1 4 1 0

    1 2 0 0 . 1 2

    4 5

    2

    3 B a r i l o c h e 3 0 N u c l e a r p h y s i c s

    1 0 1 0 0 n s p u l s e s

    1 T W ( S ) 1 K 30 0 25 1 . 2

    2 0 0

    0 . 0 2 4

    1 . 8

    3

    4 B e d f o r d R A D C 1 2 R a d i a t i o n r e s e a r c h

    1 T W ( L ) 1 K ( 10 ) 550 10 4 . 3 180

    0 . 08 S . O

    4

    5 Ber l i n BAM 35

    A c t i v a t i o n a n a l y s i s

    N e u t r o n r a d i o g r a p h y

    R a d i a t i o n p r o t e c t i o n

    2 T W ( S ) 1 K 180 30

    4 300

    0 . 1 2 6 . 5 5

    6 Ber l i n HM I 18

    P u l s e r a d i o l y s i s N a n o s e c o n d p u l s e s

    1 T W ( L ) 1 K ( 10 )

    BOO

    12

    5

    50

    0 . 0 2 5 2 . 5 6

    7 B e t h e s d a A F F R I

    5 5

    R a d i a t i o n r e s e a r c h H i g h c u r r e n t

    6 T W ( S ) 4 K 100 0

    3 0

    1.0

    1 0 0 0

    0

    .1 3 0

    7

    8 B o e i n g ( S e a t t l e ) 3 0

    R a d i a t i o n r e s e a r c h

    3 T W ( S ) 1 K 110 0 11 . 5

    5

    3 0

    0 . 0 1 5 1 . 9

    8

    9 B o l o g n a 1 2 R a d i a t i o n c h e m i s t r y

    R a d i a t i o n b i o l o g y

    R a d i a t i o n p h y s i c s

    S e l e c t a b l e p u l s e w i d t h

    H i g h c u r r e n t

    11 A i n 10 - ns pu l se

    T W ( L )

    1 K ( 1 0 )

    1 4 0 0

    6

    5

    3 0 0 0 . 1 5 1 2

    9

    1 0 B o n n 3 5

    S y n c h r o t r o n i n j e c t o r

    1 T W 1 K ( 25 )

    8 0 0

    2 0

    1

    50 o.oos

    0 . 8

    10

    11 Cor ne l l

    2 4 6

    S y n c h r o t r o n i n j e c t o r

    6 T W 3 K 100

    150 2 . 5 60

    0 . 0 I S 2 . 3

    11

    1 2 D a r e s b u r y

    4 3

    S y n c h r o t r o n i n j e c t o r

    4 T W

    2 K ( 3 0 ) 5 0 0

    4 3

    0 . 7 3 5 3

    0 . 0 0 4 0 . 8

    12

    1 3 D a r m s t a d t 7 0

    N u c l e a r p h y s i c s

    ( e e ' ) r e s o l u t i o n 3 0 k e V 2 T W ( S )

    1 K 60

    7 0

    5 . 5

    I S O

    0 . 0 8 4 . 0 13

    14 DE S Y I

    15 DE S Y I I

    4 0 0

    5 0

    S y n c h r o t r o n i n j e c t o r

    S e c o n d i n j e c t o r

    e

    +

    ( 2 5 0 3 8 0 M e V )

    D O R I S s t o r a g e r i n g s

    P E T R A s t o r a g e r i n g s

    14 T W

    5 T W

    1 4 K ( 2 5 )

    5 K ( 6 )

    2 0 0

    7 0

    5 0 0

    4 0

    2

    1

    5 0

    50

    0 . 0 1

    O.OOS

    10

    0 . 2

    14

    15

    16 F r asca t i

    4 5 0 S t o r a g e r i n g i n j e c t o r

    e

    +

    ( 6 0 3 2 0 M e V )

    A D O N E s t o r a g e r i n g s

    12 T W ( S )

    6 K ( 20 )

    100

    4 0 0 3 . 2 2 5 0

    0 . 0 8

    4 0

    16

    1 7 G e e l B C M N I S O N u c l e a r p h y s i c s 10 A i n 3 - ns pu l se 1 S W ( S )

    2 T W ( S )

    3 K 1 5 0 0 9 0

    0

    .1

    9 0 0 0 . 0 0 9 1 2 17

    1 8 G h e n t 9 0 N u c l e a r p h y s i c s

    e * ( 1 0 - 4 0 M e V ) 2 T W ( S )

    2 K ( 20 ) 25 0

    7 0

    2 . 5

    3 0 0 0 . 0 7 S 1 3

    18

    Se e f oo t no t e s a t e nd o f t a b l e .

