57
II. Basic theories for description of a plasma Bin Qiao School of Physics Peking University, Beijing, P. R. China Email: [email protected] Office: Room 544 (South), Physics Building Tel: 62745005 2014 Autumn Semester, course for graduate student Lecture notes: Physics of Laser-Plasma Interaction

II. Basic theories for description of a plasma

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

II. Basic theories for description of a plasma Bin Qiao
School of Physics
Office: Room 544 (South), Physics Building
Tel: 62745005
2014 Autumn Semester, course for graduate student Lecture notes: Physics of Laser-Plasma Interaction
Part 1. Kinetic theory –from BBGKY to Vlasov
Kinetic theory –from BBGKY to Vlasov 1.3 Vlasov
Vlasov
2/123
422/1
)( ln)2(
E
x2, v2, t)
∂ ∂ x1
+ Vlasov%
0),,(]),(),([),,(),,( =
Vlasov(9,;512CI!#4)K
E8 peϖ Dλ &* 0→g $, 0=g 6 %4)K
& 4A DJ0HE-%45</ " F>DVlasov
(9G3 F>D.' <Vlasov(9+=?@:7 0B
Kinetic theory –from BBGKY to Vlasov
1
0/ =∂∂ t ,fACc
−= λ (2.42
l>TaA. || 21 qq − ir@\t(s+obnK2.222.27N
?pYC
Dgqq λ|~| 21
5\tBhNkB3L_O<6]!WR#I,$,g=PV
Thomson :&Bs+obNg=7D!de Thomson :&@\tB1u[
`N
Part 2. Fluid theory –particle number, momentum, and energy conservation
Fluid theory – particle number, momentum, energy conservation
Fluid theory – particle number, momentum, energy conservation
Fluid theory – particle number, momentum, energy conservation *39; iQ &$:'2(
0]),,([ =−∫ ∑ vdC dt
t unm
ααβ α
αααα ααα ∫=×+−><⋅∇+
222
:' vdftxn
vdQf
Fluid theory – particle number, momentum, energy conservation
Fluid theory – particle number, momentum, energy conservation
Fluid theory – particle number, momentum, energy conservation
Fluid theory – particle number, momentum, energy conservation +J:WSPtag!D[D[ 'B
0 3 5

mMF_ST;D[ _ST;D[Xe65 =γ αα np / DD /)2( +=γ D]`d
V4 :WSPt3r@]`-(SPbF αh ⋅∇ D[ .tYN70
)/(||||~|/|/|| αααα ϖphktph
>
PtFiX*XSP79/]`XR4?2\Z,XR4F1C>T;D[F\R
X LAnjk='8!+^k+JQ$Xl"+OF<%X2hEpN
='oU\RT;D[
ααααα nTTnp ∇=∇=∇ )(
,
Non-magnetized plasma waves
= /%'-0 #
⋅∇−= ∂

)()( 101 kuknkn αααϖ ⋅=
Langmuir wave
2k2vte 2

Langmuir
2 2 2 2 pe e e k v
peZ Z
2k2vte 2

2 2 2
pe D
k O
3 ev

z Ti0
z Landau
z Ti0
z Landau
Normal modes in homogeneous plasma – Langmuir and ion plasma waves
Z Langmuir waves
2.7Ponderomotiveforce


pe piE E (x)cos , ,L L LtZ Z Z Z !! !!
1 ,
L
(
u u B u u [E(x) ]e e e e
e t m c
Part 5. Ponderomotive Force
" N2`@?1# !
$&-yH+68QYEsmL:;1#$&
`@?kd:?M[P+\/[PoJaVx k' !
(r<q&
)sin()( txEE ϖ
smL:*+`?]o)@]o*
Laser Ponderomotive force
1.7 ponderomotive force


(
pe piE E (x)cos , ,L L LtZ Z Z Z !! !!
u u B u u [E(x) ]e e e e
e t m c
L
convective term 2
2 1 1 2u u E E sin ,e e e L L L
e L
2 2
1 2u B E ( E )sin ,e L L L e L
e e t c m
Z Z
c tZ Z
2 L L L L L u u
u E(x) fe e e p
enn t m
Laser Ponderomotive force
)( 4 1 2
nfp

2 2
2 2
1 1 2u u E E sin ,e e e L L L e L
em t m
2 2
1 2u B E ( E )sin ,e L L L e L
e e t c m
Z Z
Transverse component convective term


1u Be u
1 1e e(u )u
Laser Ponderomotive force
z
2 2
I W cm mP MbarO P
192 2 210 / , 3.3 LI W m cm P G barO P

cavition

Laser Ponderomotive force
Landau
Landau

.
,
G
0,
GH GH
“-”
“”(v0~Z/k)


v0~Z/k
k
-
(v0~Z/k)
V0~<Z/k
v ~Z/k


v0~Z/k
veMaxwell
0 8
2 2