iahs_194_0099

Embed Size (px)

Citation preview

  • 8/18/2019 iahs_194_0099

    1/8

    Hydrology in Mountainous Répons, n  Artificial R eservoirs; Water an d Slopes

    Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 194,1990.

    Removal of sediment deposits in reservoirs by means of

    lushing

    H. SCHEUEKLEIN

    Obernach Hydraulics Laboratory, Oskar von Miller-Institut,

    Technical University Munich, F. R. Germany

    ABSTRACT Removal of sediment deposits from reservoirs by

    means of flushing is a widely used method to regain

    storage volume. However, its efficiency is very often

    overestimated. The importance of supporting auxilliary

    measures as water level drawdown is not always recognized

    to sufficient extent. Estimation of flushing efficiency by

    means of theoretical approach is problematic. The

    mechanism is complex and verification of the parameters

    involved is difficult. In the paper a straightforward

    approach starting from extreme simplifications is

    presented. The method allows for a rough estimate on the

    prospect of flushing including information on the

    necessary drawdown to produce a desired effect. By means

    of two graphs the limits and the effictivity of flushing

    activities can be judged quickly. The procedure is

    demonstrated by means of examples.

    INTRODUCTION

    Sedimentation of man-made reservoirs is one of the major problems

    hydraulic engineers will have to face in future. In spite of the

    various methods which can be taken to minimize sediment yield from the

    watershed, the intrusion and the deposition of sediment in reservoirs

    can never be avoided completely. Sediment enters the reservoir either

    as bedload or as suspended load. Usually the amount of sediment

    carried in suspension exceeds the bed load transport by a factor of

    5 to 10. The sediment deposits in a reservoir are composed accor

    dingly. First the coarse material transported close to the bed settles

    down forming a delta at the reservoir entrance. Material in suspension

    is carried further and deposited more or less uniformly all over the

    reservoir.

    REMOVAL OF SEDIMENT FROM RESERVOIRS BY MEANS OF FLUSHING

    In principle, the mechanism described above takes place similarly in

    any reservoir. However, the magnitude of the depositions, the pace of

    the deposition process, and the importance of the depositions for the

    operation of the reservoir may vary considerably.

    In mountain reservoirs, usually the uniformly distributed fine

    deposits are of minor importance. It is the gravel and sand settling

    at the entrance of the reservoir that causes problems, such as

    99

  • 8/18/2019 iahs_194_0099

    2/8

    H. Scheuerlein

    100

    - occupation of the most active (upper) part of the  reservoir,

    - raise of  water level in the river upstream of the reservoir

    (backwater effect),

    - degradation of the  river bed  downstream of the dam due to trapping

    of coarse material in the reservoir.

    With respect

     to the

     reasons listed above,

     it is

     desirable

     to

     remove

    particularly the  deposits of  coarse material at the reservoir entrance,

    preferably by  passing  it  downstream where it is needed to  avoid

    degradation.

    An elegant method

     to

     solve

     the

     problem

     is to

     take advantage

     of the

    transport capacity of the  flow itself without using external energy.

    This technique which commonly  is  called flushing is used throughout

    the world, however, not  always with the desired success. The

    efficiency

     of

     flushing depends significantly

     on the

     water level

     in the

    reservoir during the  measure (ACKERS et al, SCHEUERLEIN, 1987, WHITE

    et al) . Flushing can be  carried out very effectively when the  water

    level

     in the

     reservoir

     can be

     kept

     low for

     some time while

     the

     flow

    rate

     is

     high.

     As this, on the

     other hand, means

     a

     substantial loss

     of

    water, effective flushing must be oriented towards minimization of

    water level drawdown and  flushing time.

    Theoretical treatment of  reservoir sedimentation and flushing is

    difficult for  various reasons. The mechanism is  complex and the

    verification of the parameters involved is  problematic due to the

    stochastic character of the water and sediment afflux. For any

    analysis extensive simplifications are unavoidable.

    SIMPLIFIED METHOD TO ESTIMATE FLUSHING EFFICIENCY

    With respect to the limited possibilities to  describe and to  verify

    reservoir sedimentation and flushing activities analytically,

    sophisticated theoretical treatment seems hardly justified. A

    simplified approach has been tried by  SCHEUERLEIN, 1989, however, the

    procedure presented there proved  to be  still somewhat troublesome and

    unhandy

     by

     incorporating

     the

     energy gradient

     of the

     flow through

     the

    reservoir. On the  other hand, the  lateral mixing of the incoming flow

    on

     the way

     through

     the

     reservoir

     was

     left

     out of

     consideration.

    In the  following another simple method to  estimate the  possibility

    and

      the

     limit

     of

     eventual flushing activities will

     be

     presented. Using

    the notations of  Fig. 1, and the assumptions

    -

     simplified prismatic shape

     of the

     reservoir,

    -

     inflow equal outflow during flushing,

    -

     onedimensional analysis,

    the continuity equation close to the dam  site at a hypothetical

    drawdown water level DWL can be  written as

    B

    D

      + B

    A . (1)

    = V

    D 2

      h

    D

    For geometrical reasons,

    h

    D

      H

    o

    B

    B

    A

      B

    o ~

     B

    A

    (2)

  • 8/18/2019 iahs_194_0099

    3/8

    101

    Removal of sediment in

     reservoirs

     by flushing

    Q A V

    original river

    drawdown

    Longitudinal Sect ion

    OWL

    operationa

    water level

    FIG. 1 Flow through a reservoir - definition sketch.