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    31/342

    t o

    o

    TABLE III. (cont.)

    M

    . . T y p i c a l h i g h - p o w e r o p e r a t i o n ( a p p r o x . )

    a

    Nom i na l . .

    I n s t a l l a t i o n p e a k N u m b e r a n d ^ p

    M ac h i ne u se S pec i a l capa b i l i t i e s t yp e o f c P eak P u l se Du t y E l ec t r on

    l o c a t i o n e n e r g y

    y K

    b sou r ce E ner gy T

    p

    - .

    ,

    M

    s e c t i o n s c u r r e n t " r a t e f a c t o r p o w e r

    1

    ' ( m A) ( M eV ) ( j i s ) ( Hz ) ( % ) ( kW)

    19 Gi essen

    6 5

    N u c l e a r p h y s i c s

    M o n o - E p h o t o n s

    ( 8 - 3 5 M e V )

    2 T W ( S ) 1 K

    2 0 0

    65 2

    2 5 0

    0 . 0 5 6 . 8 1 9

    2 0 G l a s g o w

    1 3 0 N u c l e a r p h y s i c s

    n ( 0 1 0 M e V )

    12 T W ( S )

    3 K ( 20 ) 30 0

    93 3 . S 150 0 . 0 5

    14 20

    2 1 H a m m e r s m i t h M R C 8 R a d i a t i o n p h y s i c s 1 T W 1 M ( 2 ) 2 5 7 2 3 0 0 0 . 0 6 0 . 1 2 1

    22 Har we l l I 55

    N u c l e a r p h y s i c s

    n ( 0 1 0 M e V )

    7 T W ( S )

    7 K (8)

    SOO

    30 2 . 0

    2 0 0

    0 . 0 4

    5

    2 2

    2 3 H a r w e l l I I 1 3 6 N u c l e a r p h y s i c s n ( 0 - 3 0 M e V )

    8 T W ( L )

    4 K ( 2 0 ) 1 0 0 0

    60 S.O

    30 0 0 . 1 S

    9 0

    2 3

    2 4 H e b r e w U n i v e r s i t y

    ( J e r u s a l e m )

    8

    P u l se r ad i o i y s i s

    N a n o s e c o n d p u l s e s 1 T W 1 M 1 4 0 0

    8

    0 . 0 1

    4 6 0

    O.OOOS

    1 24

    2 5 H o k a i d o 4 5 N e u t r o n d i f f r a c t i o n

    P u l se r ad i o i y s i s

    3 T W ( S ) 100

    4 5

    3

    2 0 0

    0 . 0 6

    5

    2 5

    26 Kar l s r uhe

    2 2 F o o d p r e s e r v a t i o n 1 T W

    1 K

    100 16

    4

    3 0 0

    0 . 1

    2

    2 6

    2 7 K h a r k o v I

    SOO

    N u c l e a r p h y s i c s 2 7

    28 Khar kov I I

    2 0 0 0 P a r t i c l e p h y s i c s

    4 9 T W

    51 K ( 20 )

    2 0 1 6 0 0

    1.2

    5 0 0 . 0 0 6

    2 28

    2 9 K y o t o 4 8 N e u t r o n p r o d u c t i o n

    n ( 0 14 M eV ) 2 T W ( L )

    2 K ( 10 )

    5 0 0

    25 4

    180

    0 . 0 7 1 0

    2 9

    3 0 L i v e r m o r e L L L 1 8 0 N u c l e a r p h y s i c s e ~ ( 1 0 1 8 0 M e V )

    M o n o - E p h o t o n s

    ( 5 - 7 0 M e V )

    n ( 0 3 0 M e V )

    5 TW (S)

    15 K ( 15 )

    6 5 0

    7 5

    3 3 0 0

    0 . 1 45 30

    31 M ai nz

    3 2 0 N u c l e a r p h y s i c s M o n o - E p h o t o n s

    ( 1 0 - 1 0 0 M e V )

    N a n o s e c o n d p u l s e s

    8 T W ( S )

    8 K (2 5) 150

    2 7 0 3

    150

    0 . 04 15

    3 1

    3 2 M a n c h e s t e r

    ( P a t e r s o n L a b s )

    1 2 R a d i a t i o n b i o l o g y

    R a d i a t i o n c h e m i s t r y

    6 A in 10-ns pul se 1 TW 1 K (2 0) SOO 10 5

    50 0 . 0 25 1 . 3

    3 2

    3 3 M I T B a t e s 4 0 0 N u c l e a r p h y s i c s L a r g e d u t y f a c t o r

    H i g h - r e s . s p e c t r o m e t e r

    2 2 T W ( S )

    10 K ( 4 )

    10

    4 0 0

    15 1250

    1 . 8 60

    3 3

    3 4 M o n t e r e y N P G S

    1 0 0 N u c l e a r p h y s i c s

    3 T W

    2 K 30

    105 1

    6 0 0 . 0 0 6

    0 . 2 34

    3 5 M o s c o w K u r c h a t o v N u c l e a r p h y s i c s N e u t r o n p r o d u c t i o n 6 T W

    5 0 m s p u l s e a t 9 0 0 H z

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    32/342

    I n s t a l l a t i o n

    N o m i n a l

    N u m b e r a n d

    R F

    c

    T y p i c a l h i g h - p o w e r o p e r a t i o n ( a p p r o x . )

    a

    I n s t a l l a t i o n

    p e a k

    M a c h i n e u s e

    S pec i a l capab i l i t i e s

    t ype o f

    R F

    c

    P eak

    E n e r g y

    P u l se

    D u t y

    E l e c t r o n

    l o c a t i o n e n e r g y

    S pec i a l capab i l i t i e s

    s e c t i o n s '

    5

    s o u r c e

    c u r r e n t

    E n e r g y

    T

    P

    r a t e f a c t o r

    p o w e r

    ( M e V )

    ( m A )

    ( M e V )

    (MS)

    ( H z )

    (%)

    ( k W )

    3 6 N a t i c k N A R A D C O M I S F o o d p r e s e r v a ti o n

    M u l t i p l e b e a m p o r t s

    2 T W ( S )

    2 K (5)

    s o o 1 0

    5 180

    0 . 0 9

    5

    36

    R a d i a t i o n c h e m i s t r y

    3 7 N B S ( W a s h i n g t o n ) 1 6 0

    N u c l e a r p h y s i c s

    n ( 0 2 0 M e V )

    9 T W ( L )

    12 K 25 0 100 5

    3 6 0

    0 . 1 8 4 0

    37

    R a d i a t i o n s t a n d a r d s e * ( 1 0 - 4 0 M e V )

    3 8 N P L ( L o n d o n )

    2 2 R a d i a t i o n m e t r o l o g y

    S A i n 5 - ns pu l se

    2 T W

    1 K ( 20 ) 75 0 15

    3 . 2

    2 4 0

    0 . 0 7

    8

    3 8

    3 9 N R C ( O t t a w a )

    3 5

    N u c l e a r

    physics

    N e u t r o n p r o d u c t i o n

    4 T W ( S ) 1 K

    2 5 0 3 5

    3 . 2

    1 8 0

    0 . 06 5

    3 9

    4 0 N R L ( W a s h i n g t o n ) 6 0 R a d i a t i o n r e s e a r c h N e u t r o n p r o d u c t i o n 3 T W

    3 K 4S 0 50

    1 360

    0 . 04 10

    4 0

    4 1 O a k R id g e O R E L A

    178

    N u c l e a r p h y s i c s

    N a n o s e c o n d p u l s e s

    4 T W ( L ) 4 K 1S 0 00 140

    0 . 0 2 4

    1 0 0 0

    0 . 0 0 2 4 S O

    4 1

    4 2 O h i o S t a t e 6 P u l se r ad i o l y s i s N a n o s e c o n d p u l s e s 1 T W 1 M 325 6 0 . 0 1 5 5 0 0 . 0 0 0 6 4 2

    4 3 O t s a y

    2 3 0 0

    P ar t i c l e phys i cs

    e

    +

    ( 0 1 . 3 G e V )

    39 T W

    39 K ( 20 , 25 ) 60

    20 00 1 . 5 50

    0 . 0 0 8

    9 43

    S t o r a g e r i n g s A C O ,

    DCI

    4 4 R a y c h e n n

    17

    P r o d u c t i r r a d i a t i o n

    Hi gh cu r r en t 1 T W 1 K

    1 1 0 0

    10

    6

    2 0 0 0 . 1

    10

    4 4

    ( C o p e n h a g e n )