    D

    A H o

    o

    V

    (3)

    substituted in (1) ,

    h.

  • 8/18/2019 iahs_194_0099

    4/8

    H. Scheuerlein

    102

    velocity close to the dam can also be interpreted as the governing

    factor for the efficiency of any flushing activity. Considering

    V

    D

      = V

    Dc

      ( 5 )

    with

    v„ = f(d) (f.i. after HJULSTROM) (6)

    Dc

    and

    Q_ = Q (per definition) (7)

    equation (4) changes to

    h B - B

    ^ A

      =

     V

    D c

      B

    A

     +

     ÎT ~ V ^

     >

     h

    D

      ( 8

    >

    o

      z

    which after some transformation and with the substitution

    «A  -  B :

      9 )

    Q

    \

    finally reads

    - ̂ (,„,

    H B

    o o

    Fig. 2 shows the graphic verification of equation ( 10 ) . For easier

    handling the HJUSSTROM function (6) has been incorporated in the

    auxilliary graphs given in Fig. 3.

    With Fig. 2 and 3 a direct and straightforward determination of the

    drawdown water level corresponding with a desired flushing effect,

    f. i. sluicing of a certain defined grain size is possible. Further

    more it is possible to check the limits of flushing at extraordinary

    conditions.

    The presented primitive method to estimate the margins within

    which flushing activities will necessarily have to stay might help to

    develop a more realistic feeling of what might be possible and what

    even under favourable conditions must be impossible. It is neither

    meant nor capable to describe the flushing process realistically. It

    rather serves the purpose to bring unjustified expectations towards

    the effictivity of flushing (particularly at partly filled reservoirs)

    back to the ground.

    EXAMPLES

    Example  :  Small reservoir at a run-of-river power plant in the Alps

  • 8/18/2019 iahs_194_0099

    5/8

    £

     

    £

     

    o

     

    t

    H

     

  • 8/18/2019 iahs_194_0099

    6/8

    :

    Ë

    I

    ^

    s

    ^

    J

    É

    V

    S

    p

     

    *

     

    N

     

    V

     

    y

    |

    r

    v

    v

    p

    s

    S

     

    :

     

    J

     

    >

     

    \

    >

    _

    1

    >

    K

    \

    î

    K

    l

     

    R

    K

    K

     

    1

    \

     

    s

    4

    |H

     

    Y

    >

    R

     

    ^

    K

    A

    >

    s

    v

    >

    P

    K

    S

    v

    |>

    H

     

    -

    Y

     

    V

    t

    J

    t

    M

    É

    ^

    lj

    k

    w

    W

    î

    lt

    r

    ^

    w

    w

    f

    il

     

    f

    P

    -

    i

     

    N

    a

    x

     

    a

    _

    H

     &

    5

    M

    3

    .

    m

    l

    .

     

    .

    .

    k

    c

    W

     

    t

    m

    n

    ^

    ^

    «

    ^

    "

    R

    f

     

    H

    -

    ~

    °

    V

    I

     

    S

    I

    *

    S

    m

     

    T

     

    s

    j

     

    M

    h

    i

     

    1

    -

    J

    U

    U

    T

    J

    î

    j

    f

     

    i

    M

    ,

    -

    {

     

    "

    :

    lr

    T

    -

    P

     

    -

    t

    p

    j

    f

    r

    '

     

    :

    I

    |

     

     

    T

    ^

    [

    t

     

    ^

    -

    -

    i

     

    ï

    :

    -7

    h

     

    1

    M

    K

    4

    "

    u

    f

    e

    H

    3

    t

    O

    4

    -

    ^

    '

    .

    Y

     

    .

     

    o

    i

     

    H

     

    Y

    ^

    K

    i

    |

    |

    p

     

    1

     

    1

    ;

    k

    %

    s

     

    H

    I

    1

     

    "

    J

    :

    -

    1

     

    Y

    Y

    Y

    n

     

    i

     

    ^

    Y

     

    V

    <

    ^

     

    I

     

    Y

    <

    M

    Ï

    S

    Y

     

    &

    i

    l

    f

    r

    t

    Y

    t

    n

     

    ;

    Y

    -

    -

    k

    .

    n

     

    H

    T

    J

    s

    Y

     

    n

     

    1

     

    .