    4 S R e n s s e l a e r 1 0 0 R a d i a t i o n r e s e a r c h

    n ( 0 - 3 0 M e V ) 9 T W ( L ) 9 K ( 1 0 ) 3 0 0

    4 5

    4 . 5 720 0 . 32 S O

    4 5

    6 A in sho r t pu l se

    4 6 R i o d e J a n e i r o

    3 0

    N u c l e a r p h y s i c s

    3 T W

    1 A, 1 K

    100 28

    3 . 3

    3 6 0 0 . 1

    2 . 8 46

    4 7 R I S p ( R o s k i l d e ) 1 4 R a d i a t i o n r e s e a r c h N a n o s e c o n d p u l s e s 1 T W 1 K ( 1 7 )

    1 1 0 0

    10

    4

    2 0 0

    0 . 0 8 8 . 8

    4 7

    H i g h c u r r e n t

    48 S ac l ay I 70

    R a d i a t i o n r e s e a r c h

    n ( 0 - 2 M e V ) 4 T W ( S )

    4 K

    100

    7 0

    2

    SOO 0.1

    7

    4 8

    M o n o - E p h o t o n s

    ( 7 - 4 0 M e V )

    49 S ac l ay I I

    6 0 0

    N u c l e a r p h y s i c s

    M o n o - E p h o t o n s 3 0 T W ( S ) I S K ( 1 2 ) 2 5

    4 0 0

    2 0 1 0 0 0 2 . 0 2 0 0 4 9

    ( 2 0 - 1 2 0 M e V )

    S O S t . B a r t h o l o m e w s

    IS

    R a d i a t i o n p h y s i c s

    2 T W ( S ) 1 K ( 20 )

    7 5 0

    15

    5

    100 0 . 0 5 6

    SO

    ( L o n d o n ) R a d i a t i o n b i o l o g y

    51 S an Di ego I RT

    1 0 0

    R a d i a t i o n r e s e a r c h

    N a n o s e c o n d p u l s e s

    4 T W ( L ) 4 K ( 40 )

    7 0 0 6 0 4 . 5 1 8 0 0 . 0 8 3 5

    51

    P r o d u c t i r r a d i a t i o n

    e

    +

    ( 3 7 5 M e V )

    M o n o - E p h o t o n s

    ( 3 - 7 5 M e V )

    Se e foo tno te s a t e nd o f t a b le .

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    33/342

    t o

    T A B L EIII cont . )

    T y p i c a l h i g h - p o w e r o p e r a t i o n ( a p p r o x . )

    N o m i n a l

    i i i . l N u m b e r a n d

    i n s t a l l a t i o n p e a K

    M a c h i n e u s e

    S p e c i a l c a p a b i l i t i e s t y p e o f

    R t

    c

    P e a k P u l s e D u t y E l e c t r o .

    l o c a t , o n

    s e c t i o n s b

    s o u r c e

    c u r r e n t

    t n e r 8 y T

    P r a t e f a c t o r p o w e r

    ( M e V )

    ( m A ) ( M e V ) (lis) ( Hz ) ( % ) ( kW)

    5 2 S . B a r b a r a E G & G 3 0

    53 S ao P au l o US P 50

    5 4 S a s k a t c h e w a n 2 5 0

    5 5 S e n d a i ( T o h o k u ) 2 8 0

    5 6 S t a n f o r d H E P L M k . I I I 1 2 0 0

    5 7 S t a n f o r d H E P L 2 0 0 0

    S C M ar k I I I

    5 9 T o k a i J A E R I

    6 0 T o k y o E T L

    6 1 T o k y o I N S

    6 2 T o k y o N E R L

    6 3 T o r o n t o

    6 4 W a r s a w

    190

    3 3

    15

    35

    50

    13

    R a d i a t i o n r e s e a r c h

    N u c l e a r p h y s i c s

    N u c l e a r p h y s i c s

    N u c l e a r p h y s i c s

    P ar t i c l e phys i cs

    R a d i a t i o n t h e r a p y

    P ar t i c l e phys i cs

    P ar t i c l e phys i cs

    N u c l e a r p h y s i c s

    R a d i a t i o n s t a n d a r d s

    S o l i d - s t a t e p h y s i c s

    S y n c h r o t r o n i n j e c t o r

    N e u t r o n p h y s i c s

    P u l se r ad i o l y s i s

    N u c l e a r p h y s i c s

    P u l se r ad i o l y s i s

    R a d i a t i o n r e s e a r c h

    50 - ps pu l ses

    n ( 0 - 1 5 0 M e V )

    n ( 0 - 2 0 M e V )

    e* ( up t o 1 G e V )

    S u p e r c o n d u c t i n g l i n ac

    D u t y f a c t o r = 1 0 0 %

    P i o n t h e r a p y

    e

    +

    ( 0 1 5 G e V )

    I n t e r l a c e d b e a m s

    S P E A R s t o r a g e r i n g s

    M u o n a n d m e s o n

    b e a m s

    P i c o s e c o n d p u l s e s

    M o n o - E , p o l a r i z e d

    p h o t o n s

    P o l a r i z e d e l e c t r o n s

    n ( 0 2 0 M e V )

    1 8 0 s p e c t r o m e t e r

    20 - ps pu l ses

    e * ( 1 0 - 2 5 M e V )

    n ( 0 2 0 M e V )

    N a n o s e c o n d p u l s e s

    3 T W ( L )

    2 TW

    6 T W ( S )

    5 T W ( S )

    3 1 T W ( S )

    8 S W ( L )

    9 6 0 T W ( S )

    5 T W ( S )

    3 T W ( S )

    1 TW (S)

    2 T W ( S )

    4 T W ( S )

    2 T W

    2 K

    2 K

    2 K ( 18 )

    5 K ( 20 )

    3 1 K ( 2 0 )

    8 K ( 0 . 0 1 5 )

    2 4 5 K ( 2 0 - 4 0 ) 7 0

    5 K ( 20 )

    2 K ( 17 )

    1 K(6)

    2 K ( 6 . 5 )

    2 K ( 20 )

    1 K

    5 0 0 2 0 4 . 5 1 8 0 0 . 0 8 1 8 . 1 5 2

    10 50

    1

    1 2 0 0 . 0 1 0 . 0 5

    5 3

    3 0 0

    2 0 0 1 . 2 4 0 0 0 . 0 5 3 0 5 4

    1 0 0 2 8 0 3 . 3 3 0 0 0 . 1 2 0

    5S

    30 120 0 1 . 3 120

    0 . 0 1 6

    6

    56

    0 . 1

    2 0 0 0

    CW

    CW

    1 0 0 .

    2 0 0

    57

    7 0

    2 1 5 0 0 1 6

    3 6 0

    0 . 0 6 8 0 0 5 8

    3 5 0

    2 0 0

    2 0 0

    200

    4 0 0

    800

    100

    3 0

    13

    3 5

    150 0 . 0 3 11 59

    60

    2 1 . 5 0 . 0 0 2 6 0 . 0 7 6 1

    200 0.08 6 62

    2 4 0 0 . 0 8 4 1 2

    3 0 0 0 . 0 9 9

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    34/342

    N o m i n a l T y p i c a l h i g h - p o w e r o p e r a t i o n ( a p p r o x . )

    3

    I n s t a l l a t i o n p e a k N u m b e r a n d ^ p

    M ach i ne u se S pec i a l capa b i l i t i e s t yp e o f c P eak _ P u l se Du t y E l ec t r o ;

    l o c a t i o n e n e r g y

    K K

    b s o u r c e E n e r g y T

    p

    - .

    V

    v s e c t i o n s c u r r e n t

    v

    r a t e f a c t o r p o w e r

    K 6

    ' (MA) ( M e V ) (ms)

    (H

    z) ( % ) ( kW)

    6 5 W h i t e S a n d s W S M R

    4 8 N u c l e a r e f f e c t s

    N a n o s e c o n d p u l s e s

    2 T W ( S ) 2 K ( 20 )

    6 0 0

    4 8

    10 120

    0 . 1 2

    3 5

    6 5

    6 6 W i n f r i t h A E E I S

    Rad i a t i o n r e sea r ch 1 T W ( S ) 1 K ( 10 )

    2 0 0 1 4 4 . 5 2 0 0

    0 . 0 9 2 . 5 6 6

    6 7 Y a l e 7 0 N u c l e a r p h y s i c s

    n ( 0 2 0 M e V )

    S T W ( L )

    7 0 0

    4 0

    4 . 5 2 5 0 O . U

    30 67

    6 8 Y e r e v a n

    4 8 0 N u c l e a r p h y s i c s I t e r a t i v e a c c e l e r a t i o n

    13 T W ( S ) 3 K ( 20 )

    1 5 0 0 1 2 0

    8

    100

    0 . 0 8 1 4 0 6 8

    e

    +

    ( 0 - 2 0 0 M e V )

    ( a ) P a r a m e t e r s s i m u l t a n e o u s l y a c h i e v a b l e h i g h e s t e l e c t r o n b e a m p o w e r u n d e r c o n t i n u o u s o p e r a t i o n .