     

    1

     

    M

    O

    N

     •

    t

    >

    S

    u

    J

     

    3

    J

    S

     

    ï

    r

    \

     

    -

    E

    K

    M

     

    Y

    M

    -

    \

    Y

    m

    4

    "

    Y

    s

    -

    Y

    \

    K

    Y

    \

    *

    J

    K

    N

    f

    T

    R

    Y

    ^

    Y

    ^

    \

    S

     

    j

    H

    î

    R

    >

    M

     

    S

    Y

     

    f

    K

    ^

    H

    :

     

    ^

    N

    p

    K

    R

    ^

    '

    F

    '

     

    s

    f

    v

    j

    ï

    4

    j

     

    Y

     "

    Y

    :

    :

    :

    "

     

    ;

    N

    ^

    Y

    r

     

    w

     

    -

    ^

    p-

     

    |

    ^

    ^

    |

    H

    \

    I

     

    h

    k

    Y

    ^

    T

    -

    <

    u

    i

     

    f

    '

     

    1

    (

    |

     

    T

    .

    .

    :

    ;

     

    .

    :

    .

    .

    -

     

    >

    ?

    A

    :

    ~

    -

     

    ;

    :

     

    x

    ~

    t

    o

    y

    V

    '

    "

    }

    Y

    v

    K

    "

    ^

    T

    H

    s

    S

    S

     

    Y

    S

    Y

    V

    °

     

    o

     

  • 8/18/2019 iahs_194_0099

    7/8

    105

    Removal of sediment in

     reservoirs

      by flushing

    Given:

    Q

    A

     = Q

    D

     = 400 m

    3

    /s

    B.  = B = 60 m

    A o

    H = 7 m

    o

    Question:

    Necessary drawdown to guarantee flushing of coarse gravel

    (d = 30 mm)?

    Procedure:

    ^A 400 , ,, f

     3

    / /

    q

    A

    =

    B 7

      =

     ~6ÏÏ

     = 6

    '

    6 7

      L

    m3/s/l

    A

    ^A =

     6

    >

    6 7

     = n qs

    H 7

      u

    '

    o

    q

    A

    From Fig. 3 for — =0 ,9 5 and d = 30 mm

    H

    O

    q

    A

    A

      = 0 4 4

    v

    n

      H

    De o

    q. B

    From Fig. 2 for 5- = 0,44 and

      ~ =

     1,0

    De o A

    £ • o «

    o

    h

    D

      = 0,44 • 7 = 3,10 jmj

    Flushing of coarse gravel would require a drawdown of

    AH = H - h„ = 7 - 3,10 = 3,90 [ml

    O

      D » L J

    Example 2: Large reservoir in the Middle East

    Given:

    Q

    A

     = Q

    D

     = 1000 m

    3

    /s

    B

    A

      = 140 m

    A

    B = 420 m

    o

    H 90 m (operational water level)

    o

    Question:

    Up to which grain size will flushing be effictive when the

    drawdown shall not drop more than 60 m below operational water

    level?

  • 8/18/2019 iahs_194_0099

    8/8

    H. Scheuerlein

    106

    Procedure:

    h

      =  H  - 60 = 90 - 60 = 30  [ m j

    D o

    ^ = 30 = 0 33H 90 '

     J

    G

    h D ,„„

    From. Fig.

     2 for  ^-  = 0,33 and

      -g-

     = y^j = 3

    o

    A

    q

    A

    0,42

    De  o

    q

    A  „ ,„

      J

      q

    A 1000 _

     n n s

    From Fig. 3 for  ^-  = 0,42 and — -

     1 4 0

      .

     9 0

      ~ °

    5

    °»

    De  o o

    d

     = 0,3 mm

    Even with

     a

     water level drawdown

     of 60 m

     flushing efficiency would

     be

    very poor.

    Additional question:

    Necessary drawdown when flushing of  coarse sand  (d = 2 mm)  shall

    be guaranteed?

    Procedure:

    q

    A

    From Fig.

     3 for ^ = 0,08 and d = 2 mm

    r i

    q

    A

    =  0,21

    De  o

    q.  B

    From Fig.

     2 for  ~  = 0,21 and  ~ = 3

    De  o A

    ^  = 0,18 ->• h

    D

     = 0,18 • 90 = 16,2 [mj

    h

    D

    o

    Necessary drawdown  H - h = 90 - 16,2 = 7 3,8m

    REFERENCES

    ACKERS, P.,  THOMPSON, G.  (1987) Reservoir sedimentation and influence

    of flushing. In: Sediment Transport  in  Gravel-bed Rivers.

    J. Wiley & Sons, London, 845-868.

    ASCE (1977) Sedimentation Engineering. ASCE Manuals

     and

     Reports

     on

    Engineering Practice No. 54 , New York.

    SCHEUERLEIN, H.  (1987) Sedimentation of reservoirs - methods of

    prevention, techniques

     of

     rehabilitation.

     In:

     First Iranian

    Symposium on Dam Engineering. Tehran.

    SCHEUERLEIN,

     H.

     (1989) Sediment sluicing

      in

     mountain reservoirs.

     In:

    International Workshop on  Fluvial Hydraulics of  Mountain Regions.

    Trent, B 77 - B 88 .

    WHITE, W.,

     BETTESS,

     R.

     (1984)

     The

     feasibility

     of

     flushing sediments

    through reservoirs. In: Challenges  in  African Hydrology and  Water

    Resources (Proceedings of the Harare  Symposium).  IAHR Publ.

    No.  144, 577-587.