    ( b ) T W = tr a v e l l i n g w a v e , S W = s t a n d i n g w a v e , S = S - b a n d , L = L - b a n d o p e r a t i n g f r e q u e n c y .

    ( c ) N u m b e r o f k l y s t r o n s ( K ) , m a g n e t r o n s ( M ) o r a m p l i t r o n s ( A ) . P e a k p o w e r p e r u n i t (M W ) g i v e n i n p a r e n t h e s e s .

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    35/342

    I0

    1

    I 0

    2

    I 0

    3

    I 0

    4

    I 0

    5

    MAXIMUM ENERGY (MeV)

    FIG.5. Beam power (kWj of representative electron linacs plotted against beam energy (MeV ).

    The line represents the typical but arbitrary average current of 100 ^lA(corresponding to,

    e.g., /

    peak

    = 100 mA, DF = 0.1%).

    The parameters which most directly affect radiological safety are:

    (a) Electro n beam energy E

    0

    (b) Average beam pow er P

    ( the product of E

    0

    and the average beam current I)

    1

    .

    The most important derived quanti t ies of radiation protection, such as dose

    rate or shielding thickness, are generally not simple functions of energy E

    0

    , and

    the complete informat ion needed for radia t ion protect ion over a broad range of

    energies requires an extensive set of tables or graphs.

    Many qua ntit ies are relatively s impler fun ctio ns of energy wh en norma lized

    to average beampower rath er tha n to average curre nt, and theref ore are so

    pre sen ted in this ma nua l. A t a given energy E

    0

    , the dose rate or exposure rate is

    directly proportional to average beam power P. The required shielding thickness

    at a given distance, and for a given beam energy E

    0

    , is approxim ately propo r t ional

    to the logarithm of average beam power.

    1

    The average pow er may be obtain ed from E

    0

    I because Eo, when specif ied in eV, is

    numerical ly equal to the potent ia l d if ference (V) ef fect ively used to accelerate each part ic le .

    Poten t ia l d if fer enc e (V ) t ime s current (A) is equal to pow er (W).

    2 4

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    36/342

    The beam is not continually accelerated but comes in short pulses of

    typically T

    P

    =

    1

    - 3 /us du rati on . Where desired, T

    P

    can be made as short as 10 ps.

    The pulse repe ti t ion rates may range betwee n 1 and 1440 Hz, bu t m ost are in the

    range of 60 to 360 Hz. The du ty fa cto r DF is the fract ion of operating t im e during

    wh ich th e linac is actually pro duc ing rad iatio n, which is generally in the range

    1CT

    4

    to 10"

    3

    . It is th e prod uc t of pulse rep etiti on ra te p (in Hz) and pulse len gth

    T

    P

    (in seconds):

    DF = p Tp (1)

    This small duty factor is a disadvantage in some research applications but is

    un im po rtan t in the most com mo n applications such as radio thera py and ind ustr ial

    radiog raphy . Special large-duty-factor and con tinuou sly operating (CW) accel-

    erato rs have also bee n develop ed. Very short pulses (usually 5 10 ns) are used to

    advantage in pulse radiolysis and neutral-particle spectrometry where precise t iming

    of the reactions studied is crucial.

    In radiological protection, the duty factor is important insofar as i t may

    affect radia t ion measureme nts ; some measurements may be rendered comp lete ly

    useless or even dangerously misleading by duty-factor effects . Any measurement

    involving the counting of discrete events must be carefully evaluated to ensure

    tha t these eff ec ts are ke pt small or pro pe rly co rrecte d f or . Geiger-Miiller and

    proportional counters are particularly susceptible to saturation, owing to their

    long dead times. Proce dures for correc tion are explained in Section 5.

    REFERENCES TO SECTION 1

    [1] See, for exam ple, papers in: LA PO STO LLE , P.M. , SEPT1ER, A.L. (Eds ) , Linear

    Accelerators , North-Holland Publishing Co. , Amsterdam (1970) .

    [2 ] See, for exam ple, papers in: Proc. 197 5 Part ic le Accelerator Conf . , Acceler ator Engineering

    and Te chn olo gy, held in Washington, D C, 1 2 - 1 4 March 1975 , IEEE Trans . Nucl . Sci .

    N S - 2 2 ( 1 9 7 5 ) .

    [3] See, for exa mp le, papers in: Proc. IXth Int . Con f . High Energy Accelerators , held at

    S tan ford L inear A cce lera tor C en ter , 2 - 7 May 1974 , C O N F -74 052 2 , U C -28-A cce lera tors

    (TID-4500, 60th ed . ) , Nat ional Technical Information Service, Springf ie ld , Virginia (1974) .

    [4 ] KA RZ M AR K, C.J ., PE RIN G, N.C. , Electro n linear accelerators for radiat ion therapy:

    h i s tory , p r in c ip les an d con temp orary d eve lop men ts , Ph ys . Med . B io l . 18 (1973) 321 .

    [5 ] AL M ON D, P.R. , Som e applicat ions of part ic le accelerators to cancer research and treatme nt ,

    Ph ys . R ep . 17C 1 (19 75 ) .

    [6 ] See, for exam ple, papers in: Proc. Co nf . Part ic le Acce lerators in Radiat ion Ther apy, held

    at Los A lam os S c ien t i f i c Lab oratory , 2 - 5 Oct . 197 2 , U S A EC R ep . L A -5180-C , Tech n ica l

    I n format ion C en ter , Oak R id ge , TN (1972) .

    [7 ] BL Y, J .H. , High energy radiography: 1 - 3 0 MeV, Mater. Eval . (No v. 19 64 ) 1.

    [8 ] See, for exam ple, papers in: Large Radiat ion Sou rces for Industria l Process ing (Proc.

    S ymp . Mu n ich , 1969) , I A EA , V ien n a (1969) .

    25

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    37/342

    [9 ] See, for exa m ple, papers in: Radiat ion Preservat ion of Fo od (Proc. Sym p. Bo mb ay, 197 2) ,

    I A E A , V i e n n a ( 1 9 7 3 ) .

    [ 1 0 ] I N T E R N A T I O N A L A T O M I C E N E R G Y A G E N C Y , M an u al o n R a d i at i o n S t e r il i za t io n o f

    Medical and Biological Materials , Technical Reports Series No.149, IAEA, Vienna (1973) .

    [1 1] See, for exa mp le, papers in: BER M AN , B.L. , Ed. , Proc. Int . Con f . Pho tonucle ar R eact io ns

    an d A p p l ica t ion s , A s ilomar , C a l ifornia , 2 6 - 3 0 M arch 1973 , Law ren ce L ivermore

    Lab oratory an d U S A EC R ep . C ON F-7 303 01 , Of f ice o f I n form at ion S erv ices , Oak R id ge ,

    T N ( 1 9 7 3 ) .

    [1 2] FU LL ER , E.G. , "Ph otonu clear Phys ics 197 3: Where we are and how we got there",

    Proc. Int . Conf . Photonuclear React ions and Applicat ions , As i lomar, Cal i fornia ,

    2 6 - 3 0 March 1973 (BER M A N , B . L ., Ed . ) , Law ren ce L ivermore Lab oratory an d U S A EC

    R ep . C O N F -73 03 01 , O f f ice o f In forma t ion S erv ices , Oak R id ge , TN (19 73 ) 1202 .

    [1 3] See, for exa mp le, papers in: KIRK , W.T. , Ed. , Proc. 1975 Int . Sym p. Lepton and Pho ton

    Interact ions at High Energies , held at Stanford Univers ity , 2127 Aug. 1975, Stanford

    Linear Acce lerator Center, Stanfor d, CA (1 97 5) . ,

    [ 1 4 ] C HOD OR O W, M., GI N Z TON , E . L . , HA N S E N , W.W., KY H L, R .L . , N EA L, R . B . ,

    PA NO FS K Y, W .K.H. , Stanfor d high-energy linear accelerator (Mark III ), Rev. Sci .

    I n s tru m. 27 (1 95 5) 134 .

    [1 5] NE AL , R.B. , Gen . Ed. , DU PE N, D.W. , HO GG , H.A . , LOEW, G.A . , Eds , The Stanfor d

    Tw o-Mi le A cce lera tor , Ben jamin , N ew Y ork (1968) .

    [1 6 ] BOR GH I , R .P . , ELD R E D G E, A . L . , HELM, R . H. , LI S I N , A . F . , LOEW, G. A . , N EA L , R . B . ,

    "Des ign, fabricat ion, ins tal lat ion , and performance of the accelerator s tructure", Ch. 6 ,

    S tan ford Tw o-Mi le A cce lera tor (N EA L, R . B . , Ed . ) , Ben jamin , N ew Y ork (1968) .

    [1 7 ] KNA PP, E.A. , KNAPP , B.C. , PO TTE R, J .M. , Standing wave high-energy l inear accelerator

    structures, Rev. Sci. Instrum.

    39

    ( 1 9 6 8 ) 9 7 9 .

    [1 8 ] ON O , K., TA KA TA , K., S HI GE MU R A , N . , A sh ort e lec tron lin ac o f s id e -cou p led

    structure with low inject io n voltage, Part. Acc el . 5 (1 97 3) 20 7.

    26

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    38/342

    2. RADIATION S AT ELECTRON

    LINEAR ACCELERATOR INSTALLATIONS

    2.1. Radiations anticipated and their quality factors

    2.1.1. Types of radiations and their sources

    The usefu l radiations at electron l inear accelerators are generally no t the

    prima ry electron beams themselves bu t seconda ry beams. In mo st applications

    the electrons are used to produce bremsstrahlung and the result ing penetrating

    ph oto n beam s are those usefully em ploy ed, as in radiogra phy. In high-energy

    research applications the use ful beam s may be of other typ es of secondary

    par t ic les

    2

    , such as positrons and mesons.

    The important exceptions to this generalization are the widely accepted uses

    of diffuse electron beam s for radiation thera py, and f or research in nu clear

    structure by means of high-energy electron scattering.

    The dominant prompt radiation at al l energies is composed of photons

    produced by bremsstrahlung in the materials which absorb the electron beam

    energy. In fact , othe r prom pt radiations can be neglected com pletely unless the

    energy exceeds th e threshold for ne utro n prod uct ion . Thresholds lie in the range

    k

    t h

    = 613 MeV for most materials .

    3

    Above these energies, giant-reson ance

    neutron production must be considered, both as a form of prompt radiation and

    as related to induced activity.

    At high energies , neutrons are produced in photonuclear reactions via the

    quasi-deu teron e ffec t or in processes involving pi meson pro du ctio n. Althoug h

    fewer in number than other types of secondary particles , these neutrons are quite

    penetrating and in such installat ions may dominate the shielding requirements .

    At yet higher energies , a forward-directed beam of mu mesons ( / j t ) is

    produced which requires consideration.

    The behaviour of these types of radiation as a function of electron energy

    E

    0

    is qua litatively sket che d in Fig.6. In this figure, as in several figures and tables

    in this man ual, 'absorbed dose rate ' or 'dose-equivalent rate ' are represented by q uan-

    t i ties which can be represented by (Gy l T 'X k W -n r

    2

    ) "

    1

    ( ( r ad IT 'XkW-m"

    2

    )" ' ) ,

    2

    S ince these part ic les are prod uced alm ost ent irely by second ary pho ton s , rather

    than by primary electro ns , they co uld prope rly be regarded as tert iary. This acco unts in part

    for their lower f luen ces relat ive to the e lectro ns and photo ns . We shal l no t insis t on th is

    dis t inct ion but refer to a l l types of prompt radiat ion, except the primary beam itself , as

    'secondary' .

    3

    Th ere are s ome imp ortan t excep t ion s . For exam p le ,

    2

    H and

    9

    Be h ave an omalou s ly low

    thresholds of k

    t h

    = 2 .2 3 and 1 .67 MeV , respec t ively . The abundant nucl id es

    1 2

    C (all organic

    materials) and

    I 6

    0 (a ir , water) have h igh thresholds: 18 .72 and 1 5.67 Me V, respect ive ly .

    27

  • 7/25/2019 IAEA - Radiation Protection for LINACs

    39/342

    Eg (MeV)

    FIG.6. Dose-equivalent rates per unit primary bea m power, prod uced by various types of

    'secondary' radiations from an electron target, as a function of primary beam energy, if no

    shielding were present (qualitative). The width of the bands suggests the degree of variation

    found, depending on such factors a s target material and thickness.

    ( r e m - h

    _ 1

    ) ( k W - m ~

    2

    )

    - 1

    , etc. The quanti ty plotted is then equal to the dose-

    equivalent rate that w ould be measured at 1 m fro m a target ont o which

    a 1-kW elec tron be am is dire cted . The un it m

    2

    is inc lude d to suggest an inverse-

    square depend ence on dis tance fro m the target fo r this typ e of radiation . An

    inverse-square dependence is s tr ict ly true only for unshielded po